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Abstract. It is well-known that querying information is difficult for do-
main experts, for they are not familiar with querying actual relational
schemata due to the notions of primary and foreign keys and the various
ways of representing and storing information in a relational database. To
overcome these problems, the Abstract Relational Model and the query
language, SQLP, have been proposed. They are the theoretical founda-
tions and ensure that explicit primary and foreign keys are hidden from
the user’s view and that queries can be expressed more compactly. In
this paper we evaluate these theoretical advantages with user studies
that compare SQLP to plain SQL as the baseline. The experiments show
significant statistical evidence that SQLP indeed requires less time for
understanding and authoring queries, with no loss in accuracy. Consider-
ing the positive results, we develop a method to reverse engineer legacy
relational schemata into abstract relational ones.

1 Introduction

Writing and understanding queries, especially by domain experts, is well-known
to have a steep learning curve. Therefore, four strategies have been proposed to
alleviate this problem: either SQL is hidden behind a controlled natural language
or a visual query language, or the relational or conceptual model is also shown
as convenient overview of the database whilst querying in SQL. They have been
shown to result in improvements over plain SQL at the database schema layer,
demonstrating equal or fewer errors always in less time, and that a “good match
of query language and database structure leads to better performance” [10] (see
[3, 10] and references therein). A conceptual view (cf. SQL only) also enabled
domain experts to invent new queries [4].

The major drawback of conceptual query languages is that most of them
support only a subset of the full SQL and therefore have little uptake in industry.
Querying with SQL and the relational model (RM) is one step up from the
baseline of SQL on the SQL schema, but it still entails the drawback of premature
resolution of identification issues (e.g., primary keys). In order to abstract away
from that, the notion of referring expression types has been proposed [1, 2], which
are object identifiers taken from a separate domain, Doid, and included in each



table in a schema as a self attribute. Each self is a single column with a
functional dependency to an n-attribute (n ≥ 1) identifier meaningful to the
modeler. With this extension, the RM can be pushed up toward the conceptual
layer into an Abstract Relational Model (ARM), which makes orthogonal those
issues of identification [1, 2], and approaches a conceptual data model through
lossless projections (vertical partitioning). Yet, SQL can be retained fully for
data manipulation. Moreover, since each self is a single column, foreign key
joins can always be expressed more compactly as attribute paths.

Attribute paths enable seamless path queries that do not require declaring
multiple SQL joins manually. SQL with paths, SQLP (an extension of full SQL),
is such a path query language (extending SQLpath [2]) where the foreign key joins
are expressed with sequences of dot-separated attributes, which is a longstanding
feature of class-based conceptual models [9]. This results in shorter queries and
thus fewer chances of making mistakes, and it affords explicit navigation across
the ARM to the desired elements. These are advantages in theory. It is not known
whether this holds also in practice, especially regarding path query languages.
In fact, while multiple path query languages have been proposed, to the best of
our knowledge, only PathSQL that collapses left outer joins has been evaluated
[7], claiming shorter writing time and fewer errors cf. plain SQL.

We seek to shed light on this issue with, first, a user evaluation that compares
SQLP+ARM against the baseline of SQL+RM, testing for both time to write
and to comprehend a query and correctness of the written queries. The main
outcome of the evaluation is that working with SQLP has been shown to be
statistically significantly faster, with the same level of correctness. Therefore,
we have devised a novel method that transforms a legacy RM into the richer
ARM. This method resolves the issues of identification automatically thanks to
the referring expression type assignment inferred during the construction of the
ARM, which is identity resolving, and therewith is also capable of making certain
implicit constraints of the RM explicit in the ARM, such as disjointness and
class subsumption (backward compatibility from SQLP→SQL and ARM→RM
is already possible and ARM may be reconstructed in a Description Logic [2]).
We also show that the space of SQLP queries remains invariant with respect to
vertical partitioning, so that domain experts can use SQLP over a conceptual-
like view of an ARM schema while database administrators can view the same
schema as tables with many attributes.

In the remainder of the paper, we present the background and the novel
method first in Sections 2 and 3 and subsequently the user evaluation in Sec-
tion 4. We discuss related work in Section 5 and conclude in Section 6.

2 Background

We begin by introducing the abstract relational model (ARM), which is based
largely on an earlier version presented in [2], and extended where indicated
below. An ARM augments the underlying domain of concrete values assumed in
the relational model (RM) with an additional abstract domain of entities.
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Fig. 1. Course Enrollment as an RM Schema.

Definition 1 (Tables and Constraints) Let TAB, AT, and CD be sets of ta-
ble names, attribute names that includes self, and concrete domains (data
types), respectively, and let OID be an abstract domain of entities (surrogates),
disjoint from all concrete domains. A general relational model schema Σ is a set
of table declarations of the form3 table T (A1 D1, . . ., Ak Dk, ϕ1, . . ., ϕ`),
where T ∈ TAB, Ai ∈ AT, Di ∈ (CD∪{OID}), and ϕj are constraints attached to
table T . We write Attrs(T ) to denote {A1, . . . , Ak} and Tables(Σ) to denote
all table names declared in Σ. Ai is abstract if Di is OID, and concrete other-
wise, and self must always be abstract. In addition to attribute declarations
“(Ai Di)”, a variety of constraints ϕj can occur in a table declaration of T , e.g.,

1. (primary keys) primary key (A1, . . . , Ak)
2. (foreign keys) constraint N foreign key (A1, . . . , Ak) references T
3. (inheritance) isa T1
4. (disjointness constraints) disjoint with (T1, . . . , Tk)
5. (path functional dependencies) pathfd (Pf1, . . . ,Pfk) → Pf 2

Primary keys and named foreign keys (“N” in item 2, above) are supported
by standard SQL. Inheritance and disjointness constraints are only meaningful
when self occurs as one of the attributes of T and each Ti, and are satisfied when
all (resp. no) self-value occurring in T occurs as a self-value in some (resp.
all) Ti in the inheritance (resp. disjointness) cases. Path functional dependencies
are a generalization of functional dependencies introduced in [13] that allow
attribute paths in place of attributes. An attribute path Pf is either self or a
dot-separated sequence of attribute names excluding self, as defined in [2]. A
path functional dependency is satisfied when any pair of T -tuples that agree on
the value of each Pfi also agree on the value of Pf. Finally, RM and ARM are
obtained by restricting how tables and constraints can be declared:

Definition 2 (RM and ARM) In RM: attributes Ai can only be declared to
be concrete, and only primary and foreign key constraints are allowed. In ARM,

3 This is essentially the syntax for SQL’s create table commands.
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Fig. 2. Course Enrollment as an ARM Schema.

every table has the attribute self declared to be its primary key. Consequently,
every foreign key constraint must use a single abstract attribute. 2

Example 3 A commonly used visualization of RM schemata for a hypothetical
course enrollment application is given in Fig. 1: each rectangle is a table, labelled
by name, containing the attributes defined on that table. Attributes above the
line in a rectangle give the primary key and directed edges between tables show
foreign keys. The same visualization approach is used for a counterpart ARM
schema in Fig. 2, where abstract attributes are indicated with an ‘*’. The re-
spective definitions for, e.g., the CLASS table are as follows:

table CLASS ( deptcode INT, cnum INT, term STR, section INT, pnum INT,

primary key ( deptcode, cnum, term, section ),

constraint course foreign key ( deptcode, cnum ) references COURSE,

constraint professor foreign key ( pnum ) references PROFESSOR )

table CLASS ( self OID, course OID, term STR, section INT, professor OID,

constraint course foreign key ( course ) references COURSE,

constraint professor foreign key ( professor ) references PROFESSOR,

pathfd ( course, term, section ) → self,

disjoint with ( COURSE, DEPARTMENT, PROFESSOR, STUDENT ),

disjoint with ( ENROLLMENT, SCHEDULE, MARK ) )

Logical Implication in Schemas. Given T ∈ TAB(Σ) and constraint ϕ ∈ T
(possibly not occurring in Σ), we write Σ |= (ϕ ∈ T ) to say that ϕ always
holds for T in any database over Σ. For example, the requirement of foreign key
constraints to be unary in ARM yields the following deduction:

{(foreign key (A) references T2) ∈ T1, (B D) ∈ T2} |= (A.B D) ∈ T1
in which the deduced constraint “(A.B D) ∈ T1” states (with slight abuse of
notation) that the attribute path “A.B” originating in T1 always ends in D. It
is easy to see that the deduction above can be generalized to yield longer paths.

ARM can be formalized in a Description Logic (DL), e.g., the PTIME decid-
able CFDI∀−nc [11], where the problem of deciding when Σ |= (ϕ ∈ T ) holds in
ARM schemata can be reduced to reasoning about logical consequence [2].

4



〈query〉 ::= select distinct x1.Pf1 [ asA1 ], . . ., xm.Pfm [ asAm ] 〈body〉
| 〈query〉 union 〈query〉

〈body〉 ::= from T1 x1, . . ., Tn xn [ where 〈pred〉 ]
〈pred〉 ::= x1.Pf1 op x2.Pf2 | x.Pf1 op c | 〈pred〉 and 〈pred〉

| 〈pred〉 or 〈pred〉 | not 〈pred〉 | exists ( select * 〈body〉 )

Fig. 3. SQLP (fragment), extended from [2].

SQLP Queries. Since ARM schemata resemble RM schemata, simple revisions
to the SQL standard yield SQLP: Fig. 3 shows a relationally complete fragment
of the SQL query language grammar modified to allow attribute paths (defini-
tion for full SQL is analogous but beyond the limits of this paper). Example 4
illustrates the potential advantages of SQLP.

Example 4 Consider a query over the RM schema of Fig. 1, computing the
names of students who have experienced being taught by professor Alan John.

select distinct s.sname as name

from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p

where e.snum = s.snum and e.deptcode = c.deptcode

and e.cnum = c.cnum and e.term = c.term and e.section = c.section

and c.pnum = p.pnum and p.pname = ’Alan John’

The same query in SQLP over the corresponding ARM schema (Fig. 2) is:

select distinct e.student.sname as name from ENROLLMENT e

where e.class.professor.pname = ’Alan John’

Invariance of SQLP Under Vertical Partitioning. A hitherto unnoticed implicit
benefit of ARM and SQLP, is SQLP’s invariance under vertical partitioning,
which we specify explicitly and precisely here.

Definition 5 (Vertical Partition) Let Σ an ARM schema and T (self OID,
A1 D1, . . . , Ak Dk, ϕ) ∈ Σ. We say that an ARM schema Σ′ is a partition of Σ
(with respect to T ) if

Σ′ = Σ−{T (self OID, A1 D1, . . . , Ak Dk, ϕ)}
∪{T (self OID, A1 D1, . . . , Ai Di, ϕ, isa T

′),
T ′(self OID, Ai+1 Di+1, . . . , Ak Dk, ϕ, isa T )}

where T ′ 6∈ TAB(Σ). 2

Observe that vertical partitioning constitutes a lossless-join decomposition, and
that every instance DB of Σ can be transformed to an instance DB ′ of Σ′ with
no loss of information. A repeated application of vertical partitioning ultimately
leads to an ARM schema in which all tables are at most binary. This obtains a
schema that comes very close to matching class and attribute-based conceptual
models: a unary “self” table that may be viewed as a class, and binary tables
that may in turn be viewed as attributes of the class. Our first result is that, for
SQLP queries, answers are invariant with respect to such vertical partitioning:

Proposition 6 Let ϕ be a SQLP query over an ARM schemaΣ, DB an instance
of Σ and DB ′ a corresponding instance of Σ′ a partition of Σ. Then ϕ(DB) =
ϕ(DB ′).
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This feature allows users the freedom of formulating SQLP queries equivalently
over a wide range of ARM schemata, as long as they are related by the “partition
of” relation introduced in Definition 5. In particular, domain experts can now
use SQLP over a conceptual-like view of a particular ARM schema while SQL
programmers can think about the same schema in terms of tables with many
attributes (this follows from the bi-directionality of Definition 5).

3 On Deriving ARM Schemata from RM Schemata

To present our second contribution, we need to introduce the notion of referring
types and referring type assignments to tables in ARM that will be constructed
by our algorithm together with the ARM schema. They enable one to execute
SQLP queries formulated over the created ARM schema translations in [2].

Referring Expression Types and Assignments. To connect ARM and RM
schemata, we use the notion of referring expression types from [2]: descriptions
of how abstract OID values used to identify entities in an ARM schema are
represented in a corresponding RM schema. In particular, this entails a referring
expression type assignment for each T in the ARM schema, denoted RET(T ),
with the general form given by

T1 → (Pf1,1 = ?, . . . ,Pf1,n1
= ?) ; · · · ; Tk → (Pfk,1 = ?, . . . ,Pfk,nk

= ?)

where k > 0, and each attribute path Pfi,j is defined on table Ti. Each subex-
pression separated by preference indicators “;” is called a component of the RET,
and the “Ti →” part its guard. The last component of the RET may not have its
guard, which is then inferred to be “T →”. Assigning a RET of this form to each
table in the ARM schema, is identity resolving if naming issues are sufficiently
resolved to enable translating any SQLP query over the ARM schema to an
equivalent SQL query over its corresponding RM schema [2].

Example 7 The RET for the table CLASS in Example 3 is given by

(course.department.deptcode =?, course.cnum =?, term =?, section =?)

stating that a class can be identified by a combination of the four values defined
by the indicated paths. This yields the definition of the corresponding CLASS

table in RM (see Fig. 1).

Observe that this simple kind of RET is still a strict generalization of traditional
primary keys due to the possible use of the attribute paths, and that this exam-
ple relies on this expressiveness. To see why more than one component might be
needed, consider where self-values in the PROFESSOR and STUDENT tables could
overlap (i.e., if professors could also be students). Were this possible, naming is-
sues could still be resolved by choosing the RET STUDENT→ (snum = ?) ; (pnum =
?) for PROFESSOR. A professor who is also a student would then be identified by
their snum-value in preference to her pnum-value. (This would also require ad-
ditional attributes to be added to an RM counterpart to the PROFESSOR table
declaration, attribute snum for example; see [1, 2] for details.)
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From RM to ARM. In [2], a GenRM procedure is defined that computes
an RM schema given an ARM schema and RET assignment as input. We now
introduce a complementary GenARM procedure for reverse engineering RM
schemata: given a RM schema Σ1 as input, GenARM modifies Σ1 to a corre-
sponding ARM schema Σ2 and computes an RET for Σ2, for which GenRM(Σ2,
RET) re-obtains Σ1 (up to names of re-introduced concrete attributes), and for
which RET is identity resolving, which is a condition defined in [2] ensuring that
any SQLP query over Σ2 can be mapped to an equivalent SQL query over Σ1.

GenARM modifies Σ and computes RET with the use of a stack S of tables
in Tables(Σ), and a pending assignment set PA. The latter consists of 4-tuples
(T,Pf, T ′, A) that are used to incrementally compute RET as each table in S is
processed. A 4-tuple asserts: the primary key of T has component Pf ◦A, and
depends via foreign key join path Pf, on table T ′ having attribute A. Here, “◦”
composes attribute paths, in particular: Pf1 ◦Pf2 denotes Pf1 (resp. Pf2) if Pf2
(resp. Pf1) is self, and Pf1 .Pf2 otherwise. GenARM is defined as follows:

(initialize S, PA and RET)
1. S ← [ ], PA← ∅.
2. For each T ∈ Tables(Σ) with primary key (A1, . . . , Am):

2.1. RET(T ) ← “T → (A1 = ?, . . . , Am = ?)”.
2.2. Add (T, self, T, Ai) to PA for 1 ≤ i ≤ m.

3. Construct a directed graph G(Tables(Σ), E), where E is obtained as fol-
lows: for each T1 ∈ Tables(Σ) with primary key (A1, . . . , Am), and each
foreign key constraint “foreign key (B1, . . . , Bn) references T2” from T1:
when {A1, . . . , Am}∩{B1, . . . , Bn} is not empty and T1 is not reachable from
T2 in G, add T1 → T2 to E.

4. While there exists T ∈ VG where T ’s outdegree is 0:
4.1. Push T on S.
4.2. Remove T from G together with incident edges.

(conversion to an ARM schema, and refinement of RET)
5. While S is not empty, do the following:

5.1. Pop T from S, where the primary key of T is (A1, . . . , Am).
5.2. Add “(self OID)” to the definition of T .
5.3. Let L consist of all tables Ti ∈ Tables(Σ), where (Ai,1, . . . , Ai,k) is the

primary key of Ti, for which {Ai,1, . . . , Ai,k} 6= {A1, . . . , Am}. Add dis-
jointness constraint “disjoint with L” to T if L is nonempty.

5.4. For each ϕ = “foreign key (B1, . . . , Bk) references T1” from T , where
the primary key of T1 is (C1, . . . , Ck), do the following:

5.4.1. If {B1, . . . , Bk} = {A1, . . . , Am}, then replace ϕ by specialization
constraint “isa T1”, assign self to NA, and proceed to 5.4.3.

5.4.2. Assign the constraint name of ϕ to NA, and replace ϕ by foreign key
constraint “foreign key (NA) references T1”.

5.4.3. For each Bi, 1 ≤ i ≤ k, if Ci ∈ Attrs(T1) and if all remaining foreign
key constraints ϕ′ for T are free of Bi, then do the following:
– Remove Bi from Attrs(T ).
– If Bi ∈ {A1, . . . , Am}, then for every tuple t = (T2,Pf, T,Bi)

in PA, for some T2 and Pf: Replace “Pf ◦Bi = ?” in RET(T2) by
“(Pf ◦NA)◦Ci = ?”, and replace t itself by (T2, (Pf ◦NA), T1, Ci).
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6. For each T ∈ Tables(Σ), replace the primary key constraint in T by path
functional dependency “pathfd Pf1, . . . ,Pfm → self”, where RET(T ) =
“T → (Pf1 = ?, . . . ,Pfm = ?)”.

Computation of S in the initialization phase of GenARM encodes a total
order that ensures RETs are free of cycles. RETs not free of cycles might happen
otherwise, e.g., where two RM tables had complementary foreign keys to each
other from their primary keys. Regarding the conversion to an ARM schema,
note the replacement of foreign key constraints with unary counterparts or with
specialization constraints (lines 5.4.1, 5.4.2), the addition of disjointness con-
straints (line 5.3), path functional dependencies (line 6). Both are necessary to
ensure RET is ultimately identity resolving in the sense outlined above.

The addition of disjointness constraints between any pair of tables with pri-
mary keys that differ in any way are justified by virtue of the fact that an input
RM schema has no way of detecting when respective primary key values could
co-refer otherwise. For example, if students can also be professors, then it be-
comes impossible to compile a SQLP query for department names of professors
who are not students.

The GenARM procedure achieves the first of our main goals:

Proposition 8 Let Σ1 be a RM schema and Σ2 and R the ARM schema and
referring type assignment generated by GenARM(Σ1), respectively. Then for
every SQLP query ϕ and database instance DB over Σ2 we have

SQLPtoSQL(ϕ)(Concrete(DB , R)) = Concrete(ϕ(DB))

where the functions Concrete and SQLPtoSQL map ARM instances and
SQLP queries to their corresponding relational counterparts using the referring
type assignment R.

Note that, for the above proposition to hold, it is essential that the referring type
assignment R produced in Step 6 of GenARM is identity resolving in order to
map equalities between OID attributes in Σ2 to equalities over attributes in Σ1.
Case analysis of the procedure shows that indeed R is identity resolving.

4 User Evaluation

The aim of the user evaluation is to ascertain whether querying with the ARM
and SQLP has advantages over querying with the RM and SQL. We expect that
it will take less time to construct the SQLP queries and they may also have fewer
errors, for one does not have to painstakingly declare all the joins individually
(recall also Example 4), which reduces the cognitive load as well as the size of the
query, which may affect comprehension and authoring of queries. Two variables
measure the potential difference: time taken and correctness, which lead to the
following null (H) and alternative (A) statistical hypotheses:
Ht : there is no difference between SQL and SQLP in the mean time taken;

8



At : reading and writing in SQLP is faster than in SQL in the mean time taken;
Hc : there no difference between SQL and SQLP in the mean correctness;
Ac : SQLP queries have a higher level of correctness than SQL queries.
Because we assume SQLP will show an advantage over SQL, they will be assessed
against the one sided alternatives, rather than the weaker two-sided option.

4.1 Experimental Design

Methods. Participants were recruited from undergraduate Computer Science ma-
jor students at the University of Waterloo (UW)’s third year database class
(CS348) and graduate students in Computer Science from UW’s Data Systems
Lab. (The experimental design was reviewed and approved by the Human Re-
search Ethics Committee of UW before recruitment of subjects.) The set-up of
the experiment uses a cross-over design for the graduate students, and a sim-
ple comparison for the undergraduate students. Undergraduate students were
treated differently, because only one-third of them turned out to have had SQL
experience, whereas all graduate students had. Half of the undergraduates were
randomly assigned to answer the six questions using SQLP (group Up, n = 5) and
the other half to answer the SQL questions (group Us, n = 4). The graduate
students answered all six questions using the cross-cover approach; they were
randomly assigned to answer either first the SQL questions and then SQLP
(group Gs, n = 8) and the other in reverse order (group Gp, n = 7). Of the
undergraduates, only 2 were native English speakers (both had been randomly
assigned to Up); of the graduate students, 5 were native English speakers (4 of
these had been randomly assigned to Gp).

The experimental protocol is as follows. All subjects were given five minutes
to read instructions about the protocol and then 10 minutes to read instructions
and examples on the use of SQL or SQLP, or both in case of the cross-over
design. The subjects were not allowed to ask questions. Subsequently, each sub-
ject received each question sealed in its own envelope, noting that no student
knew which query language would be required until their session began. Sub-
jects recorded (to the nearest second) their start time on an envelope when they
opened it as well as their completion time when their answer to that question
was returned in the envelope. Questions Q1-Q6 (see below) were answered by all
subjects in that order and no previous question could be consulted. The ques-
tions in a question set used only one of SQL or SQLP. All answers were given in
hand-written form and subjects had no access to any other electronic device or
information source. There was no time limit. Given the international nature of
our students, the subjects also answered the question whether their first language
was English or not. Upon completion of the experiment, each subject received a
gift voucher.

Performance is measured on the time taken to complete each question and
the correctness of each answer. Time taken is based on the self-reported time (see
procedure). To measure correctness, answers for each question are independently
scored by three assessors (authors WM, DT, and GW) and the scores averaged;
the assessors are blinded to all aspects about the subject and the experimental
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conditions. The assessors agreed to score on a 4 point scale with half points
allowed, where 0 meant to them completely wrong; 1: meant ‘does not solve the
question but the subject has grasped the basic concepts’ (of SQL or SQLP); 2:
meant ‘the answer contains mistakes, but is on the right track and joined most of
the required tables correctly’; 3: meant ‘mostly correct, may only contain minor
mistakes’; and 4: meant ‘solves the question completely and correctly’.

Regarding the statistical analysis, different methods can be applied depend-
ing upon whether the results of all students are combined, or separated by grad-
uate/undergraduate. We will analyze both, as both have advantages (more data
points and the cross-over insights, respectively).

Materials Six questions were devised to cover both query comprehension and
authoring: Q1-Q3 present code in SQL or SQLP and subjects have to provide
a written summary of the query in English (comprehension); Q4-Q6 present a
query in English and subjects have to code the query in SQL or SQLP (author-
ing), alike depicted in Example 4. The comprehension and authoring tasks focus
on conjunctive cases involving no more than six table variables, except for Q2
that includes a not exists predicate. Authoring tasks were designed to be pro-
gressively more difficult (requiring more joins), as were comprehension questions
Q1 and Q3. Figs. 1 and 2, without marking abstract attributes with ‘*’, are the
RM and ARM schemata used in the experiment. Details can be found in [8].

4.2 Results and Discussion

We will first present the combined results, and then the cross-over results.

Performance: all subjects combined. There are a total of 39 answers (20 for
SQLP, 19 for SQL) for each performance measure with 30 = 2 × 15 from the
graduate students (|Gp| + |Gs|) and 9 = |Up| + |Us| from the undergraduates.
The fact that each graduate student provides values for both SQLP and SQL is
of little concern since the experimental design randomly assigned half of them
to using SQLP first and half to using SQL first, thus balancing any order effect.
Fig. 4 shows the estimated values and 95% confidence intervals for the expected
(or mean) performance for the correctness (left), and time taken (right). In both
plots, SQL results are solid colored red, SQLP dashed blue.

Consider only the results for the comprehension questions Q1-Q3 for correct-
ness. Looking at the SQL curve, we see increasing difficulty of these questions
(as by design) in the decreasing mean values and increasing variability (interval
length). The same pattern holds when performance on Q1-Q3 is measured by
the expected time taken, though Q2 and Q3 are essentially indistinguishable.

Similarly, following the SQL curve for the authoring tasks given by Q4-Q6,
we see increasing difficulty as measured by correctness and by time taken. For
correctness, the difficulty shows as decreasing mean performance; for time taken,
it shows dramatically as increasing mean time taken and as increased variability.
A comparison of the SQL curves in both plots shows students taking less time
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Fig. 4. Mean performance for all subjects: SQL solid; SQLP dashed.

and scoring more poorly on code reading (comprehension) questions and much
more time but generally better scores on the code writing (authoring) questions.

More interesting are the results for the SQLP curve: except for Q1, the ex-
pected time to complete each question using SQLP is consistently lower, and
typically has smaller variability than, when using SQL!

These estimates and intervals were based on standard normal theory (t-based
confidence intervals), so to be conservative we also performed non-parametric
two-sample Wilcoxon (or Mann-Whitney) tests comparing the sample times
taken for SQL to those for SQLP for each question. The one sided test (Ht

versus At) was performed giving the following p-values for each question: Q1
(p = 0.63), Q2 (p = 0.021), Q3 (p = 0.018), Q4 (p = 0.27), Q5 (p = 0.009),
and Q6 (p = 0.03). Each p-value is the probability (assuming SQL and SQLP
have the same distribution) of observing at least as large a difference as we did
observe as measured by this test. The smaller the p-value is, the stronger the
evidence against the null hypothesis (Ht) and in favor of the alternative (At).
All but Q1 and Q4 would be judged to be highly statistically significant; SQLP
outperforms SQL in time taken.

In contrast, no statistically significant difference between SQLP and SQL
in correctness was found when the same tests were applied to the correctness
scores. For correctness, the test yielded p-values for each question of Q1 (p =
0.90), Q2 (p = 0.63), Q3 (p = 0.097), Q4 (p = 0.41), Q5 (p = 0.07), and Q6
(p = 0.77). Such high probabilities mean that, as measured by this test, the data
were consistent with the null hypothesis (Hc). If anything, in the two cases (Q3
and Q5) approaching statistical significance, the (left hand) plot shows SQLP
outperforming SQL in correctness.

Finally, we consider how the performance fares with respect to English as
first language or not. Fig. 5 shows the confidence intervals for the mean time
taken in these cases. Again, the expected time taken using SQLP is often the
same or lower than when using SQL and often with less variability. Most striking
are those cases where the student’s first language was not English; except for
Q1, they appear to perform more quickly using SQLP than they do using SQL.
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Fig. 5. Mean time taken estimates and confidence intervals by question separating the
results of subjects based on whether their first language was English or not.

Performance: Graduate students only. The randomized cross-over design allows
us to work with the difference between performance results for each student on
each question and performance measure. The differencing should reduce varia-
tion between students. Fig. 6 shows the differences plotted by question for each
performance measure. As before, with the possible exception of Q5 (p = 0.00813
for a one-sided test) where SQLP clearly outperforms SQL, there is no statis-
tically significant difference between SQLP and SQL observed for correctness of
the answers. Also as before, with the exception of Q1 SQLP significantly outper-
forms SQL for both comprehension and authoring in time taken with p-values
(one-sided alternatives) by question: Q1 (p = 0.500), Q2 (p = 0.00269), Q3
(p = 0.00488), Q4 (p = 0.0661), Q5 (p = 0.00413), and Q6 (p = 0.0820). The
last p-value is affected by the single outlying student near −1000 (Q6); as the
plot shows, the remaining points for Q6 would have produced a significant value.

Because graduate students used both SQL and SQLP on the same ques-
tions, we can investigate the effect on performance of the order in which the
methods were used. A priori, we expect that performance will improve when
students faced the same questions again, albeit via a different model (RM+SQL
or ARM+SQLP). The order effect was as expected for correctness, with the
exception of Q5 where SQLP produced better answers than did SQL indepen-
dently of the order. The results for time taken are shown in Fig. 7: as expected,
when SQL is used first, students took longer to answer than when they subse-
quently used SQLP (points being above the horizontal line in the left hand plot)
on the same questions. In contrast, when students used SQLP first, again with
Q1 as an exception, their performance with SQL was surprisingly not a marked
improvement on SQLP (points were not below the horizontal line in the right
hand plot). That is, SQL still took longer than SQLP even though it was used
after SQLP on the same questions.

Discussion of the results of the experiment The results of the experiments demon-
strated that noted theoretical advantages of SQLP over SQL translated to SQLP
outperforming SQL in time to completion (being consistently lower and having
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Fig. 6. Performance differences. Values above the horizontal line favor SQLP over SQL
in both plots; random horizontal jittering separate points by question.

Fig. 7. Order effect: SQL took longer than SQLP when SQL is used first (left); With
the possible exception of Q1, SQL takes about the same length of time when SQLP is
used first (right). Random horizontal jittering used to separate points for each question.

less variation), i.e., At was accepted. Hc could not be rejected, although wherever
observed differences approached statistical significance, they also favoured SQLP
over SQL. Also, the learning curve for SQLP appeared to be low, given that no
participant knew about SQLP or ARM before they began the experiment and
were given only 10 minutes to learn about it.

There was no statistically significant difference in performance for Q1. It was
the easiest question, and as difficulty increased, the differences between SQLP
and SQL often increased (recall Fig. 4, right). Therefore, examining in further
detail the effects of query difficulty levels and different types of queries is a
promising direction for future experimental work, as it may refine insights into
the practical advantages of using SQLP over SQL.

In other experiments that vary the model (or notation thereof) or the query
language, a difference in either semantic or syntactic accuracy and in time take
is observed when notation is the variable [3, 6], or both when the query language
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abstracts away from plain SQL [7], and both when both are variables [10]. Our
results on different query languages show a similar trend. The look-and-feel of
the ARM diagram was made to look alike an RM one, in order to minimize
the possibility that any difference observed could be attributable to the rep-
resentation of the information rather than the query language. A future HCI
experiment may be to devise more notations for ARM that have more or less
vertical partitioning so as to examine those effects, which may then benefit also
the accuracy.

5 Related work

While many path query languages have been proposed, to the best of our knowl-
edge, there has been only one experimental evaluation to compare it to a ‘non-
path’ version. Junkkari and co-authors used PathSQL, which in their experiment
showed that it reduces query writing time and have fewer errors cf. SQL [7]4.
PathSQL [12] constructs paths for queries over aggregation hierarchies as a way
to represent a series of left outer joins more compactly. In contrast, SQLP’s paths
can be constructed over joins in the direction of the functional dependencies.

Due to lack of other related work, we broadened the scope on conceptual
queries that still relate to relational models. It has been shown that models at a
higher level of abstraction have either equal or higher accuracy (fewer semantic
errors) in the queries and are always formulated in less time when querying
with the aid of a relational or conceptual model [6, 10]. Fewer syntax errors
were observed when the aid was a textual relational model, but it was slower
cf. a graphical depiction of the relational model, with no difference in accuracy
of the queries [6]. It is not clear where the border lies between how detailed
the graphically depicted relational model has to be to be optimal, but some
parsimony seems to be favored especially for more complex SQL queries [3]. Thus,
the results obtained in our experiment is in line with related, albeit different,
experiments. Examining Bowen et al’s parsimonious and detailed diagrams [3],
the ARM depicted in Fig. 2 may strike a good balance, but this deserves further
assessment by HCI experts.

Querying at the conceptual layer recently has gained interest because of the
relative popularity of Ontology-Based Data Access (OBDA). OBDA typically
supports only a subset of SQL, however, whereas SQLP supports full SQL plus
path queries and one does not have to learn a new query language (SPARQL).
While the ARM in Fig. 2 does not look like an ontology, it is just a graphical
display at a certain partitioning level to make it look like an RM for the exper-
iment. Each such rectangle there can be partitioned into unaries and binaries
thanks to lossless vertical partitioning (Section 2), so then together with ARM’s
formalisation in the DL CFDI∀−nc [11] that can fully simulate DL-LiteFcore (a
member in the DL-lite family used for OBDA with OWL 2 QL) [5], one easily
can transform such an ARM into the same kind of ontology as used in OBDA.

4 as stated in their abstract; despite efforts, we were not able to obtain the full paper.
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6 Conclusions

Querying for information with the SQLP path query language and the Abstract
Relational Model has been shown to be significantly faster than the baseline
of SQL with the Relational Model, whilst maintaining accuracy. Thanks to the
referring expression types and the lossless vertical partitioning it permits, an
Abstract Relational Model can be made look like either a conceptual data model
or function as a relational model. Therewith it can take advantage of both the
benefit of conceptual queries and the full SQL support with the relational model
within one formalism, whilst keeping an actual SQLP queries invariant in the
face of such partitioning decisions. We have proposed a novel method to reverse
engineer legacy relational models up to abstract relational models to facilitate
its uptake, which, thanks to the automated analysis of the keys, also uncovers
implicit constraints in the model, such as subsumption and disjointness.
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