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ABSTRACT 

With the demand for recorded lectures to be made available as soon as possible, the 

University of Cape Town (UCT) needs to find innovative ways of removing bottlenecks 

in lecture capture workflow and thereby improving turn-around times from capture to 

publication. UCT utilises Opencast, which is an open source system to manage all the 

steps in the lecture-capture process. One of the steps involves manual trimming of 

unwanted segments from the beginning and end of video before it is published. These 

segments generally contain student chatter. The trimming step of the lecture-capture 

process has been identified as a bottleneck due to its dependence on staff availability. 

In this study, we investigate the potential of audio classification to automate this step. 

A classification model was trained to detect two classes: speech and non-speech. 

Speech represents a single dominant voice, for example, the lecturer, and non-speech 

represents student chatter, silence and other environmental sounds. In conjunction 

with the classification model, the first and last instances of the speech class together 

with their timestamps are detected. These timestamps are used to predict the start 

and end trim points for the recorded lecture. 

The classification model achieved a 97.8% accuracy rate at detecting speech from 

non-speech. The start trim point predictions were very positive, with an average 

difference of -11.22s from gold standard data. End trim point predictions showed a 

much greater deviation, with an average difference of 145.16s from gold standard 

data. Discussions between the lecturer and students, after the lecture, was 

predominantly the reason for this discrepancy. 
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1. INTRODUCTION 

1.1 Lecture recording in higher education 

Lecture recording systems capture audio, video and presentation slides during a 

lecture, which are thereafter combined and published as a single video, so that 

students can playback the lecture at their convenience for studying and revision 

purposes. Lecture recording at institutes of higher learning is now fairly common 

practice and has been proven to be an important resource to students [1, 2]. Studies 

have also shown that lecture recording and other Web-based lecture technologies 

(WBLT) have been well received by students [3, 4].  

Today’s students face increased challenges of balancing their studies, work and family 

commitments [5, 6]. Therefore, students have shown increased appreciation for the 

flexibility that online resources, such as lecture recordings, provide [7, 8]. With the 

increased interest by students for lectures to be recorded, it follows that there is an 

increase in demand for the published recordings to be made available as soon as 

possible. Institutions will therefore need to be innovative in addressing workflow 

bottlenecks and finding ways of improving the turn-around time from capture to 

publication. 

1.2 Lecture recording at the University of Cape Town 

Lecture recording has been deemed a core business service at the University of Cape 

Town (UCT) and the Centre for Innovation in Learning and Teaching (CILT) are the 

custodians of this service. To manage and administer the lecture capture process, 

CILT has opted to utilise Opencast [9], which is an open source Java based 

framework. Opencast manages the various stages involved in the lecture capture 

process, which include: 

Scheduling: Before the academic year commences, course convenors schedule all 

courses that they wish to be recorded. The course codes, dates, times and venues 
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are all retrieved automatically from UCT’s timetabling software. Once the recordings 

have been scheduled, the lectures are automatically recorded accordingly. 

Encoding and processing: After a lecture has been recorded, the raw media files 

are ingested by Opencast and enriched with metadata, preview images, captioning 

and text analysis to improve discoverability and accessibility. 

Editing and trimming: Any irrelevant content that exists in the raw media is marked 

for removal during this stage. Opencast thereafter excludes these segments from the 

final published video. Metadata can also be updated or corrected during this stage. 

Distribution: The finalised recording is published for on-demand viewing or 

download via Sakai. 

The Opencast editor, which is a web-based video editor, is used to trim and edit 

recordings. Figure 1.1 below shows an unsegmented video loaded within the 

Opencast editor, with the three main regions of the editor labelled as A, B and C. 

Region A contains the video streams (IP camera and projector feed) and the playback 

controls. Region B contains the timeline and the composite toolbar which are used to 

select segments that are to be trimmed. Region C contains clickable tabs that display 

information related to the selected segments, metadata and any editor comments.  

During the trimming process, staff will use the video controls and skim through the 

video in search of unnecessary content, for example student chatter, which 

predominantly occurs at the beginning of the recording (before the lecture starts) and 

at the end (after the lecture concludes). The composite toolbar is used to select 

segments that are to be excluded from the final published video. Once selected, the 

respective segments in the composite toolbar are highlighted and information about 

the segments appears in the segments section, as shown in Figure 1.2. 

The editing and trimming stage is a manual and subjective process, that is highly 

dependent on the availability of staff. This dependence on human intervention does 

impact the publishing of recordings negatively, making it a primary bottleneck of the 

system. This is especially true on Friday evenings, when videos enter the trim queue 

and can only be attended to on Monday as staff are not available over the weekends.
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Figure 1.1: An unsegmented video loaded within the Opencast interface. 
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Figure 1.2: The Opencast editor with segments selected for trimming. The areas in red indicate the segments that will excluded in the 
final published video. 
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1.3 Motivation 

Since the inception of lecture recording at UCT in 2013, there has been a steady 

increase in the number of recordings published each year, as clearly indicated in 

Figure 1.3 below.  

 

 

Figure 1.3: The increase in published lecture recordings at the University of Cape Town from 

February 2013 to December 2017. The drop in the second semester of 2016 was due to classes 

being cancelled due to unrest on campus when students protested for a zero increase in tuition fees. 

Source: Centre for Innovation in Learning and Teaching, University of Cape Town. 

Coupled with the increase in recordings, there has also been a demand for recordings 

to be made available sooner than the current turn-around time. If we were to 

extrapolate the pattern in Figure 1.3, a safe deduction would be that the demand is 

surely to increase in the years to follow. This means that the required dependence on 

staff availability is not sustainable or practical. Therefore, alternate intuitive methods 

need to be investigated. Automating the trimming task could potentially alleviate the 

bottleneck and remove the required dependency on staff, thereby improving the turn-

around time for published recordings. However, automation would require a level of 
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intelligence to distinguish relevant content from irrelevant content and mark these 

segments accordingly.  

We therefore propose utilising audio signal classification (ASC) to analyse the audio 

stream from a lecture recording and identify the respective segments for trimming. 

ASC is a machine learning process by which an audio signal is analysed, a set of 

audio features extracted from it, and then used to identify a group of classes to which 

the signal most likely belongs.   An audio classification system must be able to analyse 

an audio signal and detect the type of audio [10], for example speech, music, noise 

and silence. Therefore, the inclusion of such a system in UCT’s lecture capture 

workflow could potentially identify irrelevant content, such as student chatter, from 

relevant content, such as lecturer speech, and mark these accordingly for trimming. 

1.4 Limitations of this study 

This study does not make use of a custom classification system but instead utilises an 

open source library that performs a range of audio-related functionalities, which 

include feature extraction and classification.  Furthermore, this study excludes the 

actual implementation of the audio classification model within UCT’s lecture capture 

framework (Opencast). 

1.5 Research questions 

The aim of this study is to evaluate the accuracy and efficacy of audio signal 

classification in distinguishing speech from non-speech, as a means of automating the 

trimming of the recorded lectures at UCT. 

The main research question is: 

How accurately can audio signal classification distinguish speech from non-

speech? 
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The secondary question is: 

How do the start and end trim points, determined using audio classification, 

compare to gold standard data? 

1.6 Methodology 

Audio files from previous recordings are downloaded and segmented according to 

speech (single dominant voice) and non-speech (student chatter, silence, 

environmental noise). 

Using the segmented files, we then implement 10-fold cross validation to train and test 

a Support Vector Machine (SVM) classification model. Four performance metrics; 

Accuracy, Precision, Recall and F-measure, are used to evaluate the performance of 

the classification model. We pay particular attention to the accuracy at which the model 

detects the speech class.  

Finally, in conjunction with the classification model, we determine the start and end 

trim points for a recorded lecture. The performance is evaluated by comparing 

predicted trim points against trim points determined manually by staff. The manually 

determined trim points are considered most accurate and reliable, and are therefore 

used as the gold standard in this study. 

 

1.7 Thesis structure 

This study is divided into five chapters. Chapter 2 presents an overview of existing 

literature related to audio classification. Chapter 3 provides a detailed overview of the 

data and methodology implemented to train and evaluate the chosen classification, as 

well as the steps taken to evaluate the trim point predictions. Chapter 4 presents and 

discusses the results of this study. This is followed by the conclusion in Chapter 5 

where we summarise results and findings and identify possible opportunities for future 

work. 
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2. LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a background review of existing literature pertaining to ASC. 

The essential components of ASC are discussed in Section 2.2. In this section, we 

first briefly discuss feature extraction and selection. Thereafter, we provide an 

overview of the common physical and perceptual features of audio signals. Following 

this, the popular classification models in the realm of ASC are discussed. The chapter 

is concluded with Section 2.3, where an overview and discussion of the contributions 

of previous studies in this research field are provided. 

2.2 Core concepts of audio signal classification 

While research into ASC has provided many different methodologies, these 

techniques generally involve two stages of processing [11]. Firstly, a variety of 

discernible and measurable features are extracted from the audio signal. Thereafter, 

the extracted features are fed into a pattern classification model to categorise the 

audio into respective classes. 

2.2.1 Feature extraction 

Before an audio signal can be classified, the features within that signal first need to be 

extracted and analysed. These features represent the characteristics of the audio 

signal and will ultimately decide the class of that signal. The techniques employed 

during feature extraction can either involve the analysis of the actual waveform of the 

audio signal, or the analysis of the spectral representation of the audio signal. During 

the feature extraction stage there is reduction of data from the audio signal as sound 

data contains much redundancy [12]. This is done by breaking down the audio signal 

into successive short-time or short-term windows or frames, which are generally no 

larger than 100ms [13]. A set of features are then calculated for each frame, resulting 

in a feature vector [14]. 
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For better results, the concept of a texture window was introduced by Tzanetakis and 

Cook [15], which is much longer than a short-time window, generally in seconds (s) 

and not milliseconds (ms). For each texture window, the short-time processing is 

carried out and the feature sequence from each texture window is used to determine 

feature statistics [14, 15]. The feature sequence from each texture window is not 

directly the values obtained during each short-time window analysis, but are combined 

statistical values for all short-time analysis windows within the texture window [13]. 

This provides long-term characteristics of the audio signal, for example the average 

value for the energy of the audio signal.  

2.2.2 Feature selection 

There are many features that could be extracted from an audio signal. However, it is 

important to select a particular set of features, as implied by Burred and Lerch [13], as 

reducing the number of features selected not only improves computational costs but 

may also improve accuracy and the level of performance of the classification system. 

Therefore, Burred and Lerch [13] stated that selected features should have the 

following general properties: 

• Invariance to irrelevancies: Good features should display invariance to 

irrelevancies of the input signal, such as noise, amplitude scaling and 

bandwidth. 

• Discriminative power: The goal of feature selection is to attain discrimination 

between classes of audio patterns. This means that features should therefore 

take similar values for the same class but different values across classes. 

• Uncorrelated to other features: Each feature selected needs to provide as 

much new information about the input signal as possible. Therefore, preventing 

redundancies in the feature space is important. 

2.2.3 Features of audio signals 

Audio features generally fall into two categories: perceptual features and physical 

features [12, 16, 17].  
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Perceptual features refer to the properties of audio that correspond to the way humans 

perceive sound [16]. They are subjective attributes of audio and therefore cannot be 

measured by direct physical means. Examples of perceptual features include pitch, 

loudness, timbre and rhythm.  

Physical features refer to properties of audio that correspond to actual physical 

properties of the signal [12]. Physical features are easier to identify and extract as they 

are directly related to the physical properties of the actual sound signal and can 

therefore be physically measured. Examples of physical features that have been used 

in audio analysis include fundamental frequency (𝑓𝑓𝑜𝑜), the zero-crossing rate (ZCR), 

energy, entropy of energy, spectral centroid, spectral spread, spectral flux, spectral 

rolloff and Mel frequency cepstral coefficients (MFCC) [16, 18-20]. Stevens, et al. [21] 

define Mel as a unit of pitch. While many other physical features exist, the above 

mentioned physical features are discussed below as they are utilised in this study.  

Understanding the different features of audio is fundamental to any audio classification 

system. 

2.2.3.1 Perceptual features 

2.2.3.1.1 Pitch 

Pitch is the quality of a sound signal that is governed by the rate of vibrations producing 

it, or the degree of highness and lowness in a musical or vocal signal. It is therefore 

directly proportional to frequency and related to the log of fundamental frequency [12]. 

According to Guojun and Hankinson [22], only periodic sounds, such as those 

generated by voiced signals and musical instruments produce pitch. Pitch estimation 

is an important feature in voiced/unvoiced classification systems [23]. Figure 2.1 

illustrates the concept of high and low pitch for an audio signal. 
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Figure 2.1: Illustration of pitch. a) Low pitch with low frequency. b) High pitch with high frequency. 

2.2.3.1.2 Loudness 

Loudness refers to the perception of signal strength or intensity [24]. It is therefore a 

subjective measure of how soft or loud a signal is. It is approximated by the level of 

the audio signal’s root-mean square (RMS), measured in decibels [25]. A signal with 

a high amplitude is therefore perceived as louder than a signal with a low amplitude. 

Figure 2.2 illustrates the concept of loudness for an audio signal. 

 

 
Figure 2.2: Illustration of loudness. a) A soft signal, b) A loud signal. 
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2.2.3.1.3 Timbre 

Timbre refers to the tone of a sound signal and is independent of pitch and loudness. 

This attribute of sound, whilst not easy to quantify [12], allows us to differentiate 

between musical instruments and voices [10]. Zhang and Kuo [17] provide a detailed 

discussion of timbre and stated that it is an important feature in distinguishing classes 

of environment sound but conceded that at the same time it was very difficult to model 

properly or measure. Figure 2.3 illustrates the concept of timbre. 

 

 

Figure 2.3: Illustration of the concept of timbre. Wave structure for each instrument is notably 

different. Source: https://byjus.com/physics/timbre/ 

2.2.3.1.4 Rhythm 

Rhythm refers to features that display structural regularity of the sound signal [10]. For 

example, the continuous structure of a heartbeat can be referred to as its rhythm. 

Figure 2.4 shows the rhythmic structure of a heartbeat. In music, rhythm characterises 

the movement of music signals over time and contains information such as the 

regularity of the rhythm, the time signature and beat. It is a significant feature in the 

perception of sounds like footsteps, the ticking of a clock and knocking on a door [17]. 
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Figure 2.4: Rhythmic structure of a heartbeat. The pattern of the signal repeats itself over time.  

Source: http://sethares.engr.wisc.edu/htmlRT/soundexchap1.html 

2.2.3.2 Physical features 

Figures 2.7 to 2.14 provide visual representations of the various physical features 

discussed in this section. Features were extracted from an audio signal that contained 

gunshots, music and speech. The pyAudioAnalysis library, which will be discussed in 

Chapter 3, was used to extract the respective features. For each figure, we label each 

audio type as follows: a) gunshots, b) music, c) speech. 

2.2.3.2.1 Fundamental frequency 

Fundamental frequency (𝑓𝑓𝑜𝑜) is the lowest frequency of a periodic signal or waveform 

[16]. In music, harmonics refer to the frequencies of vibrations within an instrument 

[26]. The lowest frequency produced by any musical instrument is the fundamental 

frequency, or the first harmonic. If we were to consider a guitar string vibrating without 

any driving or damping force (natural frequency), the harmonic with the lowest 

frequency and longest wavelength would be the fundamental frequency. The 

wavelength would be equivalent to twice the length of the guitar string. Figure 2.5 

provides an illustration of the first seven harmonics produced by a vibrating guitar 

string. 
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Figure 2.5: The first seven harmonics, with the first harmonic being the fundamental frequency, 

produced by a vibrating guitar string.  

Source: https://commons.wikimedia.org/wiki/File:Harmonic_partials_on_strings.svg 

Fundamental frequency is only relevant for signals that are periodic or pseudo-periodic 

[12]. Periodic audio signals refer to signals that repeat indefinitely, while pseudo-

periodic signals almost repeat. Fundamental frequency can be defined as follows. 

If 𝑇𝑇 is the period of a waveform for the following equation:  

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(𝑡𝑡 + 𝑇𝑇) for 𝑡𝑡 ∈ R 

where: 

𝑥𝑥(𝑡𝑡) is the value of the waveform at 𝑡𝑡; then 

𝑓𝑓𝑜𝑜 =  
1
𝑇𝑇
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Fundamental frequency is most useful when observing how a sound signal changes 

over time and has multiple applications in audio signal classification. It is effective in 

the detection of word boundaries, as shown by Rao and Srichland [27] and also in 

music detection and discrimination [25]. 

2.2.3.2.2 Zero-crossing rate 

Subramanian, et al. [10] define zero-crossing rate (ZCR) as how often the audio signal 

amplitude changes from the positive spectrum to the negative, or vice-versa (crosses 

0) within a given frame. Figure 2.6 illustrates the concept of zero-crossing for an audio 

signal. 

 

 

Figure 2.6: Concept of zero-crossing for an audio signal 

 

ZCR is calculated as follows for frame xr of length N: 

ZC𝑟𝑟 =
1
2
� |sign(𝑥𝑥𝑟𝑟[𝑛𝑛]) − sign(x𝑟𝑟[n − 1])|

𝑁𝑁

𝑛𝑛=1

 

where:  

𝑟𝑟 refers to the number of the current frame; 

𝑥𝑥𝑟𝑟[𝑛𝑛] refers to the frame in the time domain, where 𝑛𝑛 is the time index; and 

the sign function is defined by: 
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sign(𝑥𝑥) = �    1, 𝑥𝑥 ≥ 0
−1, 𝑥𝑥 < 0  

ZCR provides a good indication of the spectral content of a signal. According to 

Gerhard [16], ZCR was initially used as a means to determine the fundamental 

frequency of a signal but has subsequently proved to be an effective feature in itself. 

ZCR is an integral component in classification systems where voice/music 

discrimination is important [19, 28].  

Figure 2.7 shows the zero-crossings rate of a series of successive analysis frames for 

the audio signal containing gunshots, music and speech. We see very distinctive ZCR 

patterns for each of the different sound types.  

 

 

Figure 2.7: ZCR for an input signal containing a) gunshots, b) music and c) speech. 

2.2.3.2.3 Energy 

This is a measure of the quantity of signal at any given time [12]. The energy of an 

audio signal is calculated on a short-time basis. This is accomplished by the 

application of a window function on the signal at a given time, squaring the samples 

and then taking the average [17]. Zhang and Kuo [17] provide the following formula 

for energy: 
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𝐸𝐸𝑚𝑚 =  �(𝑥𝑥(𝑛𝑛)𝑊𝑊(𝑛𝑛 −𝑚𝑚))2

𝑚𝑚

 

where: 

𝑚𝑚 is the time index of the short-time energy, 

𝑥𝑥(𝑛𝑛) is the discrete time audio signal, 

𝑊𝑊(𝑛𝑛) is the window (frame) of length 𝑁𝑁 where 𝑛𝑛 = 0,1, 2,…, 𝑁𝑁 -1 

Zhang and Kuo [17] also state that, in speech signals, energy is the basis for 

discriminating between voiced components from un-voiced components. Furthermore, 

energy can be used to detect the presence of silence in a signal [12]. Energy and 

loudness are related [16]. Therefore, energy is directly proportional to the amplitude 

of a sound wave. Figure 2.8 provides a visual representation for the change in energy. 

Once again, we can clearly distinguish between the three audio types. We see sudden 

changes in energy for a) gunshots, b) music producing a relatively flat change in 

energy, and c) speech producing small spikes in energy. 

 

 

Figure 2.8: The change in energy of an input signal that contains a) gunshots, b) music and c) 

speech.  
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2.2.3.2.4 Entropy of energy 

This is a measure of abrupt changes in an audio signal [14]. To calculate the entropy 

of energy 𝐼𝐼𝑟𝑟, the analysis frames are further segmented into 𝐾𝐾 sub-frames, which are 

of a fixed duration. Thereafter, the normalised energy (𝜎𝜎𝑖𝑖2), which is the energy of 

each sub-frame 𝑖𝑖, is divided by the energy of the entire frame. From this, the entropy 

of energy for frame 𝑟𝑟 is calculated as follows:   

𝐼𝐼𝑟𝑟 =  − � 𝜎𝜎𝑖𝑖2 log2 𝜎𝜎𝑖𝑖2

𝑖𝑖=1..𝐾𝐾

 

Ekštein and Pavelka [29] stated that noise signals have the highest entropy, while 

periodic signals like speech have relatively lower entropy values. They therefore 

concluded that entropy is a significant feature in signal processing and has application 

in speech recognition and voice activity detection. Figure 2.9 shows the energy 

entropy sequence for the audio signal mentioned earlier. Once again, we can clearly 

see the abrupt changes in energy for the gunshots. Music is relatively flat, while 

speech produces small spikes. 

 

 

Figure 2.9: Entropy of energy for an audio signal containing a) gunshots, b) music and c) speech. 
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2.2.3.2.5 Spectral centroid 

Spectral centroid is a measure of the spectral shape or the average frequency of the 

signal [12]. It is also referred to as the “centre of gravity of the spectrum” [14] or the 

“balancing point of the spectral power distribution” [19].  According to Burred and Lerch 

[13], spectral centroid is calculated as follows: 

C𝑟𝑟 =  
∑  𝑓𝑓[𝑘𝑘] | 𝑋𝑋𝑟𝑟 [𝑘𝑘] |𝑁𝑁/2
𝑘𝑘=1

∑ | 𝑋𝑋𝑟𝑟  [𝑘𝑘] |𝑁𝑁/2
𝑘𝑘=1

 

where: 

𝑟𝑟 refers to the number of the current frame; 

𝑁𝑁 is the number of Full Fourier transform (FFT) points; 

𝑋𝑋𝑟𝑟[𝑘𝑘] denotes the short-time Fourier transform of frame 𝑥𝑥𝑟𝑟; and 

𝑓𝑓[𝑘𝑘] is the frequency at bin 𝑘𝑘. 

Spectral centroid provides a good indication of whether or not the spectrum has a high 

concentration of low or high frequencies [30]. High values indicate high frequencies 

and low values indicate low frequencies. It is an effective feature for audio 

classification tasks [10], for example voiced/unvoiced speech discrimination and 

music/speech discrimination [12]. In Figure 2.10 we see that the spectral centroid 

sequence produced for gunshots has high values while music and speech are 

relatively lower. This means that the gunshots produce high frequencies, while music 

and speech produce lower frequencies.  
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Figure 2.10: Spectral centroid for an input signal containing a) gunshots, b) music and c) speech. 

2.2.3.2.6 Spectral spread 

Jia-Ching, et al. [30] and Burred and Lerch [13] define spectral spread as a measure 

of how the spectrum is concentrated around the centroid (centre of gravity). Low 

values indicate that the spectrum is highly focused around the centroid, while high 

values indicate that it is spread largely on either side of the centroid. Burred and Lerch 

[13] define spectral spread with the following equation: 

𝑆𝑆𝑆𝑆𝑟𝑟 =  �
∑ [ log2  � 𝑓𝑓[𝑘𝑘]

1000 � − ASC𝑟𝑟]2𝑁𝑁/2
𝑘𝑘=1 𝑃𝑃𝑟𝑟[𝑘𝑘]

∑ 𝑃𝑃𝑟𝑟[𝑘𝑘]𝑁𝑁/2
𝑘𝑘=1

 

where: 

𝑟𝑟 refers to the number of the current frame; 

𝑁𝑁 is the number of Full Fourier transform (FFT) points; 

𝑓𝑓[𝑘𝑘] is the frequency at frequency bin 𝑘𝑘; 

𝑃𝑃𝑟𝑟 is the spectral power at frame 𝑟𝑟; and 

ASC𝑟𝑟 is defined as: 

𝐴𝐴𝑆𝑆𝐴𝐴𝑟𝑟 =  
∑ log2 �

𝑓𝑓[𝑘𝑘]
1000 �𝑁𝑁/2

𝑘𝑘=1 𝑃𝑃𝑟𝑟[𝑘𝑘]

∑ 𝑃𝑃𝑟𝑟[𝑘𝑘]𝑁𝑁/2
𝑘𝑘=1
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Figure 2.11 shows the spectrum for gunshots, music and speech. While music and 

speech show a relatively similar spread, we see a vastly different pattern for gunshots. 

This is expected as this is an effective feature when discriminating between tone-like 

and noise-like sounds [30]. 

 

 

 
Figure 2.11: Spectral spread for an input signal containing a) gunshots, b) music and c) speech. 

2.2.3.2.7 Spectral flux 

Tzanetakis and Cook [15] define this feature as a measure of the rate of change in the 

local spectrum between successive frames. It is determined by the squared difference 

between the normalised magnitudes of successive frames, across one analysis 

window [13].  

𝐹𝐹𝑟𝑟 = � (𝑁𝑁𝑟𝑟,𝑘𝑘 −  𝑁𝑁𝑟𝑟−1,𝑘𝑘)2
𝑘𝑘=0..𝑆𝑆−1

 

where: 

𝑁𝑁𝑟𝑟,𝑘𝑘 is the energy of the r-th frame for the k-th sample. 

Spectral flux has been found to be an effective feature when discriminating between 

music and speech [15, 19, 31]. There is however some discrepancy between the 

authors’ findings, as Lie, et al. [31] stated that the spectral flux values for speech are 

higher than that of music, while the other two studies claimed the opposite. The 
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spectral flux curve in Figure 2.12 shows that speech does produce relatively higher 

values than music or gunshots. 

 

 

Figure 2.12: Spectral flux curve of an input signal for a) gunshots, b) music and c) speech. 

2.2.3.2.8 Spectral rolloff 

This is defined by some authors as the frequency below which 85% of the magnitude 

distribution of the spectrum is concentrated [13, 15], while others such as Scheirer and 

Slaney [19] define it as 95% of the power spectral distribution. However, both agree 

that it is also a good measure of spectral shape. It measures the skewness of the 

spectral shape, with brighter sounds producing higher values [18]. According to Burred 

and Lerch [13] spectral rolloff is a useful feature when discriminating between voiced 

and unvoiced speech. Burred and Lerch [13], define this feature as follows: 

� | 𝑋𝑋𝑟𝑟[𝑘𝑘] | ≤  0.85 � | 𝑋𝑋𝑟𝑟[𝑘𝑘] |
𝑁𝑁/2

𝑘𝑘=1

𝑀𝑀

𝑘𝑘=1

 

If 𝑀𝑀 is the largest value for frequency bin index 𝑘𝑘, for which the above equation is 

satisfied, then the spectral rolloff is 𝑅𝑅𝑟𝑟 = 𝑓𝑓[𝑀𝑀] 

where: 

𝑓𝑓[𝑀𝑀] is the frequency at the largest frequency bin 𝑀𝑀. 
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Figure 2.13 confirms the statement made by  Giannakopoulos, et al. [18], with 

gunshots (bright sounds) producing high values. 

 

 
Figure 2.13: Spectral rolloff for an input signal containing a) gunshots, b) music and c) speech. 

2.2.3.2.9 Mel frequency cepstral coefficients 

Mel frequency cepstral coefficients (MFCC) is a representation of an audio signal’s 

spectrum considering the non-linear perception of pitch by humans as described by 

the mel scale [13]. The mel scale refers to a scale of pitches that are of equal distance 

from each other [10]. Subramanian, et al. [10] further state that MFCC are one of the 

most used features in speech recognition. Studies have also confirmed that MFCC are 

also effective in representing music signals [32].  

Figure 2.14 shows a visual representation of 13 MFCC for the same input signal. We 

see that graphs are relatively flat for music, with some spikes for gunshots and speech. 



24 

 

 
Figure 2.14: MFCC for an input signal containing a) gunshots, b) music and c) speech. 

The process involved in extracting or creating MFCC for speech consists of 5 steps 

[32] as illustrated in Figure 2.15.  

 

 
Figure 2.15: Steps involved in MFCC feature extraction. Source: [32] 

Firstly, the audio signal is broken down in multiple frames or windows by the 

application of a windowing function. Thereafter, the discrete Fourier Transform is 

applied to each frame. Next the logarithm of the amplitude spectrum is taken as the 

perceived loudness of an audio signal is said to be approximately logarithmic [32]. The 

next step involves the smoothing of the spectrum resulting in 40 filter values per frame 

simulating the frequency perception of the human hearing system. Then the logarithm 
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of the coefficients is taken, and a discrete cosine transform (DCT) is applied to 

decorrelate them. Typically, 13 of the resulting coefficients are used for speech 

recognition [15]. 

2.2.4 Classification models 

Once the feature selection has been completed, the input signal needs to be assigned 

a class. An efficient classification model is fundamental to any type of classifier. 

Depending on the level of classification required, a typical classification system would 

utilise a single model. In complex classification systems however, where hierarchical 

classification is required, multiple classification models can be combined to form hybrid 

or multi-class classification strategies [33, 34]. Some of the common classification 

models used in ASC include Hidden Markov Model, k-Nearest Neighbour, Gaussian 

Mixture Models and Support Vector Machine. 

2.2.4.1 Hidden Markov Model (HMM) 

A Markov Model (MM) is a stochastic model with a finite set of states, which have 

some form of measure or property (observable event), and a set of transitions between 

states [12]. There is a related probability for each state, and the system proceeds from 

state to state based on the current state and the probability of transition to a new state 

[35]. Figure 2.16 provides an example of a Markov process, which has three states 

(Stat1, Stat2 and Stat3), and 3 corresponding observations (Obs1, Obs2 and Obs3). 

The model present finite states, with a probabilistic transition between states. Given a 

sequence of observations, for example: Obs1-Obs3-Obs3, one would be able to 

determine the state sequence that formed the sequence of observations was Stat1-

Stat3-Stat3. The probability of the sequence is the product of the transitions, which is 

0.05 (0.2 x 0.5 X 0.5). 
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Figure 2.16: Markov process with three states (Stat1, Stat2, Stat3) and three observations (Obs1, 

Obs2, Obs3). The selected state transitions and their associated probabilities are indicated by arrows.  

A Hidden Markov Model (HMM) is where the state sequence is “hidden” [36]. To 

explain this statement, we refer to Figure 2.17, which is a modification of the original 

Markov model presented in Figure 2.16. In the new model (Figure 2.17) all observation 

symbols are allowed from each state, with a probability. Therefore, if we were to 

consider the earlier observation sequence (Obs1-Obs3-Obs3), we are now unable to 

determine the exact state sequence responsible for the observation sequence, hence 

the state sequence is “hidden”. According to Blunsom [36], even though the exact 

state sequence cannot be determined, the probability that the model produced the 

sequence, and the state sequence that most probably produced the observations, can 

be calculated. 
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Figure 2.17: HMM with three states and three probabilistic observations. State transitions and their 

probabilities are indicated by arrows. Adapted from Blunsom [36].  

According to Rabiner [35], there are three basic problems of interest that must be 

solved to make this model suitable in real-world applications.  

1. Firstly, given an HMM model and a sequence of observations, what is the 

probability that the sequence was generated by the model?  

2. Secondly, what is the optimal state sequence used by the model to generate 

the observation sequence?  

3. Lastly, how can the model parameters be adjusted to optimise the probability 

of an observation sequence? 

Rabiner [35] also addressed these problems and provided possible solutions.  

When used in audio classification, the input signal is treated as an observation, and 

the HMM classifier tries to determine which HMM could possibly produce that 

observation/signal [12]. The classification system should contain several HMMs, each 

representing a specific category. The audio class that corresponds to the HMM and is 

most likely capable of producing the input signal is then interpreted as the class to 

which the input signal belongs.  
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Although HMM has contributed significantly to audio classification and speech 

recognition, there are some inherent limitation of this statistical model for speech.  

Rabiner [35] mentions the following limitations: 

• The assumption that successive observations or frames of speech are 

independent.  

• The assumption that distributions of individual observation parameters can be 

well represented as a mixture of Gaussian densities. 

• The assumption that the probability of being in a state at a specific time t is 

solely dependent on the state at time t – 1, because dependencies generally 

extend through multiple states for speech sounds. 

2.2.4.2 k-Nearest Neighbour (k-NN) 

According to Cover and Hart [37], k-NN is the simplest classification procedure when 

there is limited prior knowledge of the data distribution. It is a non-parametric pattern 

recognition method utilised in both classification and regression [38]. This method of 

classification involves labelling an input feature vector according to the class of the 

training vectors that are closest to it in the feature space [10]. K-NN classification 

therefore consists of two stages. Firstly, the nearest neighbours are determined, and 

secondly the class for input feature vector is determined based on the nearest 

neighbours. 

To explain the concept of k-NN, we refer to Figure 2.18 below, where each of the 

samples other than Sample a has been classified as X or O. In a k-NN classification 

model, the k nearest (closest) neighbours (samples) near Sample a would be used to 

assign a classification label. Assignment of the classification label follows a “majority-

voting” rule [39], which states that the classification label assigned should be that 

which occurs most among the nearest neighbours.  

If k = 1, as indicated by the blue circle in Figure 2.18, the label nearest to Sample a is 

O, therefore Sample a, which is unknown, would be assigned label O. However, if k = 

5, as indicated by the red circle in Figure 2.18, then there are two samples with label 

O and three samples with label X that are nearest to Sample a. By X being in the 

majority, it would therefore be assigned to Sample a.  
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Figure 2.18: Illustration showing a 1-nearest neighbour (indicated by the blue circle) and 5-nearest 

neighbour (indicated by the red circle) classification decision. 

The above example also illustrates two important considerations of this model. Firstly, 

it is assumed that the k neighbours have similar influence on the predictions regardless 

of their relative distance from Sample a. Therefore a suitable distance metric  needs 

to be defined [38]. Secondly, the performance of this model is highly dependent on the 

selection of k.  When k is small, estimates can be very poor due to data sparseness 

and noise, resulting in a non-linear model, while large k values result in linear models 

[10] 

While k-NN is a simple and easily implementable classification model, Imandoust and 

Bolandraftar [38] highlighted some of its limitations such as poor runtime performance 

given a training set that is large, high computational costs and high sensitivity to 

irrelevant features.  

2.2.4.3 Gaussian Mixture Model (GMM) 

Subramanian, et al. [10] defines a Gaussian Mixture Model (GMM) as a weighted sum 

of Gaussian probability density functions, referred to as Gaussian components of the 

model, that describe a class. Gaussian probability density functions are generally bell-

shaped curves and are defined by parameters such as mean and variance. Figure 
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2.19 illustrates this concept, in which the solid line represents the linear combination 

of the three separate Gaussian distributions (dotted lines).  

 

 

Figure 2.19: An example of a Gaussian mixture, illustrating how complex distributions can be 

modelled by a mixture of Gaussian distributions. Source: 

https://commons.wikimedia.org/wiki/File:Gaussian-mixture-example.svg 

In the context of data classification, a GMM classifier models each class as a 

combination of Gaussian densities [13]. Each class 𝑘𝑘 is represented by the following 

multidimensional conditional density: 

𝑝𝑝(𝒙𝒙|𝑤𝑤𝑘𝑘) = � 𝑤𝑤𝑘𝑘𝑚𝑚𝑝𝑝𝑘𝑘𝑚𝑚(𝒙𝒙) 
𝑀𝑀

𝑚𝑚=1

 

where: 

𝑤𝑤𝑘𝑘 is the event that belongs to class 𝑘𝑘; 

𝒙𝒙 denotes a feature vector; 

𝑤𝑤𝑘𝑘𝑚𝑚 are the weights of the mixture; 

𝑀𝑀 is total number of densities or components in the mixture; and 

𝑝𝑝𝑘𝑘𝑚𝑚 is the normal density 

𝑝𝑝(𝒙𝒙|𝑤𝑤𝑘𝑘) which is also referred to as the conditional density is the likelihood of class 𝑘𝑘 

in respect to 𝑥𝑥 [13]. 
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GMM based classification systems are a popular approach for speaker recognition 

systems [40, 41], because Gaussian components have been shown to represent some 

basic speaker-dependent spectral shapes and Gaussian mixtures are also capable of 

modelling arbitrary densities [42]. GMMs are also a popular choice for speech 

recognition systems and noise-tracking applications [43]. 

While GMMs are a popular choice for the above-mentioned systems, there are 

limitations to this model. Yu and Deng [43] state that GMMs are statistically ineffective 

when modelling data that cannot be represented by linear-hyperplanes. 

2.2.4.4 Support Vector Machine (SVM) 

SVM is a family of machine-learning algorithms, originally developed for 2-class or 

binary discriminant learning [44]. SVMs function by finding a suitable boundary in the 

feature space to discriminate between the two classes [45]. This optimal decision 

boundary, or separating hyperplane, maximises the margin of separation between the 

closest points of the classes [46]. The points that lay on the margin boundaries are 

called support vectors. 

To understand this concept, we refer to Figure 2.20a, which represents a 2-class 

(Class 1 and Class 2) classification problem. The blue squares represent Class 1 and 

red circles Class 2. A decision boundary is represented by the separating hyperplane. 

The three points to be classified are points A, B and C. Point A, when compared to 

points B and C, is farthest from the decision boundary, therefore a prediction could be 

confidently made that the value is Class 2. Conversely, point C is extremely close to 

the decision boundary. While it may be on the side of the boundary on which we would 

predict Class 2, a minor change in the decision boundary could cause the prediction 

to be Class 1. Therefore, we would be more confident of the prediction at point A than 

C. Point B lies in-between these cases. Therefore, given a training data set, an optimal 

separating hyperplane or decision boundary, with a maximum margin, is required that 

would allow confident predictions to be made as indicated in Figure 2.20b.  
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Figure 2.20: SVM separating Class 1 from Class with a separating hyperplane or decision boundary 

as in (a), and at the point where the margin is greatest (optimal margin) as in (b). 

For multi-class (more than 2) classification, it involves decomposing the multi-class 

problem into a series of 2-class problems, which then can be addressed by multiple 

SVMs [47]. For example, if x is the number of classes, the SVM algorithm is run x(x-

1)/2 times for each possible pair of classes, and then allocated a point. The class that 

receives the most points of all the 2-class SVMs is the chosen class (winner). 

While SVMs are among the best performing machine-learning algorithms with regards 

to accuracy [48], there are limitations to its efficiency. Size and speed in both the 

training and testing phases is said to be a limiting factor [49]. While the speed in the 

testing phase has been mostly solved, the training times for large datasets is still 

problematic [49]. 

2.3. Facets of audio classification 

Audio signal classification is a diverse research field. From the earliest versions of 

speech detection [50] and speech-music discrimination [28], to content-based retrieval 

systems [51] as well as video segmentation and classification systems [52], all are 

founded on the principles of ASC. 
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2.3.1 Speech and speaker recognition 

According to Gerhard [12], interest in ASC, from a research perspective, was to 

address the problems associated with speech classification such as speech 

recognition and speaker recognition.  

2.3.1.1 Speech recognition 

Speech recognition involves the conversion of a speech signal into a sequence of 

words by an algorithm or computer. Research into speech recognition has been 

conducted for many decades, with some of the earliest contributions dating back to 

the early 1950s. A milestone contribution in isolated word recognition was by Atal and 

Rabiner [50], who proposed a pattern recognition approach to determine if a speech 

signal should be classified as voiced speech, unvoiced speech, or silence. This was 

based on the measurements of five features, namely: ZCR, energy, autocorrelation 

coefficient, first predictor coefficient from a linear predictive coding (LPC) analysis, and 

the energy of the prediction error. LPC is a popular technique in speech analysis that 

uses a linear combination of the past time-domain samples, for example, 𝑠𝑠[𝑛𝑛 − 1], 

𝑠𝑠[𝑛𝑛 − 2],…, 𝑠𝑠[𝑛𝑛 −𝑀𝑀], to predict a current time-domain sample 𝑠𝑠[𝑛𝑛] [53]. This is 

explained by the following equation: 

𝑠𝑠[𝑛𝑛] = −�𝑎𝑎𝑖𝑖𝑠𝑠[𝑛𝑛 − 𝑖𝑖] 
𝑀𝑀

𝑖𝑖=1

 

where: 

𝑠𝑠[𝑛𝑛] is the predicted sample, and 

𝑎𝑎𝑖𝑖 and 𝑖𝑖 = 1,2, … ,𝑀𝑀 are referred to as the predictor or LPC coefficients. 

The classification model utilised by  Atal and Rabiner [50] was based on a minimum 

non-Euclidian distance rule assuming that the parameters measured had a distribution 

that was in line with a multidimensional Gaussian probability density function.  

The 80s saw HMMs become a popular classification choice in speech recognition [35] 

and a shift in focus to continuous speech (natural speech) recognition [54, 55]. 

Numerous advancements with pattern recognition techniques followed, with 
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discriminative and kernel based (SVM) methods growing in popularity [56]. Other 

recent studies have seen authors explore emotional speech recognition [57] where the 

emotional state of a speaker can be determined from their voice. 

Three approaches have been proposed for speech recognition, namely, the acoustic 

phonetic approach, the pattern recognition approach and the artificial intelligence 

approach [58].  

The acoustic phonetic approach was initially proposed by  Hemdal and Hughes [59], 

and suggests that spoken language consists of a finite set of distinctive phonetic units 

or phenomes, which are broadly characterised by sets of properties that are revealed 

in the speech signal over time. It involves the segmentation and labelling of the speech 

signal into acoustic phonetic units. A problem that this approach faces is that there is 

a high degree of variation in the phonetic properties of the signal between speakers 

and neighbouring sounds [60].  

The pattern recognition approach does not involve any feature extraction or 

segmentation. This method has just two steps: speech pattern training, and pattern 

recognition through pattern comparison [58]. This approach is founded on a well 

formulated mathematical framework that establishes consistent speech pattern 

representations, in the form of a statistical model, for example HMM, for pattern 

comparison. To determine the classification of an unknown, a direct comparison is 

made between the unknown utterances (speech) and each pattern learned during the 

training stage. 

The artificial intelligence approach is based on concepts of both the acoustic phonetic 

and pattern recognition methods [60]. It utilises a robust system for segmentation and 

labelling and neural networks for learning the relationships between phonetic patterns 

and inputs. 

According to Tran [60], the pattern-recognition approach has become the major 

method for speech recognition due to the simplicity of use, high performance and 

robustness to varying acoustic phonetic realisations. A key element in this approach 

is the use of statistical models such as HMMs to model patterns instead of a fixed 

template. 



35 

2.3.1.2 Speaker recognition 

Speaker recognition is the process of distinguishing who is speaking based on 

information obtained from a speech signal. There are two approaches to speaker 

recognition: text-dependent and text-independent [61]. In text-dependent speaker 

recognition systems, the speaker is required to utter a prescribed piece of text. While 

there is no such requirement in text-independent speaker recognition, where 

utterances are said to be unconstrained, there are some other limitations such as the 

length of what is spoken [62]. 

Speaker recognition can involve either verification or identification. Speaker 

verification refers to the use of a machine to verify an individual’s claimed identity from 

their speech signal [63]. For example, in a voice activated access control system, an 

identity claim is made by an unknown speaker. An utterance from this unknown 

speaker is compared with a model for the speaker based on the identity claim. Only if 

a match is made above a certain threshold, is the claim accepted. In speaker 

identification, there is no identity claim as the system decides if a speaker is a specific 

person or whether they belong to a certain group by determining which of the voices 

known by the system best matches the input voice sample [63].  

The earliest speaker recognition systems date back to the early 1960s when 

Pruzansky [64] proposed a pattern matching method for automatic recognition of 

talkers. The utterances from 10 talkers were converted into time-frequency-energy 

patterns, where some of each talker’s utterances were used to form reference patterns 

and some for test patterns. Recognition was determined by cross‐correlating the 

test patterns with the reference patterns, thereafter selecting the talker corresponding 

to the reference pattern with the highest correlation. Recognition scores of 89% were 

reported in this study. 

Atal [65] presented an overview of speaker recognition, listing suitable parameters 

(features) of a speech signal that could be used for speaker recognition. These 

included energy, pitch, short-time spectrum, predictor coefficients, timing, the rate of 

speaking and formant frequencies, which refer to the resonant frequencies of the vocal 

tract [66]. 
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Other early work includes Furui [67], who proposed using a set of time-based functions 

obtained from acoustic analysis of fixed sentence-long utterances. For this, the author 

opted to extract predictor coefficients, which were then transformed into cepstrum 

coefficients, by means of LPC analysis. Very low mean error rates were reported. 

Recently, the focus has been to improve robustness. Pelecanos and Sridharan [68] 

proposed a feature mapping approach that constructs a stronger representation of all 

cepstral feature distributions, thereby enhancing recognition robustness during 

adverse environmental conditions. Other techniques include “RelAtive SpecTrA” 

(RASTA), that extracts important information from the modulation spectrum [69], and 

Normalised Dynamic Spectral Features (NDSF) which is a spectral feature set that 

was introduced by Chougule and Chavan [70] for mismatch conditions in speaker 

recognition. The authors noted that NDSF enhance robustness by a reduction in 

additive noise and channel effects, generally caused by sensor mismatch.  

2.3.1.3 Challenges with speech and speaker recognition 

Some of the common problems that both speech and speaker recognition systems 

face are noise and speaker variability, which is influenced by accents. Both problems 

degrade the performance of such systems.  

Many authors have contributed new methods to improve speech detection in noisy 

environments. Ramirez, et al. [71] proposed an algorithm that measures the long-term 

spectral divergence between speech and noise. It then determines the speech/non-

speech choice by comparing the long-term spectral envelope to the average noise 

spectrum. Germain, et al. [72] proposed a voice activity detection (VAD) method that 

was founded on non-negative matrix factorisation. They trained a universal speech 

model from a corpus of clean speech (without noise) and did not include a noise model. 

The speech model was robust enough to detect speech in a variety of noisy audio 

signals. 

To investigate the impact of accent on speech recognition, Arslan and Hansen [73] 

used a 20-word isolated speech database, where a HMM classifier was trained with 

five tokens of each word, from speakers of American English. They tested the model 

using American English, with people born in America, as well as second language 
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American English speakers from Turkey, Germany and China. The recognition rate 

obtained was 99.7%, 92.5%, 88.7% and 95.3% respectively, thus confirming that 

accent does impact speech recognition.  

Responding to this, they extracted spectral and energy based features, which were 

then used to develop an HMM based accent classification algorithm. Both mono-

phone and whole word models were considered, with the latter capturing accent 

information more efficiently. Their classification system was able to correctly identify 

accents from 4 classes (accents), with 93% accuracy. Kumpf and King [74] also 

proposed an automatic classification system of foreign accents for Australian English. 

The classification system, based on “accent dependent parallel phoneme recognition” 

was developed to process an input containing continuous speech and then distinguish 

between native Australian English and foreigners such as Lebanese and Vietnamese, 

speaking English. The average accuracy for accent classification was 85.3%. 

2.3.2 Speech and music discrimination 

A popular area of interest in audio segmentation and classification is speech and 

music discrimination, where the purpose is to analyse a given audio signal and 

segment the signal according to speech and music. Research into speech and music 

discrimination saw Saunders [28] propose a classification technique that provided real-

time discrimination of speech and music from broadcast FM radio, while Scheirer and 

Slaney [19] presented a classification system that was capable of distinguishing 

speech from music, over a wide array of digital audio input. A further technique was 

put forward by El-Maleh, et al. [75] who proposed a robust narrowband speech and 

music discrimination system. While these authors performed studies in real-time 

speech and music discrimination, each utilised different classification techniques.  

In a relatively simplistic approach, Saunders [28], focussed on just two physical 

features: the ZCR and energy of the audio signals, with a multivariate GMM.  

Contrary to Saunders (1996),  Scheirer and Slaney [19] used 13 different features in 

their application: 4Hz modulation energy, percentage of “low energy” frames, spectral 

rolloff, spectral centroid, spectral flux, ZCR, cepstrum resynthesis residual magnitude 

(CRRM), pulse metric and the variances of spectral rolloff, spectral centroid, spectral 
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flux, ZCR and CRRM. CRRM refers to the 2-norm of the vector residual post cepstral 

analysis and smoothing, while pulse metric is a feature that uses autocorrelation to 

determine the amount of rhythm that exists within a 5-second frame [19]. The authors 

evaluated four different classification models in their study: a simple Gaussian 

classifier (GS), two variants of k-NN and a GMM.  

In their approach, El-Maleh, et al. [75] used line spectral frequencies (LSF), which 

provide alternate representations of LPC coefficients, as the core feature set. They 

also introduced a new feature, the linear prediction zero-crossing ratio (LP-ZCR), 

which they defined as the “ratio of the zero-crossings count (ZCC) of the input and the 

ZCC of the output of the linear prediction analysis filter.” They utilised 4 features in 

total, namely: LSF, differential line spectral frequencies (DLSF), line spectral 

frequencies with higher order crossings (LSF-HOC) and line spectral frequencies with 

LP-ZCR (LSF-ZCR). DLSF are definied by successive differences of the LSF. Higher 

order crossings (HOC) refer to the ZCC of a filtered signal. El-Maleh, et al. [75] also 

compared k-NN classifiers against GMMs. 

Although different audio classification techniques were employed, all three studies 

produced above 90% accuracy rates. Table 2.1 provides a high-level comparison of 

these respective studies. From the results of these studies it becomes apparent that it 

is not the number of features selected that is important, but the selection of a set of 

specific features to achieve a certain outcome. 

Authors Features used Classifier Accuracy 

Saunders (1996) ZCR, energy Multivariate 
GMM 90% 

Scheirer & 
Slaney (1997) 

Spectral rolloff, spectral centroid, 
spectral flux, ZCR, 4Hz modulation 
energy, percentage low energy 
frames, CRRM, pulse metric, 
variance of (spectral rolloff, 
spectral centroid, spectral flux, 
ZCR and CRRM) 

GS, k-NN, 
GMM 93.2% 

El-Maleh et al. 
(2000) LSF, LSF-ZCR, LSF-HOC, DLSF k-NN, GMM 95.9% 

Table 2.1: Comparison of studies focussed on speech and music discrimination. Even though each 

study differed in their approach, all achieved +90% accuracy. 
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Wyse and Smoliar [76] expanded on the concept of music and speech discrimination 

by also including speaker discrimination. The initial step was to separate the audio 

signal into music or speech. Music discrimination was based on the average length of 

time in which peaks exist in a narrow frequency range. Finally, they used a 

combination of changes in pitch, timing cues and spectral features to determine the 

transition of speakers.  

Kimber and Wilcox [77] included more classes in their contribution, where cepstral 

coefficients were selected for features and GMMs together with HMMs were used as 

classification models to segment audio into speech, music, laughter and non-speech. 

Results from their studies showed that the segmentation and classification model 

proposed fared relatively well against manual hand labelling.  

Other work involving music classification includes instrument classification. Ubbens 

and Gerhard [78] proposed an instrument classification system strictly using a time-

domain feature set. The authors claimed that features extracted from the time-domain 

are not typically used in classification as they can be unreliable at times. However, 

they have a lower computational cost than the frequency domain. In their study, they 

compared their time-domain based classification model against spectral and MFCC 

based models. Even though the time-domain based model did not produce better 

results, it was very comparable. 

2.3.3 Content-based retrieval systems 

With the rapid growth of audio and other multimedia data, there is a demand for 

efficient and automated content-based retrieval of audio from multimedia databases 

[79, 80]. Attempting to retrieve audio data utilising pure text-based retrieval 

mechanisms can prove to be a daunting task as metadata can be subjective and 

therefore never completely reliable. Content-based retrieval systems were introduced 

to address these shortcomings of existing database models with regards to storage, 

indexing and retrieval of audio and other multimedia data  [81]. Content-based retrieval 

systems provide a richer experience, allowing users to query multimedia databases 

more efficiently. The “Muscle Fish Database” [25] allows users to search for audio data 

using the following methods: 
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• Simile: saying one sound is like another. For example, “like the sound of a 

flock of seagulls.” 

• Acoustic/perceptual features: describing the sound by using common 

physical distinctive features such as brightness, pitch and loudness. 

• Subjective features: using personal descriptions to describe sounds. For 

example, “a thunderous sound”. 

• Onomatopoeia: attempting to make a sound similar in some quality to a sound 

you are searching for. For example, “making a chirp-chirp sound to find birds”. 

Therefore, ASC would be a fundamental component of such a system for two simple 

reasons [22]: 

• Different types of audio should be processed differently. 

• The “search space” after classification is restricted to a specific class during 

retrieval, thereby improving efficiency. 

Zhang and Kuo [82] proposed a hierarchical audio content analysis and classification 

system, which they claimed would archive audio data more appropriately for efficient 

retrieval. This system was divided into three stages of implementation. The first stage 

involved “coarse-level” classification where simple features such as energy, ZCR and 

fundamental frequency were used to classify audio signals into basic classes of 

speech, music, environmental sounds and silence. Further classification of each basic 

class was carried out in the next stage. The authors referred to this level of 

classification as “fine-level classification”. For the fine-level classification, features 

were extracted from the time-frequency representation of the audio signal to show 

minor differences in timbre, pitch and change pattern for the different classes. The 

chosen classifier was HMM and a single model was built for each class. In the final 

stage of implementation, an audio retrieval system was built with two retrieval 

approaches: query-by-example and query-by-keywords. 

In the following year, Zhang and Kuo also introduced a real-time audio segmentation 

and classification scheme for content-based audio management that classified audio 

signals into basic classes such as speech, music, song, silence and speech with 

background music [83]. Once again, they opted for simple audio features such as 

ZCR, the energy function, fundamental frequency and spectral features for their 
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classification system. Statistical and morphological analysis for temporal curves of the 

selected features were performed to distinguish the different types of audio. 

In additional research, Zhang and Kuo also devised a content-based audio retrieval 

system that showed two stages of classification [17]. In the first stage, audio signals 

were classified into high-level categories such as speech, music and noise by 

analysing the short-term features of the signal. These were then further classified into 

finer classes such as rain, applause and bird sounds. For this, the authors analysed 

the time-frequency of the audio signal and utilised a HMM. In the above-mentioned 

studies by Zhang and Kuo, classification performance was above 90% accuracy. 

Srinivasan, et al. [20] reported an accuracy of greater than 80% for their classification 

approach that could detect and classify audio comprising mixed classes such as 

combinations of music and speech together with background or environmental audio. 

They too isolated simple features such as the average energy and average ZCR. 

Li [84] presented a method using a combination of perceptual features such as 

brightness, bandwidth and energy, together with MFCC. He also introduced a new 

method for pattern classification called New Feature Line (NFL). This method gathers 

information within multiple prototypes per class by utilising linear interpolation and 

extrapolation of each pair of prototypes in the class. He reported that this new method 

outperforms other pattern classification methods like Nearest Neighbour (NN).  

An accuracy rate of greater than 96% was also reported by Lie, et al. [31]. They 

presented an audio segmentation and classification approach that segmented and 

classified audio signals into speech, music, environmental sound and silence by 

introducing new features such as noise frame ratio and band periodicity, which were 

shown to have been extremely effective in discriminating different audio types. Another 

innovation that Lie, et al. [31] contributed was real-time automatic speaker 

segmentation. 

Guodong and Li [51] improved on the work presented by Li [84] by introducing two 

new elements: the inclusion of a new metric, called distance-from-boundary (DFB), for 

content-based audio retrieval, and utilising SVM as the classification model instead of 

NFL. The authors reported a marked improvement over NFL and other popular 

classification models such as k-NN, with an error rate of only 8.1% when classifying 
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198 sounds into 16 classes. This illustrates an important point that the choice of 

classifier is extremely important given the same feature set. 

Chien-Chang, et al. [85] expanded on Guodong and Li [51], by incorporating additional 

wavelet functions and a bottom-up SVM. They reported a reduced feature set and an 

improvement in the classification error rate reported by Guodong and Li [51].  

Table 2.2 provides a high-level comparison of the above-mentioned studies and their 

contributions to content-based retrieval. 

Authors Methodology Outcome/s 

Zhang & Kao 
1998 

Utilised ZCR, F0 and 
energy. 

A multi-level, hierarchical 
classification model. 

Zhang & Kao  
1999a 

Utilised ZCR, F0, energy 
and spectral features. 

A new segmentation and 
classification method for content-
based audio management. 

Zhang & Kao 
1999b 

Utilised same features 
as Zhang & Kao (1998). 

A two-level classifier for content-
based audio retrieval. 

Srinivasan et. al 
1999 

Utilised average energy 
and average ZCR. A mixed-class classification model. 

Li (2000) 

Utilised MFCC and 
perceptual features. 
(Example: brightness, 
bandwidth and energy). 

A new method for content-based 
audio classification and retrieval 
utilising a new pattern classifier 
called nearest feature line (NFL). 

Guodong and Li 
(2003) 

Utilised similar features 
as Li (2000). 

Showed marked improvement in 
classification over Li (2000) by 
using a new metric (DFB) and using 
SVM instead of NFL. 

Chien-Chang et. 
al (2005) 

Same as Guodong & Li 
(2003). 

Improved error rate of classification 
by including wavelet functions and a 
bottom-up SVM classifier. 

Table 2.2: Comparison of studies in content-based audio retrieval. 
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2.3.4 Video segmentation, classification and indexing 

While studies have demonstrated that the information provided by audio classification 

and segmentation is invaluable to understanding the content of audio signals, they 

have also shown that it can be utilised in understanding and analysing video content. 

Patel and Sethi [23] proposed extracting audio features such as pitch, ZCR, 

spectrogram and average magnitude from the sub-band level of the MPEG encoded 

audio streams for video indexing. 

There were two studies that incorporated audio analysis in the segmentation and 

classification of television programs that were presented. Liu, et al. [86] utilised a 

neural network classifier with 12 audio features to obtain an overall accuracy rate of 

86.8% in discriminating between news reports, commercials, weather forecasts, 

football games and basketball games. Liu, et al. [87] improved on the results and 

presented an 11.9% increase in accuracy by utilising HMM with the same experimental 

setup. 

Boreczky and Wilcox [88] proposed a technique for video segmentation using HMM. 

Features utilised for segmentation were not exclusively image-based but were also 

motion and audio based. Whereas other studies involving the use of audio in video 

segmentation have classified audio into different classes, the authors chose to instead 

calculate an audio distance measure, which is the distance calculated between 

adjacent intervals of audio. A further difference in this study was that the authors did 

not classify video and audio features separately, but rather combined them within the 

HMM framework. 

Zhang and Kuo [89] proposed a system that performed automatic segmentation and 

classification of audio-visual data using audio content analysis. They classified audio 

into classes such as speech, music, song, environmental sound, speech with music 

background, environmental sound with music background and silence. For this, they 

extracted and analysed audio features such as the short-time energy function, short-

time average ZCR, spectral peaks and the short-time fundamental frequency. While 

traditional frameworks focus entirely on visual cues or changes, such as histogram 
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differences and motion vectors, their system included the audio classification to 

provide segmentation and indexing that was semantically correct. 

To aid with efficient searching of e-learning content repositories, Ying and Chitra [90] 

proposed an SVM based technique to segment and classify the audio from 

instructional videos according to seven audio classes, namely speech, silence, music, 

environmental sound, speech with music, speech with environmental sound, and 

environmental sound with music. Twenty-six audio features, that could capture the 

spectral and temporal differences for the seven classes, were chosen. These included 

mean variance of ZCR, mean short-time energy and mean spectral flux. An accuracy 

rate of 97.9% was reported. 

Baillie and Jose [52] segmented recorded soccer matches into important events such 

as goal scoring, goal attempts, cautions or card issuing by the umpire. This was 

achieved by analysing the levels of crowd response during a soccer match. They 

utilised features such as MFCC 

 within a HMM framework. 

To distinguish violent content from non-violent content in movies, Giannakopoulos, et 

al. [18] proposed an SVM binary classification system that analysed the audio signal. 

Audio such as speech and music indicated non-violence while audio such as 

gunshots, screaming and explosions indicated violent scenes. Features that were 

utilised included energy entropy, signal amplitude, short-time energy, ZCR, spectral 

flux and spectral rolloff. An accuracy rate of 85% was reported. 

2.4 Summary 

Audio signal classification has given rise to numerous other research interests such 

as audio segmentation and classification, content-based audio retrieval and video 

scene segmentation and classification.  

Much of the research has focused on improving accuracy rates of existing 

classification methods by introducing new feature sets, and changing or combining 

classification models. The literature has shown that while feature selection is a 

compulsory step in any classification system, it is not the number of features, but the 
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selection of specific features that is fundamental to the performance. Furthermore, 

performance is highly dependent on the choice of classification model when the 

feature set remains the same.  

There has been promising work done with audio classification in recent years in the 

audio-visual area, with audio classification being incorporated in the segmentation and 

classification of video data. Results from studies have shown a marked improvement 

over the traditional use of just image/video content for segmentation and classification. 

Additionally, studies have illustrated that audio analysis in the context of video 

segmentation and classification provides important semantic information that would 

normally be excluded. 
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3. METHODOLOGY 

3.1 Introduction 

The intention of this study is to investigate if audio classification could be used to 

classify and segment a lecture recording audio signal into classes that represent 

speech and chatter. These classes could thereafter be utilised to automatically detect 

the start and end trim points for the recorded lecture as part of the current workflow in 

the lecture recording process at UCT. 

This chapter discusses the tools and libraries utilised, the selection and preparation of 

the data set, audio feature sets extracted and the classification model chosen and 

implemented. The chapter concludes with a discussion of the metrics used to evaluate 

the performance of the selected classification model and the evaluation of the trim 

point predictions. 

3.2 Audio classification process 

While most audio signal classification systems employ a variety of different principles 

or algorithms, they generally follow the same process. The classification system 

receives an audio signal, audio features are extracted and selected from the signal, 

which are then passed onto the classifier, which contains a particular statistical model, 

and the signal is then finally assigned a class. Figure 3.1 illustrates this process [10]. 

 

 
Figure 3.1: A typical audio classification process 
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Two classification classes were chosen for this study. They are: 

1. Speech: This class represents a dominant voice, generally the lecturer 

presenting or addressing the students. 

2. Non-speech: Chatter between students is the predominant component of this 

class. Chatter implies the lack of a dominant voice, with multiple people talking 

at the same time. Silence and environmental noise, such a squeaking door, are 

also included. 

 

The above classes were chosen because a typical lecture consists of student chatter, 

speech from the lecturer, and on occasion silence. 

3.3 Tools and libraries 

As the primary goal of this study is to utilise audio classification in determining the start 

and end trim points for a recorded lecture, we did not develop a custom classification 

system, but instead decided to use existing open source applications or libraries. After 

reviewing freely available classification systems, an open source Python library called 

pyAudioAnalysis [14] was chosen as it proved to be a versatile library. This library 

provides a broad range of audio-related functionalities which include: classifying an 

unknown audio segment according to predefined classes, segmenting an audio file 

and classifying it into homogeneous segments, extracting audio thumbnails from 

music tracks, removing silence areas from a recording, etc. In this study, we utilise 

pyAudioAnalysis to: 

• Extract audio features. 

• Train a classification model. 

• Perform cross-validation experimentation to extract performance metrics. 

• Segment audio files to determine the trim points.  

In addition to pyAudioAnalysis, FFMPEG was used to convert audio files from FLAC 

format to WAV. Furthermore, Adobe Audition CS6 was used to segment audio files 

into respective classes to train the chosen classifier. 
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3.4 Dataset and sampling 

As indicated in Chapter 1, Opencast is used at UCT to manage and administer the 

lecture capture process. The raw audio files captured during a lecture recording were 

used in this study. Three media streams are currently captured when a lecture is 

recorded, namely:  

1. a presenter or lecturer video stream from an IP camera,  

2. a presentation video stream from a data projector or document camera, and  

3. the audio stream from a lapel or boundary microphone.  

All three media streams are saved on centralised storage in FLV, MP4 and FLAC 

formats, respectively. Together with associated metadata, they comprise the “media-

package” for the published recording. Metadata includes but is not limited to 

information such as venue name and course series name.  

Two datasets are used in this study. The first dataset (Dataset 1) is used to train and 

test the classification model, while the second (Dataset 2) is used to evaluate the 

algorithm that determines the start and end trim points. Dataset 1, comprises a total 

of 150 audio files, which were downloaded from Opencast and converted to WAV 

format. To ensure a good range in audio quality, the total number of audio files was 

spread across 10 different venues (15 audio files per venue). The training data set 

was manually created by editing the downloaded audio and creating segments that 

purely contained speech and non-speech. This resulted in a total of 6862 audio files 

as listed in Table 3.1. 

 

Audio Class Speech Non-speech 

No. of audio files 3476 3386 

Table 3.1: The training dataset, consisting of 3467 samples for the speech class and 3386 samples for 

the non-speech class. 

Dataset 2 comprises 50 additional audio files, which were also downloaded from 

Opencast and converted to WAV format. 
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3.5 Classification model 

The pyAudioAnalysis library includes several classification models, which include k-

NN, random forests, gradient boosting and SVM. The SVM model, with a linear kernel 

was chosen for this study. For classification, pyAudioAnalysis implements a cross-

validation procedure to determine the optimal classifier parameter.  

SVM has become a popular choice for audio classification, with multiple studies 

comparing its efficacy with other classifiers such as Hidden Markov Model and k-NN 

and concluding that it has a better performance [85, 91, 92]. SVM classification models 

have also been shown to be far more effective than other models when there is a 

training data set available [92]. Furthermore, Lu, et al. [92] showed that the 

computational demand for training and testing an SVM model is far less than k-NN, 

resulting in quicker training and testing experiments.  

3.6 Audio features 

A total of 34 audio features are extracted on a short-term basis, resulting in a sequence 

of short-term feature vectors of 34 elements each. A frame (window) size of 50ms and 

frame step of 25ms is used for the short-term feature extraction. The 25ms frame step 

enables a 50% overlap. Figure 3.4 illustrates the frame size and frame step utilised by 

pyAudioAnalysis during the feature extraction process. 

 

 
Figure 3.2: 50ms frame size and 25ms frame step for the feature extraction process. 

Additionally, the feature sequence is processed on a mid-term basis. This is where the 

signal is first divided into mid-term segments and for each segment, short-term 
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processing is performed. The feature sequence from each mid-term segment is used 

to calculate feature statistics, for example the average value for ZCR. This means that 

each mid-term segment is characterized by a set of statistics. A complete list of all 

features is presented in Table 3.2.  

No. Feature Description 

1 Zero-crossing rate (ZCR) Rate of sign-changes of a particular frame. 

2 Energy 
The sum of squares of the signal values, 
which are normalised by the length of the 
frame. 

3 Entropy of energy A measure of abrupt changes. 

4 Spectral centroid The spectrum’s centre of gravity. 

5 Spectral spread The spectrum's second central moment of 
the spectrum. 

6 Spectral entropy The entropy of the normalized spectral 
energies for a set of sub-frames. 

7 Spectral flux 
The squared difference between the 
normalized magnitudes of the spectra of the 
above sub-frames. 

8 Spectral rolloff 
The frequency below which 85% of the 
magnitude distribution of the spectrum is 
concentrated. 

9-21 Mel frequency cepstral 
coefficients (MFCC) 

A cepstral representation where the 
frequency bands are not linear but distributed 
according to the mel scale. 

22-
33 Chroma vector 

A 12-element representation of the spectral 
energy in 12 equal-tempered pitch classes of 
western music. 

34 Chroma deviation The standard deviation of the above 12 
chroma coefficients. 

Table 3.2: Audio features utilised by pyAudioAnalysis. 
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3.7 Classification and trimming 

The pyAudioAnalysis library also provides segmentation and classification 

functionality. This refers to splitting an audio signal into homogenous segments and 

applying a classification model on each of these segments, resulting in a sequence of 

class labels. Successive segments that share the same label are merged into larger 

segments. 

We utilise this feature of the library to produce a list of segment timestamps and 

corresponding class labels, which are then processed by an algorithm written in 

Python. A link to the GitHub repository for the algorithm is provided in Appendix 1. The 

process to determine the start and end trim points for the audio file, is illustrated in 

Figure 3.5 below. 

To determine the start trim point, the algorithm finds the first speech segment and 

utilises the corresponding timestamp. To determine the end trim point, the algorithm 

finds the last speech segment and utilises the corresponding timestamp.  

 

 

 

Figure 3.3: Activity diagram illustrating start and end trim point prediction. a) Algorithm returns the 

start trim point. b) Algorithm returns the end trim point. 
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3.8 Evaluation process 

Evaluation is a fundamental step in any classification model. Two aspects are 

evaluated in this study. Firstly, we evaluate the performance of the SVM classifier 

using 10-fold cross-validation, which is a popular technique in evaluating predictive 

models in machine learning experimental design. It combines both training and testing. 

Thereafter, we evaluate the algorithm that predicts the start and end trim points.  

 

3.8.1 Classification evaluation 

In the 10-fold design of this study, 10 different subsets of equal size were created by 

partitioning the dataset. The procedure involved training and testing the SVM model 

10 times. For each iteration of the test, it involved training on nine of the subsets, and 

testing on one. The results from the 10 experiments were entered into a confusion 

matrix. Thereafter, metrics were generated to determine the performance of the SVM 

classifier model. 

For the evaluation process, we utilise the methodology employed by Shaikh, et al. [93]. 

In their study on the performance evaluation of classification methods for heart 

disease, they utilised evaluation metrics such as Precision, Recall, Accuracy and F-

measure. 

These 4 metrics can be generated from a confusion matrix. According to 

Subramanian, et al. [10], a confusion matrix is used to evaluate the performance of an 

audio classification system by counting the cross-validation instances that are 

predicted correctly and incorrectly. This matrix can be utilised as the basis for accuracy 

analysis as it shows if a particular class has been incorrectly classified as another [10]. 

In the confusion matrix presented in Table 3.3, the columns represent actual speech 

and non-speech, while the rows represent what the SVM classifier predicted as 

speech and non-speech. Audio samples that are correctly predicted as speech are 

True Positives (TP), while those that are correctly predicted as non-speech are True 

Negatives (TN). False Positives (FP) represent instances where non-speech is 

incorrectly predicted as speech. False Negatives (FN) represent instances where 

speech is incorrectly predicted as non-speech. 
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 Actual speech Actual non-speech 
Predicted speech TP FP 

Predicted non-speech FN TN 

Table 3.3: Confusion matrix for speech and non-speech 

Using this matrix, the accuracy of the classifier can be determined by the proportion 

of misclassified audio files. This means that the smaller the proportion of misclassified 

audio files, the greater the accuracy of the classifier. As mentioned earlier, evaluation 

metrics are also derived from this confusion matrix. These will be discussed next. 

3.8.1.1 Precision 

This is the measure of the proportion of the correctly predicted speech audio to all the 

audio predicted as speech. Shaikh, et al. [93] defines precision as the positive 

predictive value (PPV), as expressed in the following equation,  

 

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑃𝑃
 

3.8.1.2 Recall 

Recall, also known as sensitivity, is the probability that speech can be identified by the 

classifier, as expressed in the following equation. 

 

𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑁𝑁
 

3.8.1.3 Accuracy 

This is a common measure and has been used in many studies in audio classification 

[20, 82, 94]. While it is a very common metric, it is often used in conjunction with other 

metrics as it can be misleading [95] when there is a large class imbalance, as equal 

weighting is assigned to both false positives and false negatives. Accuracy is defined 
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as the proportion of correctly predicted speech and non-speech, and is expressed in 

an equation as follows. 

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑟𝑟𝑎𝑎𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑃𝑃 +  𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁
 

3.8.1.4 F-Measure 

This is a combined metric. According to Shaikh, et al. [93] F-measure is a weighted 

score and is determined by the harmonic mean of precision and recall. It therefore 

determines the efficacy of the classifier in predicting a particular class by utilising both 

precision and recall. As each class is handled individually, it is a preferred measure 

when there is an imbalance in datasets. F-measure is expressed in an equation as 

follows. 

𝐹𝐹 −𝑚𝑚𝑃𝑃𝑎𝑎𝑠𝑠𝐴𝐴𝑟𝑟𝑃𝑃 =
2 ( 𝑝𝑝𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛 ×  𝑟𝑟𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅)
𝑝𝑝𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛 +  𝑟𝑟𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅

 

The metrics discussed above, namely precision, recall, accuracy and F-measure, were 

used to rate the performance and efficacy of the SVM classification model utilised by 

pyAudioAnalysis. 

3.8.2 Trim point evaluation 

For this study, we utilised audio files from lecture recordings that have already been 

published. Opencast has a record of the original media files as well as the trim points 

that were set during the editing and trimming stage (manual trimming). This 

information is saved in Synchronised Multimedia Integration Language (SMIL) format 

and we use the trim points in these files as gold standard data. To evaluate the 

algorithm, we compare the predicted trim points of the 50 audio files in Dataset 2 to 

gold standard data, and plot the average error. This would provide a good indication 

of how the predicted trim points deviate from recordings trimmed during the manual 

editing and trimming stage of the lecture recording process. 
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3.9 Summary 

This chapter has discussed the methodology followed in preparing the dataset used 

in this study. A total of 6862 audio files were used to train and test the SVM 

classification model using two audio classes: speech and non-speech. It also provided 

a comprehensive list of 34 features utilised by the pyAudioAnalysis library during the 

classification process. The chapter also included an overview of the steps involved in 

evaluating the performance of the chosen classification model, explaining the metrics 

utilised in the evaluation process. Furthermore, we introduced the algorithm utilised in 

determining the trim points and the process in evaluating its performance. 
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4. RESULTS AND DISCUSSION 

4.1 Introduction 

Two experiments are carried out in this study. Firstly, we determine the performance 

of the SVM classification model by performing 10-fold cross validation on our data set 

of 6862 audio files. Secondly, using the segmentation and classification functionality 

of the pyAudioAnalysis library, we determine the trim points of 50 audio files and 

compare these to gold standard data. Data for these experiments was obtained as 

outlined in Chapter 3. The chapter begins with Section 4.2, where we present and 

discuss the performance metrics for the SVM classification model. Thereafter, we 

discuss the performance of the trim point prediction algorithm in Section 4.3. The 

chapter is then concluded with Section 4.4, where we discuss some considerations, 

should the proposed solution be implemented.  

4.2 SVM classification model performance 

Combining the 10 tests of the 10-fold cross validation produced the confusion matrix 

as depicted in Table 4.1. 

 Actual speech Actual non-speech 
Predicted speech 3376 44 

Predicted non-speech 100 3342 

Table 4.1: Confusion matrix for speech to determine the performance of the SVM classification model 

utilised by the pyAudioAnalysis library. 

The results indicate that 3376 audio files were correctly identified as speech and 3342 

were correctly identified as non-speech. There were 100 speech files that were 

incorrectly identified as non-speech, and 44 non-speech files that were incorrectly 

identified as speech. Using the metrics that follow, we present the analysis of the 

performance of the classification model. 
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4.2.1 Accuracy 

This is the ratio of the sum of correctly predicted speech and non-speech (6718) to the 

total number of audio files in the test data (6862). This is an indication of the average 

performance of the classification model in correctly identifying speech and non-

speech, implying that the classification model correctly classified 6718 audio files and 

incorrectly classified 144 audio files from the total of 6862 files. The value obtained for 

this metric was 97.9%. While this indicates the classification model has good accuracy, 

authors such as Brownlee [95] have stipulated that accuracy on its own is not a 

sufficient metric to measure the performance of a classification model. 

4.2.2 Precision 

This is the measure of the proportion of correctly predicted speech (3376) to all the 

audio predicted as speech (3420). Only 44 audio files from a total of 3386 from the 

non-speech class were incorrectly identified as speech, thus producing a value of 

98.7% for this metric. The classification model utilised in this study therefore has a 

high precision rate when classifying audio into speech and non-speech. This high 

precision further indicates that this classification model does not produce a high 

number of false positives. 

4.2.3 Recall 

This is the proportion of speech that was correctly identified (3376) to the total number 

of actual speech files in the test data (3476). The value obtained for this metric was 

97.1%. This indicates that the classification model utilised has a 97.1% probability of 

correctly identifying speech. This also indicates that this classification model does not 

produce a high number of false negatives. 

4.2.4 F-Measure (F-score) 

This is a metric that is most important as it focuses on how accurately the classification 

model predicts speech by utilising a combination of precision and recall. Both precision 

and recall relate to the classification of speech, which makes this a useful measure of 
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how effective the model is when predicting speech. The value obtained for this study 

was 97,9%. 

4.2.5 Summary 

The above metrics indicate that the classification model utilised in this study has a very 

high probability of correctly identifying speech from non-speech. Table 4.2 presents a 

summary of the results.  

Performance measure Results 

Accuracy 97.9% 
Precision 98.7% 
Recall 97.1% 
F-Measure 97.9% 

Table 4.2: Summary of performance metrics obtained for the classification model utilised in this study. 

The above results also compare very well against the binary SVM classifier presented 

by Giannakopoulos, et al. [18] and the multi-class SVM classifier presented by 

Siantikos, et al. [96], with the former study reporting accuracy, precision and recall 

values of 85.5%, 82.4% and 90.5% respectively, and the latter reporting an overall F-

measure score of 73.8%. 

4.3 Trim point predictions 

In this experiment, we compare the predicted trim points against gold standard data, 

which were obtained from manually trimmed lecture recordings. The predicted trim 

points were determined using the segmentation and classification functionality of the 

pyAudioAnalysis library as described earlier in Chapter 3. Table 4.3 lists the 

differences between predicted values and gold standard data, for the start trim points 

and end trim points, for each of the 50 sample audio files utilised for this experiment. 
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Sample Gold Std. Start (s) Predicted Start (s) Difference (s) Gold Std. End (s) Predicted End (s) Difference (s) 

1 3.000 8.000 5.000 2628.854 2924.000 295.146 
2 222.444 222.000 -0.444 2490.063 2698.000 207.937 
3 58.263 47.000 -11.263 2477.466 2970.000 492.534 
4 55.149 57.000 1.851 2731.985 2887.000 155.015 
5 55.119 127.000 71.881 2894.654 2902.000 7.346 
6 1.000 18.000 17.000 2878.591 2878.000 -0.591 
7 169.232 189.000 19.768 2913.994 3214.000 300.006 
8 229.477 229.000 -0.477 1534.345 1539.000 4.655 
9 63.139 71.000 7.861 2727.688 2721.000 -6.688 

10 152.873 148.000 -4.873 2813.670 2814.000 0.330 
11 108.888 109.000 0.112 2664.711 2926.000 261.289 
12 300.909 82.000 -218.909 2596.455 2939.000 342.545 
13 53.030 57.000 3.970 2918.170 2850.000 -68.170 
14 26.940 30.000 3.060 2734.320 2736.000 1.680 
15 146.928 150.000 3.072 3035.447 3043.000 7.553 
16 83.007 91.000 7.993 2853.476 3012.000 158.524 
17 90.971 104.000 13.029 2609.813 2604.000 -5.813 
18 73.942 83.000 9.058 2910.170 2908.000 -2.170 
19 29.403 31.000 1.597 2737.682 3009.000 271.318 
20 32.588 40.000 7.412 2643.563 2646.000 2.437 
21 76.109 82.000 5.891 2614.137 2986.000 371.863 
22 121.715 121.000 -0.715 2723.598 2728.000 4.402 
23 541.662 338.000 -203.662 3084.325 3229.000 144.675 
24 490.704 497.000 6.296 3070.932 3075.000 4.068 
25 3.000 15.000 12.000 2783.864 2771.000 -12.864 
26 120.737 117.000 -3.737 2872.455 2861.000 -11.455 
27 65.585 74.000 8.415 2368.240 2379.000 10.76 
28 171.977 174.000 2.023 2873.211 2873.000 -0.211 
29 44.066 67.000 22.934 2717.525 2723.000 5.475 
30 126.288 136.000 9.712 2632.131 2936.000 303.869 
31 75764 80000 4.236 2743795 2748000 4.205 
32 3000 15000 12.000 2783864 2771000 -12.864 
33 25922 32000 6.078 2774142 3302000 527.858 
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Sample Gold Std. Start (s) Predicted Start (s) Difference (s) Gold Std. End (s) Predicted End (s) Difference (s) 

34 297845 96000 -201.845 2072113 2708000 635.887 
35 1000 21000 20.000 2398307 2406000 7.693 
36 1000 4000 3.000 2734430 3166000 431.57 
37 52993 44000 -8.993 2816672 2818000 1.328 
38 1000 0 -1.000 2679333 3005000 325.667 
39 319753 105000 -214.753 2700224 2704000 3.776 
40 2827 0 -2.827 3252395 3261000 8.605 
41 52618 48000 -4.618 4448198 4455000 6.802 
42 18832 20000 1.168 3599960 3610000 10.040 
43 1000 5000 4.000 878667 1217000 338.333 
44 73658 47000 -26.658 2697160 2575000 -122.160 
45 88574 100000 11.426 2844665 3005000 160.335 
46 318675 327000 8.325 2836076 3002000 165.924 
47 18888 19000 0.112 2625981 2926000 300.019 
48 1000 18000 17.000 2336376 3009000 672.624 
49 54312 65000 10.688 2563862 2778000 214.138 
50 1000 7000 6.000 2677404 3010000 332.596 

Table 4.3: Difference between predicted and gold standard data for start and end trim points. 
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We then plot the differences (Figure 4.1) for both the start and end trim points to show 

how the predicted values deviate from gold standard (manually trimmed). The 

deviation of the predicted values from gold standard for the start trim points is 

represented by the blue line and the orange line represents the deviation of the 

predicted values from gold standard for the end trim points. 

 

 
Figure 4.1: Deviation of the predicted start and end trim points from gold standard data for 50 audio 
files. 

The standard deviation for the trim point differences are listed in Table 4.4. The values 

obtained were 60.52s for the start trim point differences and 193.43s for the end trim 

point differences.  

 Start trim point End trim point 
Mean -11.22s 145.16s 
Standard deviation 60.52s 193.36s 
Standard error 8.56s 27.35s 

Table 4.4: Mean, standard deviation and standard error for the start trim point differences and end trim 

point differences as listed in Tables 4.3. 
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4.3.1 Evaluation of trim point predictions 

We evaluate the performance by assessing the extent to which the predictions deviate 

from gold standard data. In Figure 4.1, each point on the graph represents a prediction 

and the closer a prediction is to 0 seconds, the less it deviates from the gold standard, 

as 0 on the Y-axis indicates an exact match. For the start trim point predictions, five 

out of the 50 samples (10%) were beyond a single standard deviation of 60.52s. 

Eighteen out of the 50 samples (36%) were beyond a single standard deviation of 

193.36s for the end trim point predictions. 

4.3.1.1 Start trim point predictions 

The trim points showed very little deviation from gold standard data. Forty-five samples 

were less than 30s from gold standard data, the remaining five samples deviated as 

follows:  Sample 5 – 71.881s after gold standard; Sample 12 – 218.909s before gold 

standard; Sample 23 – 203.662s before gold standard; Sample 34 – 201.845s before 

gold standard; Sample 39 – 214.753s before gold standard data. To understand the 

discrepancy with the predictions that displayed a high deviation, we listened to the 

sample audio files and viewed the untrimmed lecture recording to confirm if speech 

was classified correctly, or if there was a misclassification, and recorded observations. 

Table 4.5 lists our findings. 
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Sample Observation Reason for discrepancy 
5 First occurrence of speech was correctly 

identified. 
Manual trim point was set 
at 55.119s due to human 
judgement. 

12 First occurrence of speech was correctly 
identified when a student addressed the 
class. 

Manual trim point was set 
at 300.909s. The student 
addressing the class was 
deemed irrelevant to the 
lecture. 

23 First occurrence of speech was correctly 
identified at 338s when the lecturer 
chatted to a student. 

Manual trim point was set 
at 541.662s due to human 
judgement. 

34 First occurrence of speech was correctly 
identified at 96s. Dominant voice clearly 
present in conversation between 
students. 

Manual trim point set when 
lecturer began speaking. 

39 First occurrence of speech was correctly 
identified at 105s when lecturer 
addressed the class. 

Manual trim point was set 
at 319.753s due to human 
judgement. 

Table 4.5: Observations and reasons for the discrepancy of samples that demonstrated a high deviation 

from gold standard for the start trim point predictions. 

4.3.1.2 End trim point predictions 

The results for the end trim point predictions where not as consistent as the start trim 

point predictions. Twenty-five out of the 50 samples were within a range of 30s from 

gold standard data. The remaining 25 samples displayed high deviations. They were 

as follows: two samples ranged between -68s and -123s before gold standard data, 

and 23 samples ranged between 144s and 673s after gold standard data. To get a 

better understanding of the high deviations, we listened to the sample audio files and 

viewed the untrimmed lecture recordings. We list our findings in Table 4.6.  
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Sample  Observation Reason for discrepancy 
1, 2, 3, 4, 7, 
12, 16, 19, 
23, 30, 34, 
36, 43, 47, 
48, 49 

The last occurrence of 
speech was correctly 
identified after gold 
standard data. 

Discussion between lecturer and 
students after the lecturer was excluded 
due to human judgement. 

11, 21, 33, 
38, 45, 46, 50 

The last occurrence of 
speech was correctly 
identified after gold 
standard data. 

Student talking after lecture, therefore 
dominant speech. This speech segment 
was excluded due to human judgement. 

13 The last occurrence of 
speech was incorrectly 
identified before gold 
standard data. 

Student addresses class from the back 
of the classroom. Boundary microphone 
did not sufficiently project student voice, 
therefore, not detected as “dominant 
speech”.  Manual trim point, however, 
included this segment. 

44 The last occurrence of 
speech was incorrectly 
identified before gold 
standard data.  

Recording was of poor quality. 
Lecturer’s voice was not very prominent 
due to a high presence of ambient 
noise. 

Table 4.6: Observations and reasons for the discrepancy of samples that demonstrated a high deviation 

from gold standard for the end trim point predictions. 

Our observations showed that the last occurrence of speech was correctly identified 

after gold standard data for 23 of the 25 samples. A dominant voice was present in 

discussions between lecturers and students or among students themselves after the 

lecture had concluded. Including these discussions, as identified by the automated 

solution, will result in videos of larger file-sizes than manually trimmed recordings, 

thereby impacting storage negatively. However, it does not negatively impact the 

quality of the recording, as we are not losing important lecture information. 

In the remaining two samples, the last occurrence of speech was incorrectly identified 

before gold standard data. In Sample 13, the boundary microphone failed to 

sufficiently project a student’s voice, resulting in speech not being detected. In Sample 

44, there was a high amount of ambient noise present and the lecturer was not very 

prominent, resulting in speech not being detected.  

Therefore, while the classification model has a high probability of detecting speech, 

there are some considerations. Firstly, it cannot discriminate between different voices. 

While this is outside the scope of this study, it is something that can be investigated in 
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a future study. Furthermore, a segment will always be classified as speech if a 

dominant voice is present, regardless if there is chatter in the background. 

4.3.2 Summary 

The start trim point predictions were very promising, with 90% of predictions within 30s 

of gold standard data. End trim point predictions were not as consistent. The end trim 

point predictions for 25 out of 50 samples were within 30s of gold standard data. Of 

the remaining 25 samples, there were two misclassifications, resulting in end trim 

points being predicted before gold standard data. Misclassifications were either due 

to a high amount of ambient noise or the boundary microphones not projecting a 

dominant voice sufficiently. For the remaining 23 samples, the presence of a dominant 

voice resulted in the end trim points being predicted after gold standard data. This 

occurred as a result of discussions amongst students, or between the lecturer and 

students, after the lecture had ended, which had been deemed irrelevant during the 

manual trimming process. 

4.4 Considerations 

The results of this study show that audio classification has application in automating 

the identification of trim points for recorded lecturers at the University of Cape Town, 

with some considerations. 

4.4.1 Publication time and storage 

As mentioned in Chapter 1, the trimming of recorded lectures adversely affects the 

publication time in the current lecture capture solution at UCT, as it is a manual 

process that is completely dependent on staff. Implementing the automated system 

presented in this study into the lecture capture workflow could remove the need for 

human intervention during the trimming stage and therefore improve publication turn-

around time. However, published video files, which have been automatically trimmed, 

will generally have a larger file-size than those that are manually trimmed. This is 

because manually trimmed videos will exclude discussions between lecturers and 

students after the lecture concludes, whereas automatically trimmed videos would 

include this if a dominant voice was detected. 
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4.4.2 Value to students 

While the results of this study have shown that the end trim point predictions are 

generally far greater than gold standard data, resulting in longer published videos, this 

is essentially not a shortfall. The inclusion of these discussions between lecturer and 

student(s) is not removing any value from the recording. An argument could be made 

that it is, in fact, adding academic value, as some of these discussions could prove 

beneficial to other students viewing the published recording. 

4.4.3 Video download 

Since published videos with automated trimming could potentially have a larger file-

sizes than manually trimmed videos, video download could be negatively impacted. 

This is dependent on bandwidth availability. 
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5. CONCLUSION 

5.1 Summary 

Audio classification formed the fundamental theoretical framework for this study. The 

efficacy of audio classification in predicting the start and end trim points of recorded 

lectures at the University of Cape Town was investigated. A custom classification 

model was not developed, but instead an open source python library, 

pyAudioAnalysis, was utilised. This library provided multiple audio-related 

functionalities including feature extraction, classification and segmentation. Support 

Vector Machine (SVM) was chosen as the classifier for this study. 

Two experiments were performed. In the first experiment, 150 audio files from 

previously recorded lectures were downloaded and segmented into speech (identified 

by a dominant voice) and non-speech (student chatter and other environmental 

sounds). Using, the segmented audio files, 10-fold cross-validation was performed to 

train and test the SVM classification model to discriminate between speech and non-

speech. The resulting confusion matrix was then used to calculate performance 

metrics for the classification model.  

In the second experiment, a further 50 audio files from previously recorded lectures 

were downloaded. The segmentation and classification functionality of the 

pyAudioAnalysis library was used to determine the start and end trim points for these 

audio files. To evaluate the accuracy of the predicted trim points, they were compared 

to gold standard data obtained from manually trimmed recordings. 

5.2 Answers to research questions 

Two questions were posed in Section 1.4 that was considered relevant in evaluating 

the outcome of this study. The answers to the proposed questions are examined as 

follows: 
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1) How accurately can audio signal classification distinguish speech from non-

speech? 

Following the methodology discussed in Chapter 3, the evaluation results 

discussed in Section 4.2 show that the SVM classification model has 97.8% 

probability of accurately distinguishing speech from non-speech. Additional 

performance metrics: precision, recall and F-measure; were also calculated. 

Values obtained were 98.7%, 97.1% and 97.9% respectively (Table 4.2). These 

results indicate that the SVM classification model does not produce a high number 

of false positives or false negatives, and thus has a very high probability of correctly 

distinguishing speech from non-speech.  

2) How do the start and end trim points, determined using audio classification, 

compare to gold standard data? 

Section 4.3 discussed the evaluation of the trim point predictions, where we noted 

some inconsistencies. While the start trim point predictions were predominantly 

within 30s from gold standard data, most of the end trim point predictions were far 

greater than gold standard data (Table 4.3). Upon closer inspection, it was 

discovered that the deviations were in most instances attributed to the presence of 

a dominant voice being detected post lecture, being either a private discussion 

between lecturer and student(s), or amongst students themselves. Therefore, 

although the end trim point predictions deviated greatly from gold standard data, 

they were predominantly technically correct. 

5.3 Future work 

In its current design, the classification model utilised in this study will predict the 

speech class if a dominant voice is present, regardless if there is chatter in the 

background. If we were to scrutinise audio from the discussions between the lecturer 

and student(s), we would see that it could be regarded as a combination of speech 

and chatter. Therefore, introducing another audio class (speech with chatter), and 

training the model accordingly, could potentially make the classifier more robust. This 

could result in end trim point predictions being more aligned with gold standard data. 

In Chapter 4, we reported two instances of misclassification, which was mainly due to 

the audio signal containing large amounts of ambient noise. Therefore, the 
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performance of the classification model with low quality audio samples warrants further 

investigation. 

The list of features utilised in this study, as listed in Chapter 3, were predefined by the 

pyAudioAnalysis library. While these features have proven to be sufficient in 

discriminating speech from non-speech, and adequate research has been involved in 

their selection for general purpose audio signal analysis [14] , the investigation and 

inclusion of additional features could provide value and possibly improve performance 

with low quality audio signals. 

The inclusion of additional trim points could benefit the existing design as these could 

be used to exclude other segments that provide no value to the final recording, for 

example, when classes break for an interval. The inclusion of this feature could not 

only decrease the file-size of the published video but also maintain the continuity and 

flow of the lecture. This would also limit the total length of published video students 

would need to skim through, should they choose to search for a particular point in the 

recorded lecture. 

Furthermore, the audio classification system could potentially be enhanced by 

combining it with synchronized visual cues from the video recording. This could 

possibly increase classification performance as the literature has indicated.  

Finally, other classification algorithms such as k-NN and HMM could be investigated 

and their efficacy within UCT’s lecture capture solution evaluated. 
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APPENDIX 1 

Source code used in this project is available from GitHub repositories. The links below 

are to the code repositories for this study. 

• pyAudioAnalysis 

https://github.com/tyiannak/pyAudioAnalysis 

 

• Algorithm used to detect the start and end trim points 

https://github.com/devangovender/trimpointdetector 

Source code and scripts are licensed under the Apache 2.0 license 

(http://www.apache.org/licenses/LICENSE-2.0.html) except where noted otherwise. 
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