
Automatically changing modules in modular ontology
development and management

Zubeida C. Khan
Department of Computer Science

University of Cape Town
Cape Town 7701

Council for Scienti�c and Industrial Research
Pretoria 0001

zkhan@csir.co.za

C. Maria Keet
Department of Computer Science

University of Cape Town
Cape Town 7701

mkeet@cs.uct.ac.za

ABSTRACT
Modularity has been proposed as a solution to deal with large
ontologies. �is requires, various module management tasks, such
as swapping an outdated module for a new one or a computationally
costly one for a leaner fragment. No mechanism exists to exchange
an arbitrary module automatically. To solve this manual task, we
modify the SUGOI algorithm into SUGOI-Gen; with SUGOI-Gen,
one can swap any module within a modular system, implemented
it, and wrapped a GUI around it. We carried out an experimental
evaluation with six ontologies covering three di�erent use-cases
to determine whether arbitrary interchangeability is practically
doable, and to what extent such changes a�ect the quality of the
module and automated reasoning over it. �e results are positive,
with the success rate varying between 22-100% depending on the
number of mappings between the source and target module. �e
evaluation also revealed that the interchangeability does indeed
have an impact on a module’s metrics. Regarding reasoning, when
comparing an original ontology to one where a module has been
swapped, the processing time is greatly improved for all except one
of the swapped modules in the set.

CCS CONCEPTS
•Computing methodologies →Ontology engineering; •Inf-
ormation systems→WebOntology Language (OWL); •So�w-
are and its engineering →Designing so�ware;

KEYWORDS
modularity, modularisation, module, ontology metrics, ontology
interchangeability, reasoning

ACM Reference format:
Zubeida C. Khan and C. Maria Keet. 2017. Automatically changing modules
in modular ontology development and management. In Proceedings of
SAICSIT ’17, �aba Nchu, South Africa, September 26–28, 2017, 10 pages.
DOI: 10.1145/3129416.3129443

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SAICSIT ’17, �aba Nchu, South Africa
© 2017 ACM. 978-1-4503-5250-5/17/09. . .$15.00
DOI: 10.1145/3129416.3129443

1 INTRODUCTION
Ontology developers use modules to deal with cognitive di�culties
due to information overload. When a subject domain is large, a set
of smaller modules can be used to represent the domain instead
of a large monolithic ontology. In some sets of ontology modules,
foundational ontologies and top-domain ontologies are used to
structure the subject domain. Foundational ontologies provide high-
level categories that are common across various domains, and they
have been proposed as a component to facilitate interoperability.
A number of foundational ontologies have been developed e.g.,
DOLCE, BFO [18], GFO [7], SUMO [21], and YAMATO [19]. A top-
domain ontology contains the fundamental concepts of a domain.
�ey are commonly used in large, complex domains such as medical
systems, and distributed media management [26]. �ere may be
more than one top-domain ontology for a particular domain as
well; e.g., BioTop and [1] and GFO-Bio [8] both provide knowledge
about life sciences. In other scenarios, modules are used to extract
a portion of the ontology for a particular use-case. For instance,
the DMOP ontology is modularised by removing some expressive
power to a DMOP-EL module to achieve faster automated reasoning
[11].

Over the years, a considerable amount of research has been
carried out to provide foundations for and to realise modularity
[2, 24, 25, 30] and it has been applied for various applications, such
as [1, 9, 11, 20, 23]. However, there is li�le support for module
management, i.e., so�ware tools for modules. For instance, con-
sider the modular ontology Subcellular Anatomy Ontology (SAO)
[17] containing BFO ontology as a foundational ontology. Consider
that upon validation of the ontology the developers notice that
none of the SAO domain entities exist in the bfo:occurrent branch of
the ontology, i.e., SAO does not need those entities. One solution
is to modularise the SAO ontology by removing the bfo:occurrent
branch and all sub-entities. Another option is to swap the BFO
foundational ontology in the system for a subset module that al-
ready exists, the bfo-continuants.owl ontology module from the
ROMULUS repository [16]. Currently, there is no tool support to
do this.

Such changes in modules may a�ect the quality of the set of
ontology modules (networked ontologies), which may even be the
driving force of interchanging modules. Ontology module quality
has been an active topic of research and various studies have been
conducted to determine how to measure the quality of a module
[4, 13, 15]. �ere are various evaluation metrics for a module [4,
13, 15, 22, 27, 29, 31], and it has been shown that di�erent module



SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa Zubeida C. Khan and C. Maria Keet

types have their own set of evaluation metrics with expected values
that can be used to check the quality of a module [15]. However,
no work has been done on addressing how to improve the metrics
for an ontology.

Seeing that in many applications modules are used together as
components, and some of the components in a modular system
are top-domain, foundational, ontology design pa�ern, or arbitrary
modules with potential alignments, this introduces new questions
for ontology engineers concerning modularity. �e questions we fo-
cus on here are as follows, whereOA denotes a domain module, and
OX and OY are some modules (be they foundational, top-domain,
ontology design pa�ern, or arbitrary):

(1) IfOA is linked to a moduleOX , is it feasible to interchange
it to be linked to a di�erent module OY ?

(2) Does interchanging ontologyOA betweenOX andOY have
an impact on the quality of the modules in the set?

(3) Does interchanging ontologyOA betweenOX andOY have
an impact on the time taken for reasoning?

�e aim of this paper is to answer these questions and determine
whether interchanging certain modules across di�erent modular
systems can be achieved and impact the quality of the modules, and
the time taken for reasoning. To achieve this, we modify the algo-
rithms and implementation of SUGOI (‘So�ware Used to Gain On-
tology Interchangeability’), which was proposed for assisting with
semantic interoperability by allowing one to swap between three
foundational ontologies [12]. �is generalised version of the algo-
rithm that we propose here, SUGOI-Gen, allows the user to upload
a domain ontology, a linked ontology module to be interchanged,
and a mapping �le1. SUGOI-Gen then swaps the linked ontology
module to a target according to alignments declared in the mapping
�le. To the best of our knowledge, there is currently no other tool
to assist with module management for the interchangeability of
modules in a system. To answer the research questions, we con-
ducted an experimental evaluation with six use-cases for ontology
module interchangeability. �e evaluation revealed that interchang-
ing modules with SUGOI-Gen, in most cases, has a positive impact
on the modularisation metrics of a module. �is aids the user in
selecting the best candidate module for a use-case. Interchanging a
module was also shown to have a positive impact on the time taken
for reasoning a module if the target module was smaller. When
the target module is larger than the source module to be swapped,
the metrics and reasoning time did not have any improvement,
as one may expect. SUGOI-Gen and its supplementary materials
are available at the foundational ontology library ROMULUS at
h�p://www.thez�les.co.za/ROMULUS/ontologyInterchange.html.

In the remainder of the paper, we �rst introduce scenarios for
module interchangeability in Section 2. �is is followed by the
design and implementation for the module interchangeability in
Section 3. An experimental evaluation is conducted in Section 4,
followed by a discussion in Section 5. Finally, we conclude in
Section 6.

1Such mappings can be declared manually or through tools such as Logmap [10]

2 MODULE INTERCHANGEABILITY
SCENARIOS

To demonstrate ontology interchangeability for modules, we have
identi�ed four case-studies to investigate which we discuss here. We
begin the section with preliminaries about modularisation and the
�les that are used for interchangeability. �erea�er we introduce
the scenarios.

2.1 Preliminaries
Since we are investigating the impact of interchanging ontologies
for modularity, we �rst state which de�nition we use for modularity.
Multiple similar de�nitions have been proposed, and we chose an
inclusive one: “A module M is a subset of a source ontology O , M
⊂ O , either by abstraction, removal or decomposition, or module
M is an ontology existing in a set of modules such that, when
combined, make up a larger ontology. Module M is created for
some use-case U , and is of a particular type T . T is classi�ed by
a set of annotation features P , and is created by using a speci�c
modularisation technique MT , and has a set of evaluation metrics
EM which is used to assess the quality of module M .” [14].

Several OWL ontology �les are used in the interchangeability
and we describe the terms used for each one. �is terminology is
illustrated with the SAO ontology in Figure 1.

• �e Source Modular Ontology (sM) that the user wants
to interchange, which comprises the Source Interchange
Module (sMi ) that is the modular component of the source
ontology that is to be interchanged, the Source Domain
Modules (sMd ) that is the domain modules in the ontology,
and any equivalence or subsumption mappings between
entities in sMi and sMd .

• �e Target Modular Ontology (tM) which has been inter-
changed, which comprises the Target Interchange Module
(tMi ), that is the modular component of the target ontol-
ogy that the user has selected to interchange to, the Target
Domain Modules (tMd ) that is the domain modules in the
ontology, and any equivalence or subsumption mappings
between entities in tMi and tMd .

• Mapping ontology (aO): the mapping ontology between
the sMi and the tMi .

• Domain entity: an entity from sMd or tMd .

2.2 Swapping an ontology for a leaner version
of the ontology

For this scenario we consider ontology modules that contain a
domain component and an arbitrary module that has a potential
alignment to a ‘leaner’ module. �at is, a particular type of frag-
ment of an ontology, such as one represented in a language of
lower expressiveness, instead of the ‘comprehensive’ version of
the ontology. A user may want to interchange one of the modules
in the set of ontologies for another to perhaps enhance user com-
prehension or increase performance of the automated reasoner, or
of the ontology-driven information system. It is also worthwhile
to investigate whether swapping one of its modules for a smaller
version of the module has an impact on the modularisation metrics,
and the time taken for reasoning.

http://www.thezfiles.co.za/ROMULUS/ontologyInterchange.html


Automatically changing ontology modules SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa

Figure 1: �e terminology used for the �les involved in interchangeability, using the SAO ontology as example.

A characteristic of this scenario is that the interchanged modules
do have an exact overlap in content, just fewer axioms and possibly
a subset of the vocabulary as well in the ‘leaner’ version.

Example 2.1. In the DMOP data mining ontology [11], there
is the domain ontology, DMOP and the foundational ontology,
DOLCE-Lite. Aside from this, there already exists an EL version
of the DOLCE-Lite ontology in the ROMULUS repository [16]. We
could consider interchanging the DOLCE-Lite foundational ontol-
ogy module for the DOLCE-EL foundational ontology module. �e
basic steps of the algorithm for interchanging between DOLCE to
DOLCE-Lite in the DMOP ontology are as follows:

(1) Create a new ontology �le, a tM: dmop-dolce-el.owl.
(2) Copy the entire tMi to the tM: copy the dolce-el ontology

into dmop-dolce-el.owl.
(3) Copy the axioms from the sMd to the tM: e.g., consider

the axioms, axiom1: dmop:Characteristic v dolce:abstract-
quality which exists in the sM dmop-dolce. We add this
axiom to the dmop-dolce-el.owl tM and it is referred to
as a ‘new’ axiom.

(4) Change the ‘new’ axioms to reference tMi entities, if map-
pings exist: for axiom1, there is an equivalence mapping
between dolce:abstract-quality and dolce-el:abstract-

quality, hence we change axiom1 dmop:Characteristic v
dolce:abstract-quality to dmop:Characteristic v dolce-el:abstract-
quality.

(5) If a mapping does not exist, perform on-the-�y subsump-
tion. �ere are mappings for every DOLCE to DOLCE-EL
entity hence we skip this step.

(6) Delete entities that exist in the tM that are from the sMi
but do not appear in an axiom with entities from the tMd ,
resulting in the �nal tM, dmop-dolce-el.owl. Delete the
dolce:abstract-quality entity from dmop-dolce-el.owl.

2.3 Swapping aligned ontology design patterns
For this scenario we consider ontology modules that contain a
domain component and an ontology pa�ern module that has a po-
tential alignment. It is worthwhile to investigate whether swapping
the pa�ern for its aligned pa�ern has an impact on the modularisa-
tion metrics. For instance, consider the class vs. object property,
which can also be found as issue in conceptual modelling: e.g.,
should ‘marriage’ be a class Marriage with a number of persons
participating in it, or a relationship/object property married-to,
i.e., to reify a relationship or not. Or the modelling approach of
subsumption vs. inherence: e.g., for a library ontology, take the

knowledge ‘Librarian inheres in some Person’, or: social objects
are related to physical objects through an inheresIn object property
(Librarian v ∃inheresIn.Person), yet an ontology developer wishes
to use this knowledge in a database for a library system, for which
an assertion of ‘Librarian isA Person’ (Librarian v Person) is much
more e�cient. Hence, the instantiation of an ontology pa�ern—i.e.,
involving more than one element—in the library ontology has to be
swapped for the simple named class subsumption. Five such types
of pa�erns are aligned in [6], and there are surely more variants.

A characteristic of this scenario is that the ontology pa�erns are
not necessarily of equal size and may use di�erent language features,
such as simple class subsumption vs. existential quanti�cation. �e
overall e�ect on ontology metrics for one pa�ern interchange is
not expected to have an impact, but it will if this were to be done
throughout an ontology for each such instance.

2.4 Swapping foundational ontologies
For this scenario we consider ontology modules that contain a
domain component and foundational ontology component with
a potential alignment to a target foundational ontology compo-
nent. Since several foundational ontologies have been developed,
this poses problems if a heterogeneous system needs to access
ontologies that are linked to con�icting foundational ontologies.
Swapping a foundational ontology for another could be performed
to solve this problem of semantic interoperability. It is also worth-
while to investigate whether swapping its foundational ontology
to an aligned foundational ontology has an impact on the modular-
isation metrics, and the time taken for reasoning.

A characteristic of this scenario is that the source, mapping, and
target ontologies cover the philosophical, high-level categories that
are common across various domains.

We provide Example 2.2 for illustrating the interchangeability
between foundational ontologies.

Example 2.2. �e SEGO ontology [5] is about sensing geograph-
ical occurrences, and it is linked to the DOLCE foundational ontol-
ogy. Let us assume that we wish to integrate the SEGO ontology
to the Infectious Disease Ontology (IDO) [3] to gain information
about the geographical occurrences of diseases. �e IDO ontology,
however, is linked to a di�erent foundational ontology than the
SEGO ontology. IDO is linked to the BFO foundational ontology.
�ese con�icting foundational ontologies prevent such interoper-
ability. In order to solve this problem, we could consider using
SUGOI-Gen to interchange the SEGO ontology from DOLCE to
BFO. As an alternative, we could interchange the IDO ontology



SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa Zubeida C. Khan and C. Maria Keet

from BFO to DOLCE. �e interchange is subject to the availability
of mappings between DOLCE and BFO foundational ontologies.
�e basic steps of the algorithm for interchanging between DOLCE
to GFO as a foundational ontology are as follows, using the SEGO
ontology as an example:

(1) Create a new ontology �le, a tM: sego-gfo.owl.
(2) Copy the entire tMi to the tM: copy the GFO ontology

into sego-gfo-bio.owl.
(3) Copy the axioms from the sMd to the tM: e.g., consider

the axioms, axiom1: sego:sensor v dolce:physical-object and
axiom2: sego:geo-process v dolce:stative which exist in the
sM sego. We add these axioms to the sego-gfo.owl tM
and they are referred to as ‘new’ axioms.

(4) Change the ‘new’ axioms to reference tMi entities, if map-
pings exist: for axiom1, there is an equivalence mapping
between dolce:physical-object and gfo:Material object,
hence we change axiom1 sego:sensor v dolce:physical-object
to sego:sensor v gfo:Material object. For axiom2, there is no
equivalence mapping between dolce:stative and GFO enti-
ties; we skip this step.

(5) If a mapping does not exist, perform on-the-�y subsump-
tion: For axiom2, dolce:stative has a superclass dolce:perdura-
nt and the mapping ontology has dolce:perdurant ≡ gfo:Occur-
rent, so dolce:stative v gfo:Occurrent is added to sego-gfo.owl.

(6) Delete entities that exist in the tM that are from the
sMi but do not appear in an axiom with entities from
the tMd , resulting in the �nal tM, sego-gfo.owl. Delete
the dolce:physical-object entity from seo-gfo.owl.

�e position of the sego:geo-process entity is shown in Figure 2
for DOLCE as the sM and GFO as the tM.

2.5 Swapping top-domain ontologies
For this scenario we consider ontology modules that contain a
domain component and a source top-domain component with a
potential alignment to a target top-domain component. A user
may want to interchange the top-domain component for another
to assist with ontology integration and possibly improve ontology
metrics and the time taken for reasoning

While it may seem the same as the previous case for foundational
ontologies, top-domain ontologies may be linked to a foundational
ontology, so the use case includes a ‘middle out’, needing to address
links both above and below it in the taxonomy.

Example 2.3. BioTop [1] and GFO-Bio [8] are both top-domain
biological ontologies and CELDA [28] is an ontology for complex
cells. CELDA imports the BioTop ontology as a top-domain on-
tology. Suppose there is a set of bio-medical ontologies that use
GFO-Bio as a top-domain ontology and we wish to use CELDA in
an application together with the set of bio-medical entities. It is
di�cult to achieve seamless integration because CELDA has BioTop
as a top-domain component. Hence, we consider interchanging
CELDA’s top-domain ontology from BioTop to GFO-Bio. �e basic
steps of the algorithm for interchanging between BioTop to GFO-
Bio as a top-domain ontology as an example are as follows, and
Figure 3 illustrates the example:

(1) Create a new ontology �le, a tM: CELDA-gfo-bio.owl.

Figure 2: �e position of the geo:process entity in the sM and
tM ontologies for the SEGO example.

(2) Copy the entire tMi to the tM: copy the GFO-Bio ontol-
ogy into CELDA-gfo-bio.owl.

(3) Copy the axioms from the sMd to the tM: e.g., consider
the axioms, axiom1: celda:compound v biotop:MaterialObject
and axiom2: celda:GO 008150 v biotop:bio molecular process
which exist in the sM CELDA. We add these axioms to the
CELDA-gfo-bio.owl tM and they are referred to as ‘new’
axioms.



Automatically changing ontology modules SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa

Figure 3: Examples of interchanging the celda:compound and celda:GO 008150 domain entities from sMi BioTop to tMi GFO-Bio
with SUGOI-Gen, using equivalence and subsumption mappings.

(4) Change the ‘new’ axioms to reference tMi entities, if
mappings exist: for axiom1, there is an equivalence map-
ping between biotop:MaterialObject and gfo-bio:Mate-

rial object, hence we change axiom1 celda:compound v
biotop:Material Obj- ect to celda:compound v gfo-bio:Material
Object. For axiom2, there is no equivalence mapping be-
tween biotop:bio molecular process and GFO entities; we
skip this step.

(5) If a mapping does not exist, perform on-the-�y subsump-
tion: For axiom2, biotop:bio molecular process has a super-
class biotop:biological processual entity and the mapping on-
tology has biotop:biological processual entity≡ gfo-bio:Biologic-
al process, so biotop:bio molecular process v gfo-bio:Biological
process is added to CELDA-gfo-bio.owl.

(6) Delete entities that exist in the tM that are from the
sMi but do not appear in an axiom with entities from
the tMd , resulting in the �nal tM, dmop-gfo.owl. Delete
the biotop:Material Object entity from CELDA-gfo-bio.owl.

3 MODULE INTERCHANGEABILITY DESIGN
AND IMPLEMENTATION

�is section introduces the algorithms and the implementation with
user interface.

3.1 SUGOI-Gen Algorithm
�e paper that introduced SUGOI [12] describes only the main steps
of the algorithm for foundational ontology interchangeability, but
not the algorithm itself, and works with three, �xed, foundational
ontologies only. Here, we provide a full algorithm, which also has
been modi�ed to allow the user to provide the sMi , tMi , and aO
to perform general module interchangeability. Algorithms 1-2 show
the precise procedure for changing a sMi to a tMi resulting in a
new tM. �e algorithm is illustrated with practical examples in
the following section.

3.2 Generalising the SUGOI interchangeability
tool

To the best of our knowledge, the only existing tool capable of
‘swapping’ .owl �les is SUGOI [12]. However, SUGOI is restricted
to swapping three foundational ontologies only: DOLCE, BFO, and
GFO, and it thus cannot be used for either interchanging other
foundational ontologies or any other types of aligned modules in
general, i.e., it cannot satisfy three of the four scenarios. To solve

Algorithm 1: SUGOI ontology interchangeability algorithm
input : sM, sMi , tMi , aO
output : tM
/* Steps 1-2. Create an ontology tM. Copy axioms

from the tMi to the tM */

1 tM← tMi ;
/* Step 3. Copy domain axioms to the tM */

2 foreach entity in sM do
3 if entity not in sMi then
4 currentAxiom← get current axiom;
5 add currentAxiom to tM;
6 end
7 end
/* Step 4. Map domain entities to the tMi */

8 foreach entity in tM do
/* if entity is a domain entity */

9 if entity not in sourceFoundationalOntoloдy and entity

not in tMi then
10 currentAxiom← get current axiom;
11 entitySet ← get entities in signature of currentAxiom;
12 foreach siдnatureEntity in entitySet do
13 if siдnatureEntity in aO then
14 eSiдnatureEntity← get equivalent entity of

siдnatureEntity;
15 currentAxiom← replace siдnatureEntity

with eSiдnatureEntity in currentAxiom;
16 end
17 end
18 end
19 end

this, we have implemented the algorithms presented in the previous
section and modi�ed also the GUI so as to perform interchangeabil-
ity with any ontology, including allowing the user to upload their
own interchange module and mapping �les.

Figure 4 is a screenshot of the online desktop version of SUGOI-
Gen. �e jar �le of the online desktop version, and a screencast is
available at the aforementioned URL.



SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa Zubeida C. Khan and C. Maria Keet

Algorithm 2: SUGOI ontology interchangeability algorithm-
part 2
/* Step 5. Perform on-the-fly subsumption, if a

domain entity is not linked to a tMi */

20 foreach entity in tM do
21 if entity not in tMi then
22 if entity has no superclasses in tM then
23 ancestorSet ← get ancestor entities of entity from

sourceFoundationalOntoloдy;
24 mappableSet ← empty set;
25 foreach ancestorEntity in ancestorSet do
26 if ancestorEntity exists inmapOntoloдy then
27 add ancestorEntity tomappableSet ;
28 end
29 end

/* get lowest level entity */

30 selectedEntity← get lowest level entity from
mappableSet ;

31 mappedSelectedEntity← get entity equivalent to
selectedEntity frommapOntoloдy;

32 newAxiom← create axiom stating that entity is a
subclass ofmappedSelectedEntity;

33 add newAxiom to tM;
34 end
35 end
36 end

/* Step 6. Delete source foundational ontology
entities that are not referenced by the domain
entities */

37 foreach entity in tM do
38 if entity in sMi then
39 entitySet ← get referencing entities of entity;
40 foreach re f erencedEntity in entitySet do

/* if re f erencedEntity is a domain entity
*/

41 if re f erencedEntity not in sMiand
re f erencedEntity not in tMi then

42 checker ← true;
43 end
44 end

/* if entity is not referenced by any domain

entities */

45 if checker == false then
46 if entity in tMi then
47 remove entity from tM;
48 end
49 end
50 end
51 end
52 save tM;
53 generate log �le with metrics;

Figure 4: �e interface of SUGOI-Gen.

4 EXPERIMENTAL EVALUATION
�e �rst purpose of the experimental evaluation is to investigate the
interchangeability of modules for the identi�ed scenarios to deter-
mine how well the algorithm for interchangeability performs. For
this, we assess whether SUGOI-Gen can successfully interchange a
sM to a tM and determine the amount of the ontology that will be
e�ectively interchanged, which refers to those entities within the
tMi that have been mapped with equivalence relations, thereby
not required to use parts of the sMi in the tM. Second, we as-
sess the source and target modules to determine the e�ects that
interchangeability may have on a modular ontology in terms of the
module’s metrics and reasoning processing.

4.1 Materials and methods
�e assessment has been designed using three of the four scenar-
ios for module interchangeability: swapping an ontology for a
leaner version, swapping foundational ontologies, and swapping
top-domain ontologies.

(1) Collect module sets from existing works for each of the
three scenarios.

(2) Create a mapping ontology �le for each module set.
(3) Interchange the Source Modular Ontology (sM) to a Target

Modular Ontology (tM).
(4) Analyse the raw interchangeability of each tM, i.e., a mea-

sure to determine the amount of the tM that has been cor-
rectly interchanged using equivalence mappings thereby
not referring to the sMi entities. �is measure was in-
troduced in early experiments with SUGOI [12] and is
calculated from the tM as follows: Let GT, good target
linking axioms, represent the sum of axioms that link do-
main ontology entities and tMi entities in the tM. Let
BT, bad target linking axioms, represent the sum of axioms
that link domain ontology entities and sMi entities in the



Automatically changing ontology modules SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa

tM; the raw interchangeability is calculated as follows:

Raw interchangeability =
|GT |

|GT + BT | × 100 (1)

(5) Compare the time taken for reasoning for the sM against
the tM.

(6) Run the TOMM metrics tool for the sM and the tM mod-
ule sets.

(7) Analyse and compare the metrics for the sM and tM
module sets.

�e materials consist of six OWL sM, two from each scenarios,
covering domains about animals, space and time, anatomy, cells,
etc., mapping �les created for each sMi to tMi alignment created
with Logmap [10] and manually, the SUGOI-Gen interchangeability
tool, and TOMM metrics tool [15] as it generates evaluation metrics
to measure the quality of a module. �e mapping �les that were
used for the foundational ontology modules were manually created
for previous experiments [12], and for the rest of the modules we
used Logmap to create them. A mapping �le for the alignment
between BioTop and GFO-Bio is shown in Figure 5. All the test
�les used for this experimental evaluation can be downloaded from
h�p://www.thez�les.co.za/ROMULUS/ontologyInterchange.html.

Multiple metrics have been proposed for ontology modularisa-
tion, with the most recent, and longest, list in [15]. For module
interchange, not all ontology metrics are relevant, however; e.g.,
completeness, coupling, and redundancy are relevant for the modu-
larisation process rather than being a property of the module itself.
�is reduces the relevant metrics to the following ones:
Size: Size refers to the number of entities in a module.

Atomic size: �e average size of a group of inter-dependent ax-
ioms in a module.

Intra-module distance: �e sum of number of relations in the
shortest path from one entity to the other, for every entity
in the module.

Cohesion: �e extent to which entities in a module are related
to each other.

Attribute richness: �e average number of a�ributes per class
in a module.

Inheritance richness: �e average number of subclasses per
class in a module.

For the complete de�nition for each metric, together with its equa-
tion, refer to [15].

4.2 Results
All of the modules were successfully interchanged with SUGOI-Gen.
To determine how the e�ective swapping the various modules were,
we �rst look at the interchangeability values that were calculated
with the SUGOI-Gen tool, displayed in Table 1. For the �rst set
of modules, for interchanging foundational ontologies, the raw
interchangeability values were between 25-28%; about a quarter of
the sM was successfully interchanged completely. �is is because
there are only 15 mappings that exist between DOLCE and GFO,
and 7 between DOLCE and BFO, in the respective mapping �les
[12]. �e remaining 75% of the foundational ontology modules
that were not successfully interchanged are represented by the
BT values in the raw interchangeability formula. �ese are the

Figure 5: �e mapping �le showing alignments for classes
and object properties between BioTop and GFO-Bio.

axioms that link domain ontology entities to sMi entities in the tM.
For instance, the axiom ontoderm:DermDiseaseType v dolce:abstract-
quality containing an entity from the DOLCE sM exists in the
ontoderm-bfo module.

For the next set of modules, for interchanging a module for a sub-
set module, both ontologies had a raw interchangeability of 100%;
the ontologies were able to be completely interchanged because
there were mappings between the sMi and tMi for all entities.
DOLCE and DOLCE-EL have the same entities, and BFO and BFO-
Continuant also have the same entities so they were all mapped.
Lastly, for the set of modules for interchanging top-domain mod-
ules, they had a raw interchangeability of between 22-24%. �ere
were 28 mappings available between the top-domain ontologies,
BioTop and GFO-Bio but the sMd to sMi links were high, 311
and 399 for the umlssn and dco top-domain ontologies, causing the

http://www.thezfiles.co.za/ROMULUS/ontologyInterchange.html


SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa Zubeida C. Khan and C. Maria Keet

Table 1: Comparison of the sM and tM and the raw inter-
changeability; inter. = interchangeability, R-time (s). = rea-
soning time in seconds.

Source and
target ontologies

sMd to
sMi
links

Domain
entities

Raw
inter.

R-
time
(s)

Interchange a foundational ontology for another
naive animal-dolce 43 438 75.0
naive animal-gfo 452 25.58% 146.0
ontoderm-dolce 14 301 19.0
ontoderm-bfo 308 28.57% 0.5
Interchange a module for a subset module
sceneOntology-dolce 18 246 0.9
sceneOntology-dolce
-el 246 100.00% 0.5

sao-bfo 66 809 0.7
sao-bfo-continuant 809 100.00% 0.4
Interchange a top-domain ontology for another
umlssn-biotop 311 714 300.0
umlssn-gfo-bio 863 22.18% 0.3
dco-biotop 399 1446 1832.0
dco-gfo-bio 1650 24.06% 0.2

lower raw interchangeability values. �us, for all ontologies in the
set, some interchangeability can be achieved using SUGOI-Gen.

Comparing the number of domain entities in the sM and tM, we
note that there are extra domain entities in the tM. �is is because
a number of sMi entities have been added to the tM when on-
the-�y subsumption occurs (recall the biotop:bio molecular process
entity that is added to the CELDA tM in Figure 3). Next, we analyse
the reasoning for the modules. All of the interchanged modules
except the naive animal have an improved time taken for reasoning
a�er interchange. In some cases, the improvement is considerable
such as the case of umlssn-biotop where the interchanged ontology
has a reasoning time of just 0.3 seconds compared to the source
ontology that has a reasoning time of 5 minutes. Another case is
the dco interchanged ontology with a reasoning time of 0.2 seconds
compared to the source ontology that has a reasoning time of 30.5
minutes.

We now inspect the ontologies to assess whether interchange-
ability has an e�ect on the modularity metrics by comparing the
sM metrics to the tM metrics. �e metrics are presented in Table 2.

For modularity, since the de�nition that we use from the liter-
ature states that ‘A Module M is a subset of a source ontology O ,
M ⊂ O , either by abstraction, removal or decomposition…’, smaller
metrics indicate a favourable module. When interchanging a foun-
dational ontology for another foundational ontology, as in the
naive animal and ontoderm ontologies, this could cause an increase
or decrease in the metrics for the module. For the naive animal

ontology, all the numerical metrics had increased except the atomic
size and the a�ribute richness. �us the size of the module and
other metrics such as the distance between entities had grown
which is not favourable for modularity. �is is because the GFO
foundational ontology is larger than the DOLCE foundational ontol-
ogy. For the ontoderm ontology, when interchanging from DOLCE

to BFO, conversely most of the numerical metrics had decreased,
except the intra-module distance and cohesion; thus the metrics
had improved for modularity.

For the next use case, interchanging a module for a subset mod-
ule, since a subset module is smaller, it should result in improved
metrics for modularity. For the SceneOntology, a�er the interchange,
the atomic size, number of axioms, a�ribute richness, and inheri-
tance richness has decreased. However, the intra-module distance
has increased, meaning that the entities moved further apart due
to the removal of some of the relations between classes. A larger
intra-module distance might promote tool processing since the on-
tology module would have less relations, be less-expressive and
have a smaller number of axioms while a smaller intra-module
distance means that the classes are closer together and easier to
traverse and this might promote human understanding. For the
next use-case, interchanging a top-domain ontology for another
top-domain ontology, there is a decrease in all the metrics except
the inheritance richness value meaning that the target ontology has
a higher number of subclasses per class than the source ontology.
Hence interchanging top-domain modules for the set in question is
indeed favourable.

5 DISCUSSION
�anks to SUGOI-Gen and the experimental evaluation using a set
of modules, we now know that interchangeability with modules
is indeed possible. �e success of the interchangeability depends
on the number of mappings that are available between the source
and target modules. For the set of modules used in our experiment,
the success of interchangeability ranged from 22% to a 100%. �e
foundational ontology and top-domain ontology modules had a
lower raw interchangeability because only some of the entities
could be mapped. For the subset modules, all their entities were
mappable resulting in the 100% raw interchangeability.

An ontology developer can also gain insight on how a certain
foundational, top-domain, or leaner modules could impact the met-
rics of a module, and which module might be be�er to use, depend-
ing on the developer’s desired metrics. For instance, a developer
may prefer to have a module with a larger intra-module distance
such as the case with the sceneOntology-dolce-el module to pro-
mote tool processing at the expense of human comprehension, or
vice versa. SUGOI-Gen could also be used to swap modules within
a system for other ones to improve processing times for reasoning
tools. For the set of modules in our experiment, all the modules
that were interchanged except one had an improved time for rea-
soning. Comparing the original and interchanged ontologies to
check which OWL constructs are used to represent the same do-
main knowledge is an interesting avenue of research for future
work to determine the trade-o� between expressive power and rea-
soning between various foundational, top-domain, ontology design
pa�ern, or arbitrary modules.

We now return to the questions regarding interchangeability
posed in the introduction. Regarding question 1: it is feasible to
interchange a module within an ontology for another module. How-
ever, the success of the interchangeability depends on the number
of mappings that are available between the source and target mod-
ules. Regarding question 2: interchangeability does have an impact



Automatically changing ontology modules SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa

Table 2: �e metrics for the sM and tM ontologies.

Source and
target ontologies Size Atomic

size
Number of
axioms

Intra-module
distance Cohesion Attribute

richness
Inheritance
richness

Interchange a foundational ontology for another
naive animal-dolce 545 6.82 3085 186 156 0.017 2.62 3.10
naive animal-gfo 598 6.26 3104 292 913 0.02 2.37 3.19
ontoderm-dolce 408 5.14 1470 313 977 0.04 0.76 3.16
ontoderm-bfo 347 4.42 1217 345 117 0.06 0.51 3.31
Interchange a module for a subset module
sceneOntology-dolce 353 5.57 1298 150 432 0.04 1.09 4.53
sceneOntology-dolce-el 353 5.13 1221 151 118 0.04 0.89 4.34
sao-bfo 848 7.82 8037 2 108 127 0.04 0.45 2.90
sao-bfo-continuant 830 7.86 7931 1 990 462 0.04 0.46 2.90
Interchange a top-domain ontology for another
umlssn-biotop 1119 7.56 5795 4 664 881 0.04 2.97 4.00
umlssn-gfo-bio 1105 7.10 5360 3 262 657 0.04 2.57 4.39
dco-biotop 1851 4.52 8925 297 579 0.005 1.42 3.21
dco-gfo-bio 1802 4.11 8470 383 592 0.006 1.09 3.13

on the metrics, depending on whether the module that has been in-
terchanged is smaller or larger (DOLCE vs. GFO), more-expressive
or less- expressive (DOLCE vs. DOLCE-EL), etc., this could impact
certain module metrics, and the ontology developer may consider
interchangeability to assess which module is the best �t for an
application. Lastly regarding question 3: the interchangeability has
a signi�cant impact on the time taken for reasoning. A comparison
of the reasoning times for the source and target modules reveals
that, for the set of modules used in this experiment, the reasoning
times were greatly improved.

6 CONCLUSION
In this paper we investigated ontology interchangeability on mod-
ules and the impact on their metrics. We presented the design
and implementation of of SUGOI-Gen, which can be used to inter-
change a module for another module within a system, covering
the four principal scenarios of module interchange: leaner versions
of an ontology, foundational and top-domain ontologies, and the
outline of ontology pa�ern swapping, provided that the user up-
loads the source and mapping �les. An experimental evaluation of
three di�erent use-cases using six ontologies reveal that some inter-
changeability is possible, and that the success of interchangeability
depends on the mappings that are available. �e investigation re-
vealed that an ontology developer can gain insight on how a certain
foundational, top-domain, or subset modules could have an e�ect
on the metrics, and the processing times for reasoning for modules.

For future work, we intend to evaluate SUGOI-Gen with ontol-
ogy developers to determine whether interchangeability can assist
also with other ontology development problems, such as ontology
comprehension. It may also be interesting to investigate further the
trade-o� between expressive power and language features usage
and automated reasoning performance when interchanging the
various foundational, top-domain, ontology design pa�ern, or arbi-
trary modules in a modularised ontologies and ontology networks.

REFERENCES
[1] Elena Beisswanger, Stefan Schulz, Holger Stenzhorn, and Udo Hahn. 2008.

BioTop: An upper domain ontology for the life sciences – A description of
its current structure, contents and interfaces to OBO ontologies. Applied Ontol-
ogy 3, 4 (2008), 205–212.

[2] Stefano Borgo. 2011. Goals of Modularity: A Voice from the Foundational View-
point. In �e Fi�h International Workshop on Modular Ontologies (WOMO’2011)
(Frontiers in Arti�cial Intelligence and Applications), Oliver Kutz and �omas
Schneider (Eds.), Vol. 230. IOS Press, 1–6. Ljubljana, Slovenia, August.

[3] Lindsay Grey Cowell and Barry Smith. 2010. Infectious Disease Ontology. Springer
New York, 373–395.

[4] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou. 2009.
Criteria and Evaluation for Ontology Modularization Techniques. In Modular
Ontologies: Concepts, �eories and Techniques for Knowledge Modularization.
Lecture Notes in Computer Science, Vol. 5445. Springer, 67–89.

[5] Anusuriya Devaraju, Werner Kuhn, and Chris S. Renschler. 2015. A formal model
to infer geographic events from sensor observations. International Journal of
Geographical Information Science 29, 1 (2015), 1–27. DOI:h�p://dx.doi.org/10.
1080/13658816.2014.933480

[6] Pablo R. Fillo�rani and C. Maria Keet. 2017. Pa�erns for Heterogeneous TBox
Mappings to Bridge Di�erent Modelling Decisions. In Proc. of ESWC’17 (LNCS),
E. Blomqvist and others (Eds.), Vol. 10249. Springer, 371–386. 30 May - 1 June
2017, Portoroz, Slovenia.

[7] Heinrich Herre. 2010. General Formal Ontology (GFO): A Foundational Ontology
for Conceptual Modelling. In �eory and Applications of Ontology: Computer
Applications. Springer, Heidelberg, Chapter 14, 297–345.

[8] Robert Hoehndorf, Frank Loebe, Roberto Poli, Heinrich Herre, and Janet Kelso.
2008. GFO-Bio: A biological core ontology. Applied Ontology 3, 4 (2008), 219–227.

[9] Krzysztof Janowicz and Michael Compton. 2010. �e Stimulus-Sensor-
Observation Ontology Design Pa�ern and its Integration into the Semantic
Sensor Network Ontology. In 3rd International Workshop on Semantic Sensor Net-
works (CEUR Workshop Proceedings), Vol. 668. CEUR-WS.org, 64–78. November
7, Shanghai, China.

[10] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yujiao Zhou. 2011. LogMap
2.0: towards logic-based, scalable and interactive ontology matching. In �e
4th International Workshop on Semantic Web Applications and Tools for the Life
Sciences, SWAT4LS 2011. ACM, 45–46. London, United Kingdom, December
07-09, 2011.

[11] C. Maria Keet, Claudia d’Amato, Zubeida Casmod Khan, and Agnieszka
Lawrynowicz. 2014. Exploring Reasoning with the DMOP Ontology. In 3rd
Workshop on Ontology Reasoner Evaluation (ORE’14) (CEUR Workshop Proceed-
ings). CEUR-WS.org, 64–70. July 1, Vienna, Austria.

[12] Zubeida Khan and C. Maria Keet. 2014. Feasibility of Automated Foundational
Ontology Interchangeability. In 19th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW’14) (LNAI), Vol. 8876. Springer,
225–237. 24 - 28 November 2014, Linköping, Sweden.

[13] Zubeida Casmod Khan. 2016. Evaluation Metrics in Ontology Modules. In 29th In-
ternational Workshop on Description Logics (DL’16) (CEUR Workshop Proceedings),
Vol. 1577. CEUR-WS.org. 22-25 April 2016, Cape Town, South Africa.

http://dx.doi.org/10.1080/13658816.2014.933480
http://dx.doi.org/10.1080/13658816.2014.933480


SAICSIT ’17, September 26–28, 2017, Thaba Nchu, South Africa Zubeida C. Khan and C. Maria Keet

[14] Zubeida Casmod Khan and C. Maria Keet. 2015. An empirically-based framework
for ontology modularisation. Applied Ontology 10, 3-4 (2015), 171–195.

[15] Zubeida Casmod Khan and C. Maria Keet. 2016. Dependencies between modu-
larity metrics towards improved modules. In 20th International Conference on
Knowledge Engineering and Knowledge Management (EKAW’16) (Lecture Notes
in Arti�cial Intelligence LNAI). Springer, 19–23. 19-23 November 2016, Bologna,
Italy.

[16] Zubeida Casmod Khan and C. Maria Keet. 2016. ROMULUS: �e Repository of
Ontologies for MULtiple USes Populated with Mediated Foundational Ontologies.
Journal of Data Semantics 5, 1 (2016), 19–36.

[17] Stephen D. Larson, Lisa Fong, Amarnath Gupta, Christopher Condit, William J.
Bug, and Maryann E. Martone. 2007. A formal ontology of subcellular neu-
roanatomy. Frontiers in Neuroinformatics 2007 (2007), 1–12. DOI:h�p://dx.doi.
org/10.3389/neuro.11.003.2007

[18] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. 2003. On-
tology Library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003).. (2003).
h�p://wonderweb.semanticweb.org.

[19] R. Mizoguchi. 2010. YAMATO: Yet Another More Advanced Top-level Ontol-
ogy. In Proceedings of the Sixth Australasian Ontology Workshop (Conferences in
Research and Practice in Information). CRPIT, 1–16. Sydney : ACS.

[20] David Newman, Sean Bechhofer, and David De Roure. 2009. myExperiment:
An ontology for e-Research. In Proceedings of the Workshop on Semantic Web
Applications in Scienti�c Discourse (SWASD 2009) (CEUR Workshop Proceedings),
Vol. 523. CEUR-WS.org. Washington DC, USA, October 26.

[21] I. Niles and A. Pease. 2001. Towards a Standard Upper Ontology. In Proceedings
of the 2nd International Conference on Formal Ontology in Information Systems
(FOIS-2001), Chris Welty and Barry Smith (Eds.). ACM, 2–9. Ogunquit, Maine,
October 17-19, 2001.

[22] Sunju Oh, Heon Young Yeom, and Joongho Ahn. 2011. Cohesion and coupling
metrics for ontology modules. Information Technology and Management 12, 2
(2011), 81–96.

[23] Pance Panov, Saso Dzeroski, and Larisa N. Soldatova. 2008. OntoDM: An On-
tology of Data Mining. In Workshops Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM 2008). IEEE Computer Society, 752–760. De-
cember 15-19, Pisa, Italy.

[24] Christine Parent and Stefano Spaccapietra. 2009. An Overview of Modularity.
In Modular Ontologies, Heiner Stuckenschmidt, Christine Parent, and Stefano
Spaccapietra (Eds.). Lecture Notes in Computer Science, Vol. 5445. Springer
Berlin Heidelberg, 5–23.

[25] Ana Armas Romero, Mark Kaminski, Bernardo Cuenca Grau, and Ian Horrocks.
2016. Module Extraction in Expressive Ontology Languages via Datalog Reason-
ing. Journal of Arti�cial Intelligence Research (JAIR) 55 (2016), 499–564.

[26] Ansgar Scherp, Carsten Saatho�, �omas Franz, and Ste�en Staab. 2011. De-
signing core ontologies. Applied Ontology 6, 3 (2011), 177–221. DOI:h�p:
//dx.doi.org/10.3233/AO-2011-0096

[27] Anne Schlicht and Heiner Stuckenschmidt. 2006. Towards Structural Criteria
for Ontology Modularization. In Proceedings of the 1st International Workshop on
Modular Ontologies, (WoMO’06) (CEUR Workshop Proceedings), Vol. 232. CEUR-
WS.org, 85–97. ISWC’06 November 5, 2006, Athens, Georgia, USA.

[28] Stefanie Seltmann, Harald Stachelscheid, Alexander Damaschun, Ludger Jansen,
Fritz Lekschas, Jean-Fred Fontaine, �rong-Nghia Nguyen-Dobinsky, Ulf Leser,
and Andreas Kurtz. 2013. CELDA - an ontology for the comprehensive repre-
sentation of cells in complex systems. BMC Bioinformatics 14 (2013), 228. DOI:
h�p://dx.doi.org/10.1186/1471-2105-14-228

[29] Samir Tartir, I Budak Arpinar, Michael Moore, Amit P Sheth, and Boanerges
Aleman-Meza. 2005. OntoQA: Metric-based ontology quality analysis. IEEE
Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically
Heterogeneous Data and Knowledge Sources 9 (2005), 45–53.

[30] Chiara Del Vescovo. 2011. �e Modular Structure of an Ontology: Atomic
Decomposition towards Applications. In Proceedings of the 24th International
Workshop on Description Logics (DL 2011) (CEUR Workshop Proceedings), Vol. 745.
CEUR-WS.org. Barcelona, Spain, July 13-16.

[31] Haining Yao, Anthony M Orme, and Letha Etzkorn. 2005. Cohesion metrics for
ontology design and application. Journal of Computer science 1, 1 (2005), 107.

http://dx.doi.org/10.3389/neuro.11.003.2007
http://dx.doi.org/10.3389/neuro.11.003.2007
http://dx.doi.org/10.3233/AO-2011-0096
http://dx.doi.org/10.3233/AO-2011-0096
http://dx.doi.org/10.1186/1471-2105-14-228

	Abstract
	1 Introduction
	2 Module interchangeability scenarios
	2.1 Preliminaries
	2.2 Swapping an ontology for a leaner version of the ontology
	2.3 Swapping aligned ontology design patterns
	2.4 Swapping foundational ontologies
	2.5 Swapping top-domain ontologies

	3 Module interchangeability design and implementation
	3.1 SUGOI-Gen Algorithm
	3.2 Generalising the SUGOI interchangeability tool

	4 Experimental Evaluation
	4.1 Materials and methods
	4.2 Results

	5 Discussion
	6 Conclusion
	References

