
Research Articles

A Graphical Environment for the Facilitation of Logic-Based
Security Protocol Analysis

E. Saula A.C.M Hutchisonb

DNA Research Group, University of Cape Town, South Africa
aesaul@cs.uct.ac.za, bhutch@cs.uct.ac.za

Abstract

The development of cryptographic logics to analyze security protocols has provided one technique for ensuring the correct-
ness of security protocols. However, it is commonly acknowledged that analysis using a modal logic such as GNY tends to
be inaccessible and obscure for the uninitiated. In this paper we describe a graphical tree-based specification environment
which can be used to easily construct GNY statements using contextualized pop-up menus. The interface which we describe
helps to move logic-based analysis out of the world of academia and into the mainstream market.

1 Introduction

Analysis methods for cryptographic protocols have pre-
dominantly focused on detecting information leakage,
rather than determining whether a protocol attains its stated
goals. However, security protocols often fall short of
achieving their intended objectives, usually for very sub-
tle reasons. As a result of this fact, cryptographic logics
have been developed to aid in determining whether pro-
tocols actually fulfil their intended goals. Using logics to
analyze security protocols has a number of advantages:

� The use of logics forces protocol designers to explic-
itly state the security assumptions which they have
made and will require after the protocol has executed.

� Reasoning with logics makes designers think about the
use for which each component is intended, thus mini-
mizing redundancy.

� Cryptographic logics can also be used to explicitly
bind the evolution of beliefs in a protocol session to
message contents, number of messages and message
rounds, thus helping to determine the minimum num-
ber of messages required to achieve a given set of be-
liefs and possessions.

Analysis using logics was first popularized in 1989 by
the BAN modal logic [2]. BAN and other logic systems
have successfully been used to reveal flaws in protocols
that were previously accepted as correct [4]. A popular
successor of BAN is GNY [5].

However, it is commonly acknowledged that analysis
using a modal logic such as GNY tends to be inaccessible
and obscure for the uninitiated. Often it requires experi-
ence and insight to determine what the desirable and ap-
propriate initial and final conditions for a given protocol
should be. The opportunity exists to support analysis ef-
forts by guiding the process from an appropriate starting

state to the required final state, if it is achievable. Such a
system would aid in making the rigorous analysis of se-
curity protocols more accessible and thus contribute to the
overall security level of cryptographic protocols that cur-
rently exist and are being designed.

The aim of this paper is to describe a graphical en-
vironment which can be used to specify GNY statements
that form the initial assumptions and final goals for a given
protocol. The catalyst for this work was the development
of a security protocol engineering and analysis resource
(SPEAR) [3], which currently carries out automated BAN
analysis. The SPEAR project aims to provide automated
GNY analysis in its second iteration, however experience
during the development of the tool revealed the need to
implement techniques which would make it easier for a
protocol designer to perform a security analysis.

The remainder of this paper is organized as follows.
In Section 2 we present a brief overview of the GNY logic,
while Section 3 presents a brief background on logic-based
analysis tools. Section 4 describes the GUI-based GNY
specification environment which has been developed. We
close off by describing future work to be carried out in
Section 5 and end with a conclusion in section 6.

2 GNY Concepts and Notation

In this section the basic notions underlying the GNY rea-
soning process will be introduced. We will first briefly de-
scribe the notion of a formula and formula extensions, after
which we will describe how formulae and GNY operators
can be combined to form statements. Finally, we present a
brief description of how a GNY analysis is normally con-
ducted.

26 SACJ / SART, No 21, 1998

Research Articles

2.1 Formulae

A formula in a protocol description is a name referring to a
bit string which would have a particular value in a session.
This is analogous to a variable identifier in a programming
language. Principals often exchange formulae to express
their current beliefs or transfer information. Beliefs are de-
scribed by statements, introduced in the next section. Let
C range over all statements and let X be a formula. Then
X C is also a formula, more specifically, a formula with
an extension. Statement C is the extension and is consid-
ered an integral part of the formula.

Essentially, an extension to a formula is a formal spec-
ification which dictates that a principal should proceed to
send a formula only if certain conditions hold. For exam-
ple, the formula X C can only be sent by a principal if
he believes in the validity of the statement C. A formal
specification such as this helps to eliminate ambiguity as
these conditions are often only expressed verbally in tradi-
tional protocol specifications. Having accepted that a for-
mula is genuine, the recipient can choose to believe that the
formula’s extension holds, if he trusts the sender’s compe-
tence and honesty.

2.2 Statements

A basic statement reflects some property of a formula, typ-
ically reflecting a relation between a principal and a for-
mula. Let P and Q range over principals. The following
are statements:

PC X : P is told a formula, X , possibly after per-
forming some computation, such as decryption. Thus, the
formula being told is itself, or some computable content
thereof.

PC�X : P is told a formula, X , which he is not the first
to convey in the current session of the protocol, though he
could have transmitted it in a previous session. Also, it is
the first time that P receives X in the current session.

P 3 X : P possesses formula X . P is able to repeat this
formula in future messages of the current session. At a
particular stage of a session, P possesses all the formulae
that he has been told, all the formulae he started the session
with, and all the ones that he generated during the current
session. In addition, P possesses all the formulae that are
computable from formulae he already possesses.

P j� X : P once conveyed formula X . X can be a for-
mula explicitly exchanged or some computable content of
a formula. Thus, a formula can also be exchanged implic-
itly.

](X): Formula X is fresh. A principal should believe
that a formula originated by another principal is fresh if
it has been constructed after the occurrence of some fresh
event. A principal believes anything he has originated to
be fresh if he cannot have chosen the same formula for the
same purpose before.

φ(X): Formula X is recognizable. A principal would
believe X to be recognizable if he has certain expectations
about the value or structure thereof. He may recognize
a particular value, a particular structure or other forms of

redundancy. In either case, he may not possess part or all
of the formula.

P
S
 ! Q: S is a suitable secret for P and Q. These

entities may use S to prove their identities to each other.
They may also use it as, or derive from it, an encryption

key K to communicate, denoted as P
K
 !Q. This notation

is symmetrical.
+K
7! Q: +K is a suitable public key for Q. The matching

secret key is given by�K.
The only default assumption which we require is that

S, K or �K will never be discovered by any principal ex-
cept the legitimate owners or principals which the owners
trust. In the latter case, the trusted principals should never
use S, K or �K as a proof of identity or as an encryption
key to communicate. Continuing, the following are also
statements:

P ∝ X : P is eligible to convey formula X . P holds the
relevant possessions and beliefs. This notation is used to
detect inconsistencies in the protocol description.

Pa (X): P is not the first principal to originate formula
X . This formula must first be generated and conveyed by
another principal.

Statements are often associated with individual princi-
pals to specify their states. Let C range over statements.
The following are also statements:

(C1;C2): The conjunction of two statements. Conjunc-
tions represent sets and have properties such as associativ-
ity and commutativity.

P j� C: P believes that statement C holds. P j� is
considered an empty statement.

P j� Q j) C: P believes that Q has jurisdiction over
statement C. He believes that Q has authority on C and
should be trusted in this respect.

P j� Q j) Q j� �: P believes that Q has jurisdiction
over all his beliefs. P considers Q to be competent and
honest.

2.3 Conducting an Analysis

An analysis with GNY is very similar to one carried out
with BAN. However, one significant improvement of GNY
over BAN is that it defines an abstract ‘protocol parser’
which helps to derive a form of the protocol more suit-
able for manipulation. The major steps carried out before
analyzing a security protocol with GNY are enumerated
below:

1. Any implicit information conveyed by a protocol for-
mula that contains a secret is represented logically by
the attachment of an extension to the formula.

2. A star is placed in front of all formulae containing se-
crets that the receiving principal is not the first to con-
vey in the current session of the protocol. The star also
indicates that it is the first time that the receiving prin-
cipal receives the formula in the current session.

3. The initial belief and possession sets of each princi-
pal are constructed. The possession set consists of all

SART / SACJ, No 21, 1998 27

Research Articles

formulae available to the principal, while the belief set
includes the current beliefs of the principal.

4. The desired final possession and belief sets for each
principal are specified based on the design goals of the
protocol.

Once these steps have been performed, an analysis can
proceed. Each analysis essentially consists of deriving a
series of assertions, each assertion being obtained by the
application of the GNY inference rules to the assertions al-
ready contained within the belief and possession sets of a
principal. After each assertion is derived, it is added to ei-
ther the belief or possession set of the relevant principal.
Once the analysis is complete the belief and possession
sets will contain the final state of each principal after the
protocol has run to completion. This information can then
be compared to the desired final conditions to determine
whether the protocol has achieved its intended goals.

3 Logic-Based Analysis Tools

A number of tools exist to carry out automated logic-based
analyses. However, the interface to these tools is often tex-
tual, and in cases where a GUI is used to define the protocol
to be analyzed, the GNY logic statements are still defined
using textual commands.

Convince is an automated toolset that facilitates the
modelling and analysis of cryptographic protocols [6]. A
protocol is specified by using an integrated commercial
GUI system, however GNY statements which are used for
analysis must still be defined through textual annotations.

A Prolog-based analysis tool was created to facilitate
in a GNY analysis [1]. However, this tool again makes use
of textual input schemes which are then analyzed by the
Prolog program.

The SPEAR multi-dimensional protocol analysis tool
allows a user to specify a protocol in an intuitive graphical
environment [3]. Logic-based analysis is conducted using
BAN. However, even though the tool has a GUI for defin-
ing the protocol, BAN statements have to be constructed
in a textual form. Primitive assistance is provided when
constructing BAN statements by providing the user with a
list of operators and operands which can be added to the
current BAN statement.

4 Specifying GNY Statements

When using GNY to carry out an analysis, many individu-
als struggle to understand the notation and formulate syn-
tactically and semantically correct statements. Also, after
specifying a set of initial beliefs and possessions, one is of-
ten left with a collection of cryptic looking statements that
have no structure or organization of any form.

No tools currently exist which allow a user to specify
GNY statements in an intuitive graphical interface. The
tools which do exist require that the user enter GNY state-
ments in a textual specification environment. This is far

from ideal as it often results in users becoming bogged
down in GNY syntactical and semantic issues. A graphical
environment supporting the creation of GNY statements
should fulfil the following criteria:

� The user should not be expected to remember the GNY
syntax and symbols. However, he should have a work-
ing knowledge of GNY and be acquainted with the as-
sociated semantics.

� The representation of GNY beliefs and possessions
should be as concise as possible, yet it should be pos-
sible to easily view all of the defined statements.

� Beliefs and statements which have been specified
should be structured and organized so that it is easy
to locate them for later modification or referral.

� The specification environment must allow all possible
GNY statements to be constructed. However, no syn-
tactically incorrect statements should be permitted.

� The efficiency and effectiveness of an individual us-
ing the environment should not be hampered or re-
strained in any way. The specification environment
should also be intuitive and simple to use, requiring
minimal keystrokes and mouse clicks.

To represent GNY statements, we have chosen to make
use of a tree-based view with pop-up menus being used to
add components, principals and belief categories. A pro-
totype is illustrated in Figure 1. This approach imposes a
hierarchical structure on the GNY statements and makes
the representation of these statements as concise as possi-
ble. A tree-based view combined with pop-up menus also
aids users in specifying GNY beliefs and possessions by
ensuring that they do not have to remember any cryptic
GNY syntax or symbols.

4.1 The Interface

The tree-based interface allows a user to construct GNY
statements by using only a pointing device such as a
mouse. A principal having no beliefs or possessions con-
tains two empty panels, one representing his belief set and
the other his possession set. These panels are populated
by the user through selections from various contextualized
pop-up menus.

Categories which reflect different types of beliefs are
added to the belief panel. A belief category exists for each
type of GNY statement. Each of these categories can con-
tain principal or component nodes or even further belief
categories, depending on their type. Belief categories that
only contain principal or component nodes will contain
subtrees with a fixed depth, while those which can contain
further belief categories will have subtrees with variable
depths. Possessions are simply added to the possession
panel for each principal.

Consider the GNY statement tree displayed in Fig-
ure 1. This tree contains beliefs for principal A. Eight

28 SACJ / SART, No 21, 1998

Research Articles

Figure 1: A prototype of the GUI-based tree-view used to
represent GNY statements.

categories of beliefs have been specified, six of which are
populated with at least one statement. The visible belief
statements contained within this tree are as follows:

(1) A j� φ(Na)
(2) A j� φ(A)
(3) A j� B 3 Tb

(4) A j� B j) A
Kac
 !C

Nodes within the tree can be deleted or expanded. If
a node containing children is deleted, then these children
are removed from the tree as well. If a node contains chil-
dren then a clickable token is displayed to the right thereof.
Clicking on this token allows the node to be collapsed or
expanded, thus allowing a user to control the amount of
information which is be presented.

Often while working in a tree-based structure such as
the one which we have described, a user might need to
know what GNY statement is represented by a specific
node. For this reason, a feature which displays the GNY
statement represented by a given node through the use of
tooltips has been added. When hovering over a node, the
GNY statement which it represents is briefly displayed.
For example, if the user were to hover a pointer over the
node ‘A;C’ in Figure 1, then the text “A believes that B
has jurisdiction over the suitability of the key Kac shared
between A and C” would be displayed.

4.2 Implementing Functionality

Pop-up menus are used to present a user with functions to
perform on nodes and lists of components to add. Different
pop-up menus are displayed according to the type of node
which has been selected. Thus, a user does not have to
use a keyboard and is not in danger of adding an incorrect
node since he is guided through the statement construction
process by the menu options presented to him.

At present, the prototype which has been implemented
uses thirteen different pop-up menus. Some of these are
specific to a given node type, while others are shared be-
tween nodes. For the sake of brevity, we will not describe
all of these pop-up menus, but will present a brief sample
of those which have been constructed:

� The ‘Jurisdiction’ and ‘Beliefs of Other Principals’
nodes share a pop-up menu which allows a user to add
a principal that will serve as the target of the jurisdic-
tion or belief statement. Two further options allow a
user to expand all of the subnodes and to delete the
node. The principal node which is created has an as-
sociated pop-up menu which allows a belief category
to be added as a child-node. This menu also contains
an option to delete the current node and to expand all
subnodes. The beliefs root folder has a very similar
pop-up menu which does not contain the delete com-
mand.

� The ‘Recognizable Components’ and ‘Fresh Compo-
nents’ nodes share a pop-up menu which allows a user
to add different types of components as children and
to delete the node. The pop-up menu also contains a
submenu that can contain suggestions for components
to be added. These suggested components can be de-
termined by the design environment based on the type
of protocol being constructed. For example, the sender
of a nonce always considers it to be fresh.

� The ‘Public Keys’ and ‘Shared Secrets’ nodes share a
very similar structure. The only difference is that the
pop-up menu for the ‘Public Keys’ node allows a user
to add a public key as a child-node, while the ‘Shared
Secrets’ pop-up menu presents a user with a list of
shared-secrets. Both menus allow for the deletion and
expansion of the node to reveal all of the subnodes.

� Within the ‘Public Keys’ node, public keys which the
user has added are listed. The principals who trust in
the suitability of one of these public keys can then be
added as children to that key’s node using a suitable
pop-up menu. In the case of shared-secrets the princi-
ple is similar. However, the issue is also slightly more
complicated, as a secret is shared between two princi-
pals and pop-up menus are not really suitable to spec-
ify this fact. Instead, a pop-up menu is used to open
a modal dialog which allows a user to select the two
principals sharing the secret.

Because the task of adding a GNY statement is not al-
ways a single-step operation, half-completed beliefs could

SART / SACJ, No 21, 1998 29

Research Articles

reside in the tree. In this case, the system alerts the user to
this fact when closing the dialog and requests that the state-
ments be completed. Automatic deletion of incomplete
statements is not appropriate, as a user may have merely
been distracted and forgot to complete a given statement.

4.3 Completeness of the Specification

At this point we will informally show that any GNY state-
ment can be represented in the specification environment.
We define the statement “A) B)C” to represent a sub-
tree where A is the root, B is a child of A and C is the child
of B. So, assume that P and Q range over principals, C
ranges over statements, X ranges over formulae, +K is a
public key and S is a shared secret. The � symbol ranges
over all belief categories, while ? ranges over all GNY op-
erators. From the context, it will be clear what � and ?

represent.

1. The eligibility, told, possession and conveyance state-
ments, which all have the form Q ? X , can be repre-
sented in the tree as �) Q) X .

2. Freshness and recognizability statements have the
form ?(X) and can be displayed in the tree as �) X .

3. The belief in the suitability of a secret shared between
P and Q can be represented in the tree as �) S)
(P; Q). Similarly, the belief in the suitability of a pub-
lic key can be represented as �)+K) Q.

4. The fact that principal Q is considered to be honest and
competent can simply be represented as �) Q in the
tree. Notice that the cryptic GNY syntax for this fact
is totally removed.

5. Jurisdiction and belief statements both have the form
Q ?C. Since C is a statement, it can be any one of
those which we have already described in this list. To
represent jurisdiction or belief we merely use the ar-
rangement�) Q)C in the tree.

Thus, all GNY statements can be represented in the
tree view by placing nodes correctly within the tree. The
enforcement of this correct placing is handled by pop-up
menus and as a result only syntactically correct GNY state-
ments can be generated.

5 Future Work

The specification environment which has been described
in this paper forms part of a larger GNY analysis system
which is currently being implemented. The primary aim of
this system is to create an environment which will facilitate
the rapid yet high-quality analysis of security protocols us-
ing the GNY modal logic. The specification environment
will be used to define the initial beliefs and possessions
for a given principal, as well as the target beliefs and pos-
sessions. Formula extensions will also be defined in this

environment. Once initial beliefs, possessions and exten-
sions have been defined, an analysis can take place and the
system can then report on which of the target goals have
been attained. The analysis will be conducted by passing
information defined in the GNY specification environment
to a Prolog-based analyzer.

6 Conclusion

Security logics such as GNY enable designers to prove
that security protocols achieve their intended design goals.
However, merely having the facility of security logics is
not sufficient, since these logics should also be usable by a
broad spectrum of protocol designers, even if they are not
academically inclined.

We have created a GNY statement specification envi-
ronment which uses a combination of a tree-based spec-
ification system and contextualized pop-up menus. This
combination of GUI components allows a user to specify
GNY statements without having to be acquainted with the
associated syntax or notation. The tree-view also structures
the GNY statements and allows a user to control the level
of detail which is displayed, thus allowing him to focus on
the core elements of a protocol analysis.

With an interface such as the one which we have cre-
ated in place, the process of moving logic-based analysis
out of the world of academia and into the mainstream mar-
ket moves one step closer.

References

[1] A. Mathuria and R. Safavi-Naini and P. Nickolas. On
the Automation of GNY Logic. 17(1):370 – 379, 1995.

[2] M. Abadi, M. Burrows, and R. Needham. A Logic of
Authentication. In Proceedings of the Royal Society,
Series A, 426, 1871, pages 233 – 271, December 1989.

[3] J.P. Beckmann, P. De Goede, and A.C.M. Hutchison.
SPEAR: Security Protocol Engineering and Analysis
Resources. In DIMACS Workshop on Design and For-
mal Verification of Security Protocols. Rutgers Univer-
sity, September 1997.

[4] P. Georgiadis, S. Gritzalis, and D. Spinellis. Security
Protocols Over Open Networks and Distributed Sys-
tems: Formal Methods for Their Analysis, Design and
Verification. Computer Communications, 22(8):695 –
707, May 1999.

[5] L. Gong. Cryptographic Protocols for Distributed Sys-
tems. PhD thesis, Cambridge University, United King-
dom, 1990.

[6] R. Lichota, G. Hammonds, and S.H. Brackin. Verify-
ing the Correctness of Cryptographic Protocols using
Convince. In Proceedings of the Twelfth IEEE Com-
puter Security Applications Conference, pages 117 –
128. IEEE Computer Society Press, 1996.

30 SACJ / SART, No 21, 1998

