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Abstract. Similarity among worlds plays a pivotal role in providing the
semantics for different kinds of belief change. Although similarity is, in-
tuitively, a context-sensitive concept, the accounts of similarity presently
proposed are, by and large, context blind. We propose an account of sim-
ilarity that is context sensitive, and when belief change is concerned, we
take it that the evidence (epistemic input) provides the required context.
We accordingly develop and examine two accounts of probabilistic belief
change that are based on such evidence-sensitive similarity. The first of
these switches between two extreme behaviors depending on whether or
not the evidence in question is consistent with the current knowledge.
The second one gracefully changes its behavior depending on the degree
to which the evidence is consistent with current knowledge. Finally, we
analyze these two belief change operators with respect to a select set of
plausible postulates.

Keywords: Belief revision · Probability · Similarity · Bayesian condi-
tioning · Lewis imaging.

1 Introduction

David Lewis (1976) first proposed imaging to analyze conditional reasoning in
probabilistic settings, and it has recently been the focus of several works on
probabilistic belief change (Ramachandran et al., 2010; Chhogyal et al., 2014;
Mishra and Nayak, 2016; Rens et al., 2016). Imaging is the approach of moving
the belief in worlds at one moment to similar worlds compatible with evidence
received at a next moment.

One of the main benefits of imaging is that it overcomes the problem with
Bayesian conditioning, namely, being undefined when evidence is inconsistent
with current beliefs. Gärdenfors (1988), Mishra and Nayak (2016) and Rens
et al. (2016) proposed generalizations of Lewis’s original definition. In this paper
we propose a new generalization of imaging – ipso facto a family of imaging-
based belief revision operators – and analyze other probabilistic belief revision



2 Gavin Rens, Thomas Meyer, Gabriele Kern-Isberner, and Abhaya Nayak

methods with respect to it. In particular, we propose a version of imaging based
on the movement of probability mass weighted by the similarity between possible
worlds.

Similarity among worlds plays a pivotal role in accounts of belief change
– both probabilistic and non-probabilistic. Intuitively, similarity is a context
sensitive notion: Richard is similar to a lion with respect to being brave, not
with respect to their food habits, for instance. We take that notion seriously,
and propose that the account of similarity among worlds should be sensitive to
the evidence.

We define a similarity measure parameterized by evidence. We then define
the similarity modulo evidence (SME) operator employing a family of similarity
functions. We prove that there is an instantiation of a similarity function for
which SME is equivalent to Bayesian conditioning, and we prove that there are
versions of SME equivalent to known versions of imaging. SME revision should
be viewed as a generalization of probabilistic belief revision.

There are many ways to define the similarity between two stimuli. Shepard
(1987) proposed a “universal generalization law” for converting measures of dif-
ference/distance to measures of similarity in an appropriately scaled psychologi-
cal space. Shepard’s approach has been widely adopted in cognitive psychology,
and biology (concerning perception) (Jäkel et al., 2008; Yearsley et al., 2017).
Suppose that the “appropriate scale” is that of probabilities, that is, [0, 1], and
that the “psychological space” is the epistemic notion of possible worlds. Shep-
ard’s definition of similarity is then easily applied to the possible worlds approach
of formal epistemology and seems to fit well into our SME method, which em-
ploys the notion of possible worlds. We propose a version of SME based on
Shepard’s generalization law.

We formalize the fact that Bayesian conditioning (BC) retains probability
mass of worlds modeling the evidence, whereas Shepard-based SME revision
(SSR) allows the evidence to induce the mass to spread away from old beliefs
towards the new evidence (which is arguably undesirable).

Due to both conditioning and SSR having desirable and undesirable proper-
ties, we propose two versions of SME revision which combine the two methods
in order to maximize their desirable properties. One of the combination SME
revision operators switches between BC and SSR depending on whether the new
evidence is consistent with the current belief state. The other combination oper-
ator varies smoothly between BC and SSR depending on the degree to which the
new evidence is consistent with the current belief state. Both combination op-
erators satisfy three core rationality postulates, but only the switching operator
satisfies all six postulates presented.

Due to space limitations, we only provide proof sketches for some of the less
intuitive results.
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2 Background and Related Work

It could be that the world model (belief state) is wrong, or the evidence ob-
served is wrong. Conventionally, in traditional belief change theory, one takes
the observation as primary and certain. Hence, when conflicts occur between the
agent’s beliefs and what it perceives, the observations dominate the knowledge
base. This is the stance we take in this work.

We shall work with a finitely generated classical propositional logic. Let P =
{q, r, s, . . .} be a finite set of atoms. Formally, a world w is a unique assignment
of truth values to all the atoms in P. An agent may consider some non-empty
subset W = {w1, w2, . . . , wn} of the possible worlds. Let L be all propositional
formulae which can be formed from P and the logical connectives ∧ and ¬, with
> abbreviating tautology and ⊥ abbreviating contradiction. Let α be a sentence
in L. The classical notion of satisfaction is used. World w satisfies (is a model of)
α is written w 
 α. Mod(α) denotes the set of models of α, that is, w ∈ Mod(α)
iff w 
 α. We call w an α-world if w ∈ Mod(α); α entails β (denoted α |= β) iff
Mod(α) ⊆ Mod(β); α is equivalent to β (denoted α ≡ β) iff Mod(α) = Mod(β).
In this paper, α and β denote evidence, by default.

Often, in the exposition of this paper, a world will be referred to by its
truth vector. For instance, if a two-atom vocabulary is placed in order 〈q, r〉 and
w 
 ¬q ∧ r, then w may be referred to as 01. We denote the truth assignment
of atom q by world w as w(q). For instance, w(q) = 0 and w(r) = 1.

In this work, the basic semantic element of an agent’s beliefs is a proba-
bility distribution or a belief state B = {(w1, p1), (w2, p2), . . . , (wn, pn)}, where
pi is the agents degree of belief (the probability that she assigns to the as-
sertion) that wi is the actual world, and

∑
(w,p)∈B p = 1. For parsimony, let

B = 〈p1, . . . , pn〉 be the probabilities that belief state B assigns to w1, . . . , wn
where, for instance, 〈w1, w2, w3, w4〉 = 〈11, 10, 01, 00〉, and 〈w1, w2, . . . , w8〉 =
〈111, 110, . . . , 000〉. B(α) abbreviates

∑
w∈Mod(α)B(w).

It is not yet universally agreed what belief change means in a probabilistic
setting. One school of thought says that probabilistic expansion (restricted re-
vision) is equivalent to Bayesian conditioning.4 This is evidenced by Bayesian
conditioning (BC) being defined only when B(α) 6= 0, thus making BC expansion
equivalent to BC revision. In other words, one could define expansion to be

BBC
α = {(w, p) | w ∈W,p = B(w | α), B(α) 6= 0},

where B(w | α) is defined as B(φw ∧ α)/B(α) and φw is a sentence identifying
w (i.e., a complete theory for w).5 Note that BBC

α = ∅ iff B(α) = 0. This implies
that BC is ill-defined when B(α) = 0.

The technique of Lewis imaging for the revision of belief states (Lewis, 1976)
requires that for each world w ∈ W there be a unique ‘closest’ world wα ∈
4 Gärdenfors (1988, Chap. 5) and Voorbraak (1999) mention this, but do not neces-

sarily agree with it.
5 In general, we write B∗

α to mean the (the result of) revision of B with α by application
of operator ∗.
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Mod(α) for given evidence α. If we indicate Lewis’s original imaging operation
with LI, then his definition can be stated as

BLI
α := {(w, p) | w ∈W,p = 0 if w 6
 α, else p =

∑
{v∈W |vα=w}

B(v)},

where vα is the unique closest α-world to v. He calls BLI
α the image of B on α.

In words, BLI
α (w) is zero if w does not model α, but if it does, then w retains

all the probability it had and accrues the probability mass from all the non-α-
worlds closest to it. This form of imaging only shifts probabilities around; the
probabilities in BLI

α sum to 1 without the need for any normalization.
Every world having a unique closest α-world is quite a strong requirement. We

now mention an approach which relaxes the uniqueness requirement. Gärdenfors
(1988) describes his generalization of Lewis imaging (which he calls general imag-
ing) as “... instead of moving all the probability assigned to a world W i by a
probability function P to a unique (“closest”) A-world W j , when imaging on
A, one can introduce the weaker requirement that the probability of W i be dis-
tributed among several A-worlds (that are “equally close”).” Gärdenfors does
not provide a constructive method for his approach, but insists that B#

α (α) = 1,
where B#

α is the image of B on α. Rens et al. (2016) introduced generalized imag-
ing via a constructive method. It is a particular instance of Gärdenfors’ general
imaging. Rens et al. (2016) use a pseudo-distance measure between worlds, as
defined by Lehmann et al. (2001) and adopted by Chhogyal et al. (2014).

Definition 1. A pseudo-distance function d : W ×W → Z satisfies the fol-
lowing four conditions: for all worlds w,w′, w′′ ∈W ,

1. d(w,w′) ≥ 0 (Non-negativity)
2. d(w,w) = 0 (Identity)
3. d(w,w′) = d(w′, w) (Symmetry)
4. d(w,w′′) ≤ d(w,w′) + d(w′, w′′) (Triangle Inequality)

One may also want to impose a condition on a distance function such that any
two distinct worlds must have some distance between them: For all w,w′ ∈ W ,
if w 6= w′, then d(w,w′) > 0. This condition is called Faithfulness.6

Rens et al. (2016) defined Min(α,w, d) to be the set of α-worlds closest to w
with respect to pseudo-distance d. Formally,

Min(α,w, d) := {w′ 
 α | ∀w′′ 
 α, d(w′, w) ≤ d(w′′, w)},

where d(·) is some pseudo-distance function between worlds (e.g., Hamming or
Dalal distance). Generalized imaging (Rens et al., 2016) (denoted GI) is then
defined as

BGI
α :=

{
(w, p) | w ∈W,p = 0 if w 6
 α, else

p =
∑

{w′∈W |w∈Min(α,w′,d)}

B(w′)/|Min(α,w′, d)|
}
.

6 The term faithfulness has been defined differently by different authors. We take the
term from Boutilier (1998).
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BGI
α is the new belief state produced by taking the generalized image of B on

α. In words, the probability mass of non-α-worlds is shifted to their closest α-
worlds, such that if a non-α-world w× with probability p has n closest α-worlds
(equally distant), then each of these closest α-worlds gets p/n mass from w×.

Recently, Mishra and Nayak (2016) proposed an imaging-based expansion
operator 〈premcl〉 based on the notion of closeness, where closeness between
two worlds is defined as “the gap between the distance between them and the
maximum distance possible between any two worlds” (in a neighbourhood of
relevance). Formally,

B〈premcl〉R := {(w, p) | w ∈W,p = B(w) + σcl(w, S,R)},

where R is the set of non-α-worlds (for some observation α), S is the α-worlds
and σcl(w, S,R) is the share of the overall probability salvaged from R going to
w ∈ S. To re-iterate, 〈premcl〉 is an expansion operator; it does not deal with
conflicting evidence.

“The most widely adopted function linking distances and similarities is Shep-
ard’s (1987) law of generalization, according to which Similarity = e−distance ,”
(Yearsley et al., 2017), where e is Euler’s number (≈ 2.71828). (See also, e.g.,
Jäkel et al. (2008).) Here, distance is a term used to refer to the difference in
perceived observations (stimuli in the jargon of psychology) in an appropriately
scaled psychological space. Suppose σ(w,w′) represents the similarity between
worlds w and w′. Then we could define σ(w,w′) := e−d(w,w

′). This implies that
d(w,w′) = − lnσ(w,w′).

σ(w,w′′) ≥ σ(w,w′) · σ(w′, w′′). (1)

Yearsley et al. (2017) derive (1) from the triangle inequality and call it the
multiplicative triangle inequality (MTI).

Imaging falls into the class of probabilistic belief change methods that rely on
distance or similarity between worlds. There is another class of methods that rely
on definitions of distance or similarity between distributions over worlds. The
most popular of the latter methods employs the notion of (information theoretic)
entropy optimization (Jaynes, 1978; Paris and Vencovská, 1997; Kern-Isberner,
2001). Recently, Beierle et al. (2017) presented a knowledge management system
with the core belief change method based on entropy optimization. The present
work focuses a method that relies on the notion of similarity between worlds.

To further contextualize the present work, we do not consider uncertain evi-
dence (Chan and Darwiche, 2005) nor the general case when instead of a single
belief state being known, only a set of them is known to hold (Grove and Halpern,
1998; Mork, 2013; Rens et al., 2016). Other related literature worth mentioning
is that of Boutilier (1995), Makinson (2011), Chhogyal et al. (2015) and Zhuang
et al. (2017). Space limitations prevent us from relating all these approaches to
SME revision.
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3 Similarity Modulo Evidence (SME)

Let σ : W ×W → R be a function signature for a family of similarity functions.
Let σα be a sub-family of similarity function, one sub-family for every α ∈ L.
Function σα(w,w′) denotes the similarity between worlds w and w′ in the context
of evidence α. We consider the following set of arguably plausible properties of
a similarity function modulo evidence.

For all w,w′, w′′, w′′′ ∈W and for all α, β ∈ L,

1. σα(w,w′) = σα(w′, w) (Symmetry)
2. 0 ≤ σα(w,w′) ≤ 1 (Unit Boundedness)
3. σα(w,w) = 1 (Identity)
4. σα(w,w′′) ≥ σα(w,w′) · σα(w′, w′′) (MTI)
5. If w,w′ ∈ Mod(α) and w′′ 6∈ Mod(α), then σα(w,w′) > σα(w,w′′) (Model

Preference)
6. If w 6= w′, then σα(w,w′) < σα(w,w) (Faithfulness)

A property we assume to be satisfied is, if α ≡ β, then σα(w,w′) = σβ(w,w′).
We now discuss the listed properties.

1. Symmetry : Typically, symmetry of similarity is assumed. However, it is not
always the case.

2. Unit Boundedness: This is a convention to simplify reasoning.
3. Identity : Objects are maximally similar to themselves.
4. Multiplicative Triangle Inequality (MTI): Note that even if a similarity func-

tion is not symmetric, it could satisfy MTI (and non-symmetric distance
functions could satisfy the (additive) triangle inequality). In general, if one
suspects that a similarity function is non-symmetric, one would have to check
for every combination of orderings of arguments in the inequality (eight such)
to ascertain whether MTI holds.

5. Model Preference: Any two worlds which agree on a piece of evidence should
be more similar to each other than any two worlds, one of which agrees on
that evidence and one which does not.

6. Faithfulness: It seems intuitive that non-identical worlds should not be max-
imally similar. It is, however, conceivable that two non-identical worlds can-
not be distinguished, given the evidence, in which case they might be deemed
(completely) similar.

Definition 2. Let B be a belief state, α a new piece of information and σ a sim-
ilarity function. Then the new belief state changed with α via similarity modulo
evidence (SME) is defined as

BSME
α :=

{
(w, p) | p = 0 if w 6
 α, else p =

1

γ

∑
w′∈W

B(w′)σα(w,w′)
}
,

where γ :=
∑
w∈W,w
α

∑
w′∈W B(w′)σα(w,w′) is a normalizing factor.

We use some identifier ID to identify a similarity function as a particular
instantiation σID . By SMEID we mean SME employing σID . For any probabilis-
tic belief revision operator ∗, we say that ∗ is SME-compatible iff there exists a
similarity function σID such that B∗α = BSMEID

α for all B and α.
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An example of revision with SME is provided in Section 4.3.

4 Belief Revision Operations via SME

In this section we investigate various probabilistic belief revision operations sim-
ulated or defined as SME operations. We simulate Bayesian conditioning, Lewis
imaging and generalized imaging via SME. Finally, we present a new SME-
based probabilistic belief revision operation with the similarity function based
on Shepard’s generalization law.

4.1 Bayesian Conditioning via SME

Bayesian conditioning can be simulated as an SME operator. Let σBC be defined
as follows.

σBC
α (w,w′) :=

{
1 if w = w′

0 otherwise.

Proposition 1. BBC
α = BSMEBC

α iff B(α) > 0. That is, BC is SME-compatible
iff B(α) > 0.

Proof-sketch: σBC
α acts like an indicator function, picking out only α-worlds;

non-α-worlds are also picked but are never considered, that is, are assigned zero
probability according to the definition of SME. ut

Proposition 2. σBC satisfies all the similarity function properties, except Model
Preference.

4.2 Imaging via SME

In this sub-section we show that Lewis and generalized imaging are both SME-
compatible, and that their corresponding similarity functions satisfy only four
of the similarity function properties.

Let Max (α,w, σ) be the set of α-worlds most similar to w with respect to
similarity function σ. Formally, Max (α,w, σ) := {w′ ∈ W | w′ 
 α,∀w′′ 

α, σα(w′, w) ≥ σα(w′′, w)}.

Lewis imaging can be simulated as an SME operator: Let

σLI1
α (w,w′) :=

{
1 if Max (α,w′, σL) = {w}
0 otherwise,

where σL is defined such that Faithfulness holds and Max (α,w, σL) is always
a singleton, that is, σL identifies the unique most similar world to w, for each
w ∈W . Note that due to σL being faithful, if w 
 α, then Max (α,w, σL) = {w}.

Assume w 6= w′, w 
 α and w′ 6
 α. Then Max (α,w, σL) = {w}, imply-
ing that σLI1

α (w,w′) = 0. But it could be that Max (α,w′, σL) = {w}. Then
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σLI1
α (w′, w) = 1. Hence, σLI1 does not satisfy Symmetry. To obtain Symmetry,

we define σLI2 . Let

σLI2
α (w,w′) :=


1 if w = w′

1 if Max (α,w′, σL) = {w}
1 if Max (α,w, σL) = {w′}
0 otherwise.

Proposition 3. BLI
α = BSMELI1

α = BSMELI2
α . That is, LI is SME-compatible.

Proof-sketch:

BLI
α (w) =

∑
v∈W
v=wα

B(v) =
∑
v∈W

Max(α,v,σL)={w}

B(v)

=
∑
v∈W

B(v)σLI1
α (v, w) =

1

γ

∑
v∈W

B(v)σLI1
α (v, w),

where γ = 1 =
∑
w∈W

∑
v∈W B(v)σLI1

α (v, w) due to the definition of σL.

We then show that BSMELI1
α = BSMELI2

α via the lemma: For all w ∈ W , if
w 
 α, then σLI1

α (w,w′) = σLI2
α (w,w′). ut

Proposition 4. Of the similarity function properties, σLI2 satisfies only Sym-
metry, Unit Boundedness, Identity and MTI.

Generalized imaging can also be simulated as an SME operator: Let

σGI1
α (w,w′) :=

{
1 if w ∈ Min(α,w′, d)
0 otherwise,

where d is a pseudo-distance function defined to allow multiple worlds sharing
the status of being most similar to w′, for each w′ ∈ W , that is, such that
|Min(α,w′, d)| may be greater than 1.

For similar reasons as for σLI1 , σGI1 does not satisfy Symmetry. To obtain
Symmetry, we define σGI2 . Let

σGI2
α (w,w′) :=


1 if w = w′

1 if w ∈ Min(α,w′, d)
1 if w′ ∈ Min(α,w, d)
0 otherwise.

Proposition 5. BGI
α = BSMEGI1

α = BSMEGI2
α . That is, GI is SME-compatible.

Proof-sketch: The proof follows the same pattern as for Proposition 3, just more
complicated due to GI being more general than LI. ut

Proposition 6. Of the similarity function properties, σGI2 satisfies only Sym-
metry, Unit Boundedness, Identity and MTI.
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4.3 A Similarity Function for SME based on Shepard’s
Generalization Law

We now define a model preferred, Shepard-based similarity function:

σSh
α (w,w′) :=

{
e−d(w,w

′) if w = w′ or if w,w′ 
 α

e−d(w,w
′)−dmax otherwise,

where d is a pseudo-distance function and dmax := maxw,w′∈W {d(w,w′)}. Sub-
tracting dmax in the second case of the definition of σSh is exactly to achieve
Model Preference, and the least value to guarantee Model Preference. Note that
σSh
α (w,w′) ∈ (0, 1], for all w,w′ ∈W .

Example 1. Quinton knows only three kinds of birds: quails (q), ravens (r) and
swallows (s). Quinton thinks Keaton has only a quail and a raven, but he is
unsure whether Keaton has a swallow. Quinton’s belief state is represented as
B = {(111, 0.5), (110, 0.5), (101, 0), . . . , (000, 0)}. Now Keaton’s sister Cirra tells
Quinton that Keaton definitely has no quails, but she has no idea whether Keaton
has ravens or swallows. Cirra’s information is represented as evidence ¬q.

We assume d is Hamming distance. Note that BSMESh
¬q (w) = 0 for w ∈

Mod(q) and that BSMESh
¬q (w′) = 1

γ [B(111)σSh
¬q (w′, 111) +B(110)σSh

¬q (w′, 110)] for

w′ ∈ Mod(¬q). That is, BSMESh
¬q (w′) = 1

γ 0.5[e−d(w
′,111)−dmax +e−d(w

′,110)−dmax ] =
0.5
γ [e−d(w

′,111)−3 + e−d(w
′,110)−3].

For instance, BSMESh
¬q (011) = 0.5

γ [e−1−3+e−2−3] and γ turns out to be 0.0342.

Finally,BSMESh
¬q is calculated as 〈0, 0, 0, 0, 0.365, 0.365, 0.135, 0.135〉. Observe that

all ¬q-worlds are possible, and that worlds in which Keaton has a raven (but no
quail) are more than double as likely than worlds in which Keaton has no raven
(and no quail) – due to raven-no-quail-worlds being more similar to Keaton’s
initially believed worlds than no-raven-no-quail-worlds.

Proposition 7. Similarity function properties 1 - 4 are satisfied for σSh . Model
Preference and Faithfulness are satisfied for σSh iff d is Faithful.

Proof-sketch: The most challenging was to prove that σSh satisfies MTI. It was
tackled with a lemma stating that e−d(w,w

′′)−x ≥ e−d(w,w′)−x ·e−d(w′,w′′)−x ⇐⇒
d(w,w′′) ≤ d(w,w′) + d(w′, w′′) for x ≥ 0, and by considering cases where (i)
w = w′′ (ii) w 6= w′′, with sub-cases (ii.i) w = w′ (or w′ = w′′), and (ii.ii)
w 6= w′ 6= w′′, with sub-sub-cases (ii.ii.i) exactly one of w, w′ or w′′ is in Mod(α),
(ii.ii.ii) w, w′ and w′′ are all in Mod(α), and (ii.ii.iii) exactly one of the three
worlds is not in Mod(α). ut

4.4 Combined Shepard-based and Bayesian SME Operators

Suppose that B(α) > 0 and β |= α. Then we would expect the current belief in β
(i.e., B(β)) not to change due to finding out that α. After all, α tells us nothing
new about β; β entails α. We want belief in β to be retained when revising by
α while B(α) > 0 and β |= α.



10 Gavin Rens, Thomas Meyer, Gabriele Kern-Isberner, and Abhaya Nayak

Definition 3. Let B(α) > 0 and β |= α, and let ∗ be a probabilistic belief
revision operator. We say that ∗ is retentive if B∗α(β) = B(β), else we say that
∗ is inductive.

There might be conditions under which it makes sense for B∗α(β) not to equal
B(β), for instance, with a belief update operation. In such cases, we presume
that an inductive process is occurring.

Proposition 8. SMEBC is retentive and SMESh is inductive.

When SMEBC is defined (B(α) > 0), it has the retention property. However,
when B(α) = 0, an operation other than SMEBC is required. It might, there-
fore, be desirable to switch between retention and induction. We define an SME
revision function which deals with the cases of B(α) > 0 and B(α) = 0 using
SMEBC , respectively, SMESh:

BSMECmb
α :=

{
BSMEBC
α if B(α) > 0

BSMESh
α otherwise.

Switching is arguably a harsh approach due to its discontinuous behavior.
Can we gradually trade off between retention and induction? Let τ ∈ [0, 1]
be the ‘degree of retention’ desired. Then SMEBC and SMESh can be linearly
combined as SMEBCSh by defining

σBCSh
α,τ (w,w′) := τ · σBC

α (w,w′) + (1− τ)σSh
α (w,w′).

We shall write SMEBCSh(τ) to mean: SMEBCSh using σBCSh
α,τ .

What should τ be? If we use σBC
α when α is (completely) consistent with B,

then we reason that we should use σBC
α to the degree that α is consistent with

B. In other words, we set τ = B(α). We thus instantiate σBCSh
α,τ as

σΘα (w,w′) := B(α) · σBC
α (w,w′) + (1−B(α)) · σSh

α (w,w′).

We analyze SMECmb and SMEΘ with respect to a set of rationality postu-
lates in the next section.

Conjecture 1. Let x, y ∈ [0, 1] such that x+y = 1 and let σf and σg be similarity
functions. If σf and σg satisfy MTI, then σfg

α,τ (w,w′) := τ · σfα(w,w′) + (1− τ) ·
σgα(w,w′) satisfies MTI.

In other words, it is unknown at this stage whether σΘ satisfies MTI.

Proposition 9. Similarity function properties 1 - 3 are satisfied for σΘ. (i)
Faithfulnes is satisfied for σΘ iff d is Faithful and (ii) Model Preference is sat-
isfied for σΘ iff d is Faithful and B(α) < 1.

Proof-sketch: We sketch only the proof of case (ii). If B(α) = 1, then σΘ =
σBC , implying that Model Preference fails. Recall that if d is Faithful, then σSh

satisfies Model Preference. If B(α) < 1, then 1 − B(α) > 0, giving σSh enough
weight in σΘ to satisfy Model Preference. ut
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5 Probabilistic Revision Postulates

First, we discuss the operation called expansion, because it is mentioned in the
postulates below. Let K be a set of sentences closed under logical consequence.
Conventionally, (classical) expansion (denoted +) is the logical consequences of
K ∪ {α}, where α is new information and K is the current belief set. Or if
the current beliefs can be captured as a single sentence β, expansion is defined
simply as β + α ≡ β ∧ α. We denote the expansion of belief state B with α as
B+
α . Furthermore, we shall equate + with Bayesian conditioning (BC). Let ∗ be

a probabilistic belief revision operator. Unless stated otherwise, it is assumed
that α is logically satisfiable. The probabilistic belief revision postulates are

(P ∗1) B∗α is a belief state
(P ∗2) B∗α(α) = 1
(P ∗3) If α ≡ β, then B∗α = B∗β
(P ∗4) If B(α) > 0, then B∗α = B+

α

(P ∗5) If B∗α(β) > 0, then B∗α∧β = (B∗α)+β
(P ∗6) If B(α) > 0 and β |= α, then B∗α(β) = B(β)

(P ∗1) - (P ∗5) are adapted from Gärdenfors (1988) and written in our notation.
(P ∗6) is a new postulate. We take (P ∗1) - (P ∗3) to be self explanatory, and to
be the three core postulates. (P ∗4) is an interpretation of the AGM postulate
Alchourrón et al. (1985) which says that if the evidence is consistent with the
currently held beliefs, then revision amounts to expansion. (P ∗5) says that if β
is deemed possible in the belief state revised with α, then expanding the revised
belief state with β should be equal to revising the original belief state with the
conjunction of α and β. (P ∗6) states the requirement for retention (cf. Def. 3)
as a rationality postulate.

Proposition 10. SMECmb satisfies (P ∗1) - (P ∗6).

Proof-sketch: The most challenging was the proof that SMECmb satisfies (P ∗5).
The proof depends on the observation that it is known that if B(α ∧ β) >
0, then (BBC

α )BCβ = BBC
α∧β and a lemma stating that if BSMESh

α (β) > 0, then

(BSMESh
α )SMEBC

β = BSMESh
α∧β . ut

Proposition 11. SMEΘ satisfies (P ∗1) - (P ∗3) but not (P ∗4) - (P ∗6).

Propositions 10 and 11 make the significant difference between SMECmb and
SMEΘ obvious.

6 Conclusion

The main contributions of this paper are (i) the definition of SME, a probabilistic
belief revision operator derived from Lewis imaging and (ii) SMECmb which
combines and switches between SMESh, an instance of SME employing a version
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of Shepard’s generalization law for similarity, and an instance of SME which
simulates Bayesian conditioning.

The key mechanism in SME revision is the weighting of world probabilities
by the worlds’ similarity to the world whose probability is being revised. SME
revision was not developed as a competitor to Bayesian Conditioning; nonethe-
less, SME is more general and with the availability of a similarity function as a
weighting mechanism, it allows for tuning of the ‘behavior’ of revision. SMESh
has several advantages over previous operators: It can deal with evidence in-
consistent with current beliefs (other imaging methods also have this property),
and it is more general than Lewis’s original imaging and generalized imaging.
Furthermore, σSh satisfies most properties one might expect from a similarity
measure, notably the multiplicative triangle inequality and model preference.
Finally, SMECmb satisfies all the rationality postulates for probabilistic revision
investigated in this study.

We have defined notions of retention and induction for probabilistic belief
change operators, but we did not say which is preferred. A combined belief
revision approach was proposed, which allows the user or agent to choose the
degree of retention/induction. We proposed that the trade-off factor be B(α), the
degree to which evidence α is consistent with current beliefs B. We saw, however,
that the three non-core rationality postulates are not satisfied. Nonetheless, the
idea of trading off between SMEBC and SMESh via B(α) seems intuitively
appealing. But what is the effect of retention versus induction and when is one
more appropriate than the other?

Suppose evidence β contains no new information with respect to evidence
α, (i.e. α |= β). Should two worlds then be at least as similar to each other in
the context of β as they are in the context of α? If the question is answered in
the positive, we call the applicable similarity function weakly monotonic. The
strict version of the monotonicity property is: If α |= β, α 6≡ β and w 6= w′,
then σα(w,w′) < σβ(w,w′). It is unclear whether either of the monotonicity
properties ought to be satisfied, but it seems like a question meriting further
investigation. At present we can show that weak monotonicity holds for σBC ,
σSh and σθ, and that strict monotonicity fails for all our definitions of σ.

Our view is that when it comes to probabilistic revision, (P ∗4) - (P ∗6) might
be too strong. Perhaps they should be weakened just enough to accommodate
SMEΘ. A theorem states that a particular set of rationality postulates identify,
characterize or represent a (class of) belief change operator(s), and that the (class
of) operator(s) satisfies all the postulates. In general, it would be nice if we could
make general statements about the relations between the revision postulates
and the similarity properties. This is left for future work. We acknowledge that
representation theorems are desirable, but consider them as a second step after
clarifying what properties are adequate for a novel belief revision operator in
general. We consider our paper as a first step of presenting and elaborating on
a completely novel type of revision operator. The shown relationships to well-
known revision operators prove its basic foundation in established traditions of
belief change theory.
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