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ABSTRACT
This study evaluates comparative behavioral search methods for
evolutionary controller design in robot teams, where the goal is to
evaluate the morphological robustness of evolved controllers. That
is, where controllers are evolved for specific robot sensory-motor
configurations (morphologies) but must continue to function as
these morphologies degrade. Robots use neural controllers where
behavior evolution is directed by developmental Neuro-Evolution
(HyperNEAT). Guiding evolutionary controller design we use ob-
jective (fitness function) versus non-objective (novelty) search. The
former optimizes for behavioral fitness and the latter for behav-
ioral novelty. These search methods are evaluated across varying
robot morphologies and increasing task complexity. Results indi-
cate that both novelty and objective search evolve team controllers
(behaviors) that are morphologically robust given degrading robot
morphologies and increasing task complexity. Results thus suggest
that novelty search is not necessarily suitable for generating robot
team behaviors that are robust to changes in robot morphologies
(for example, due to damaged or disabled sensors and actuators).
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MORPHOLOGICALLY ROBUST CONTROLLERS
Autonomous robots are increasingly being applied to remote and
hazardous environments [1, 3], environments damage to sensory-
actuator systems (morphologies [17]) cannot be easily repaired if
damaged. An unsolved problem in the controller design for such
autonomous robots is having controllers continue to effectively
function given unexpected changes, such as damage, to robot mor-
phology. Currently, robotic systems recover from damage via self-
diagnosis and selection from pre-designed contingency plans in
order to continue functioning [2, 10, 21]. Though robots using such
self-diagnosis and recovery are problematic systems as they are
expensive, requiring sophisticated monitoring sensors, and difficult
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to design as a priori knowledge of all necessary contingency plans is
assumed [5]. Addressing this, recent work in Evolutionary Robotics
[8] elucidated the efficacy of population based stochastic trial and
error methods for online damage recovery in autonomous robots
operating in physical environments [5]. This was demonstrated
as being akin to self-adaptation and injury recovery of animals
observed in nature.

This study further contributes to this research area, focusing on
evolutionary controller design [11] within the broader context of col-
lective [15] and swarm [1] robotics. That is, evolutionary controller
design for robot groups that must continue to accomplish tasks
given that damage is sustained to the morphologies of some or all
of the robots in the group. Given previous non-objective controller
evolution work in collective robotics [12–14], and previous research
demonstrating the efficacy of novelty search [16] for evolving be-
haviors that operate across various robotic morphologies [4], the
following research objectives formed the focus of this study.

(1) Novelty search behaviors out-perform those of objective
search in terms of average team task performance in increas-
ingly complex collective construction tasks.

(2) Novelty search is suitable for evolving morphologically ro-
bust controllers in collective construction tasks.

To test this objective, experiments evaluated various robot mor-
phologies in increasing complex collective construction tasks. That
is, evolved controller morphological robustness was evaluated in
terms of the given controller’s task performance when coupled with
alternate robot morphologies. This study’s contribution was thus to
elucidate the impact of objective versus non-objective search on the
evolution of controllers that exhibit morphologically robust behav-
iors in collective robotic systems [8]. Specifically, collective robotic
systems that must effectively adapt to unforseen morphological
change, such as the loss or damage of sensors without significant
task performance degradation [2, 5].

METHODS AND EXPERIMENTS
HyperNEAT [19] was applied to evolve robot team (collective) be-
haviors, where teams were behaviorally and morphologically ho-
mogenous teams meaning all robots in a given team used the same
controller and sensory configuration. HyperNEAT extends NEAT
(Neuro-Evolution of Augmented Topologies) [20], where Artificial
Neural Network (ANN) controllers were indirectly encoded using a
CPPN (Compositional Pattern Producing Network) [18].

Experiments tested 15 robots in a bounded two dimensional
continuous simulation environment (20 x 20 units) with randomly
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Table 1: Sensory configuration (number and type of sensor) for each robot morphology.

Morphology ID Proximity Ultrasonic Color Ranged Low-Resolution Construction Zone

Sensors Sensors Sensors Camera Sensors

1 5 3 1 1 1
2 3 2 1 1 1
3 1 0 1 1 1

distributed type A and B blocks. Robots and blocks were initialized
with random orientations and positions throughout the environ-
ment. The experimental objective was to evaluate themorphological
robustness of HyperNEAT evolved controllers for robot teams given
collective construction tasks. We measured average task perfor-
mance of controllers evolved for three team morphologies and two
levels of task complexity. Each experiment comprised a team con-
troller evolution and re-evaluation stage, where the latter was the
morphological robustness test.

In the controller evolution stage, each experiment applied Hy-
perNEAT, where evolutionary search (to evolve team behavior)
was directed by either objective-based [9] or novelty search [16],
running for 100 generations. Each generation comprised three team
lifetimes (1000 simulation iterations), where each team lifetime
tested different robot starting positions, orientations and building-
block locations.

Teams that achieved an average task performance that was not
significantly lower across all re-evaluated morphologies were con-
sidered to be morphologically robust. Specifically, the fittest con-
troller evolved for a given morphology and level of task complexity
was re-evaluated in the other morphologies for the same level
of task complexity. For example, the fittest controller evolved for
morphology 1 was re-evaluated in morphologies 2 and 3 and the
average task performance calculated across all re-evaluation runs.
Re-evaluation runs were non-evolutionary, meaning controllers
were not further evolved, and each re-evaluation was equivalent
to one team lifetime. There were 20 re-evaluation runs for each
morphology to account for random variations in robot and block
starting positions and orientations.

Collective Construction Task
The task required robots to search the environment for building
blocks and cooperatively push the blocks together into a structure.
Task complexity was the level of cooperation required to optimally
solve the task, that is, connect all the blocks in construction zones.
For complexity levels 1 and 2, there were 15 type A and B blocks,
respectively. In the case of level 1, a single robot could push each
block, but in the case of level 2, three robots were required to
cooperatively push and connect blocks. A construction zone was
formed via at least two blocks being pushed together thus forming a
structure. Once a construction zone was created, all blocks attached
to it were fixed in position and could not be disconnected. The
task used a maximum of three construction zones and unconnected
blocks had to be pushed and connected to one of these construction
zones. Team task performance was calculated as the number of
blocks connected in construction zones during a team’s lifetime,

where average task performance was the highest performance at
the end of each run (100 generations), averaged over 20 runs.

RESULTS AND DISCUSSION
Results indicate that, for both novelty and objective search, given
increasing task complexity, there was no significant difference in
average task performance between controllers evolved in any mor-
phology and re-evaluated in other morphologies. However, there
were two exceptions to this result. First, novelty search applied in
task complexity 1 to evolve controllers in morphology 1, where
the fittest controller re-evaluated in morphology 3 yielded a signifi-
cantly lower average task performance. Second, objective search
applied in task complexity 2 to evolve controllers in morphology 1,
where similarly, the fittest controller re-evaluated in morphology 3
yielded a significantly lower task performance.

In these cases, one may observe that there is a large difference
in number of sensors used by morphology 1 versus morphology
3 (table 1), indicating that controllers evolved for the high sensor
complement (and thus functionality) of morphology 1, are not read-
ily transferable to a simpler sensory configuration (with much less
functionality). However, this was not the case for novelty search
applied in task level 2 or objective-search applied in task level 1.

The key results were thus two-fold. First (supporting the first
hypothesis), team behaviors evolved by novelty-search, for all mor-
phologies and task complexity levels, significantly out-performed
team behaviors evolved with objective search for corresponding
morphologies and task complexity levels. This result is supported
by previous work [12], [14], [13], [6], [7]. Second (refuting the
second hypothesis), results indicated that, for all team morpholo-
gies and levels of task complexity evaluated, both novelty and
objective search were effective in evolving morphologically robust
controllers.

That is, for any given morphology, there was no significant dif-
ference in average task performance between the fittest novelty
search evolved team controllers and re-evaluation of these con-
trollers in the other morphologies. The same result was observed
for objective search. This second result indicates that while novelty
search yields advantages over objective search in terms of evolving
high task performance team behaviors, it yields no benefits over
objective search for evolving morphologically robust controllers in
the collective construction task for the given team morphologies.
However, the suitability of novelty search for evolving morphologi-
cally robust controllers in complex collective behavior tasks is the
topic of ongoing research.
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