
USING GYPSIE, GYNGER AND VISUAL

GNY TO ANALYZE CRYPTOGRAPHIC

PROTOCOLS IN SPEAR II

Elton Saul

Data Network Architectures Laboratory

University of Cape Town, South Africa

esaul@cs.uct.ac.za

Andrew Hutchison

Data Network Architectures Laboratory

University of Cape Town, South Africa

hutch@cs.uct.ac.za

Abstract The development of cryptographic logics to analyze security protocols

has provided one technique for ensuring the correctness of these pro-

tocols. However, it is commonly acknowledged that analysis using a

modal logic such as GNY tends to be inaccessible and obscure for the

uninitiated. In this paper we describe the SPEAR II graphically-based

security protocol engineering environment that can be used to easily

conduct GNY analyses. SPEAR II consists of three primary compo-

nents: a protocol speci�cation environment (GYPSIE), a GNY state-

ment construction interface (Visual GNY) and a Prolog-based GNY

analysis engine (GYNGER). In contrast to other tools, SPEAR II o�ers

a multi-dimensional approach to protocol engineering, integrating pro-

tocol design and analysis into one consistent and uni�ed interface. The

interface and techniques used within this tool are built on the foundation

of previous experience with the original SPEAR tool and GNY analysis

research. We also show how the SPEAR II tool is used to conduct a

GNY analysis and how it distances protocol engineers from any associ-

ated syntactical issues, allowing them to focus more on the associated

semantics and distil the critical issues that arise. By freeing individuals

to focus on an analysis, instead of hampering them with the necessary

syntax, we can ensure that the fundamental concepts and advantages

related to GNY analysis are kept in mind and applied as well.

Keywords: Security Protocol Modelling, Protocol Engineering, GNY Logic



1. INTRODUCTION

Analysis methods for cryptographic protocols have predominantly fo-
cused on detecting information leakage, rather than determining whether
a protocol attains its stated goals. However, security protocols often
fall short of achieving their intended objectives, usually for very sub-
tle reasons [2]. As a result of this fact, cryptographic logics have been
developed to aid in determining whether protocols actually ful�l their
intended goals [5].

The inherent appeal in using modal logics stems from their simplicity
and e�ectiveness for analyzing cryptographic protocols. Logics can be
systematically applied to reason about the working of protocols, often
helping to reveal missing assumptions, de�ciencies or redundancies. This
can then lead to the protocol, the assumptions or the original goals
being re-evaluated, after which the inference rules can be reapplied to
determine whether the goals are attainable after these modi�cations have
been made.

The BAN modal logic [1] popularized the notion of using logics to
detect aws and redundancies in protocols. It has been labelled as a
success by many commentators [6, 11, 4] and has been used to �nd aws
in several protocols. BAN spawned the creation of a number of related
logics, each of which has tried to improve on or add to its underlying
premises. A popular descendant of BAN is GNY [7, 8].

However, due to the complexity of the GNY syntax, notation and
inference rules, it is commonly acknowledged that analysis with GNY
tends to be inaccessible and obscure for the uninitiated. Often it requires
experience and insight to determine what the desirable and appropriate
initial and �nal conditions for a given protocol should be. Also, the
actual analysis phase during which inference rules are applied can be
very tedious and error prone when carried out by hand. Thus, the
opportunity exists to create tools that will support analysis e�orts by
guiding the process from an appropriate starting state to the required
�nal state. Such a system would help to make the rigorous analysis
of security protocols more accessible and thus contribute to the overall
security level of cryptographic protocols that currently exist and are
being designed.

In this paper we will describe the SPEAR II cryptographic protocol
analysis tool which we have developed. SPEAR II allows an individ-
ual to easily conduct a GNY-based protocol analysis using an intuitive
visual interface. This interface o�ers a multi-dimensional approach to
cryptographic protocol analysis, unifying the design and analysis phases
of protocol engineering into one consistent and easy-to-use system. We



will elaborate on the core components of SPEAR II and show how they
help to distance protocol engineers from the syntactical element of GNY
analysis, allowing them to focus more on the associated semantics and
distil the critical issues which arise.
The remainder of this paper is organized as follows. In Section 2 we

give a brief introduction to GNY analysis. Section 3 gives an overview
of some tools that can be used for logic-based analysis. In Section 4 we
will describe all of the current SPEAR II components, and then show
how the SPEAR II environment is used in an analysis in Section 5. We
conclude in Section 7.

2. PRINCIPLES OF GNY ANALYSIS

An analysis with GNY is very similar to one carried out with BAN.
However, one signi�cant improvement of GNY over BAN is that it de-
�nes an abstract `protocol parser' which helps to derive a form of the
protocol more suitable for manipulation. The major steps carried out
before analyzing a security protocol with GNY are enumerated below:

1 Any implicit information conveyed by a protocol formula is repre-
sented logically by the attachment of an extension to the formula.

2 A star is placed in front of all formulae containing secrets that the
receiving principal is not the �rst to convey in the current session
of the protocol. The star also indicates that it is the �rst time that
the receiving principal receives the formula in the current session.

3 The initial belief and possession sets of each principal are con-
structed. The possession set consists of all formulae available to
the principal, while the belief set includes the current beliefs of the
principal.

4 The desired �nal possession and belief sets for each principal are
speci�ed based on the design goals of the protocol.

Once these steps have been performed, an analysis can proceed. Each
analysis essentially consists of deriving a series of assertions, each asser-
tion being obtained by the application of the GNY inference rules to the
assertions already contained within the belief and possession sets of a
principal. After each assertion is derived, it is added to either the belief
or possession set of the relevant principal. Once the analysis is complete
the belief and possession sets will contain the �nal state of each princi-
pal after the protocol has run to completion. This information can then
be compared to the desired �nal conditions to determine whether the
protocol has achieved its intended goals.



3. LOGIC-BASED ANALYSIS TOOLS

A number of tools exist to carry out automated logic-based analyses.
However, the interface to these tools is often textual, and in cases where
a GUI is used to de�ne the protocol to be analyzed, the GNY logic
statements are still de�ned using textual commands.

Convince is an automated toolset that facilitates the modelling and
analysis of cryptographic protocols [9]. A protocol is speci�ed by using
an integrated commercial GUI system, however GNY statements which
are used for analysis must still be de�ned through textual annotations.

A Prolog-based analysis tool was created to facilitate in a GNY anal-
ysis [12]. However, this tool again makes use of textual input schemes
which are then analyzed by the Prolog program.

The SPEAR multi-dimensional protocol analysis tool allows a user to
specify a protocol in an intuitive graphical environment [3]. Logic-based
analysis is conducted using BAN. However, even though the tool has a
GUI for de�ning the protocol, BAN statements have to be constructed in
a textual form. Primitive assistance is provided when constructing BAN
statements by providing the user with a list of operators and operands
which can be added to the current BAN statement.

4. THE SPEAR II FRAMEWORK

The SPEAR II framework aims to provide a uni�ed graphically-based
environment within which security protocols can be speci�ed, analyzed
and then implemented. A major aim of the framework is to ensure
speed and ease of use, but at the same time ensure that quality protocol
engineering takes place. At present, the framework consists of three
primary components, each of which will be described in the sections
that follow.

4.1. GYPSIE

GYPSIE is a graphically-based cryptographic protocol speci�cation
environment [13]. Using GYPSIE, a designer can specify a security pro-
tocol by employing three basic components. All of these components are
rendered on a design canvas in a style reminiscent of SDL and MSCs.
The graphical representation of each of these components has been se-
lected to provide the most intuitive and simplistic representation of the
real-world analogues. These canvas components are listed below:

Principals, which send and receive messages.

Messages, which contain formulae such as nonces and hashes.



Figure 1 An illustration of the high-level protocol view on the left and the component

view on the right.

Subprotocols, which contain further principals and messages.

The high-level protocol view (illustrated in Figure 1) allows a de-
signer to manipulate principals, messages and subprotocols that are
found in the protocol model. Messages, principals and subprotocols can
be dragged and dropped on the canvas and imported from other pro-
tocols which are included in the subprotocol hierarchy. Messages and
subprotocols are ordered in time, based on when they are sent, received
or called. All design operations can be carried out through the use of
pull-down or pop-up menus, depending on the user's preference. The
high-level view also has full undo and redo capabilities, and allows a
protocol model to be saved, loaded or exported to a number of formats.
It is also fully customizable and allows users to select the colours for
each component, dragging styles and message display options.
The more detailed component view (shown in Figure 1) hierarchi-

cally displays the formulae within an individual message as a structured
tree-view. Within this tree-view, formulae can be manipulated, edited,
deleted, reordered and dragged and dropped onto encryption, function
or grouping nodes. Thirteen primary formula types exist:

Non-terminal formulae include functions, hashes, symmetric en-
cryptions, public-key encryptions, private-key encryptions and groups.

Terminal formulae include nonces, timestamps, shared secrets, sym-
metric keys, public keys, private keys and user-de�ned types.

Cut, copy and paste facilities exist within both the high-level and
component views, allowing designers to copy or move formulae between



messages and subprotocols. Within the component view, tooltips aid
users by displaying the contents of non-terminal formulae when hovering
over them. In the high-level view, tooltips are used to display message
formulae when hovering over a message, as the message component on
the canvas may be shortened to save screen real-estate.

A number of other useful features are included in GYPSIE. The `com-
ponent tracker' allows a designer to highlight all of the places where a
given formula appears on the design canvas. A navigation bar on the
left side of the high-level view aids users in visualizing the structure of
a given protocol. GYPSIE also includes the ability to calculate syn-
chronous and optimal rounds [10] for the speci�ed protocol.

4.2. GYNGER

GYNGER is a Prolog-based GNY analysis engine that uses forward-
chaining techniques to derive all of the possible GNY statements appli-
cable to a given protocol and set of initial assumptions. The analyzer is
based on the one presented in [12], however, it implements more GNY
inference rules (71 in total) and uses an improved syntax to facilitate
the use of advanced GNY constructs.

To analyze a protocol with GYNGER, one must supply the protocol
message steps and the initial belief and possession sets. Any target
goals may also be speci�ed. When the analyzer is invoked, the GNY
inference rules are applied to the current set of GNY statements. When
no more statements can be derived, the analysis process terminates. For
those goals which were successful, a proof is generated listing all of the
statements and inference rules used to derive the result. A list of all of
the derived statements can also be generated.

4.3. VISUAL GNY

The Visual GNY environment (illustrated in Figure 2) makes use of
structured trees to represent GNY statements [14]. For each principal
within a given protocol speci�cation, up to four sets of structured trees
are created, two for the storage of initial beliefs and possessions, and
another two for the storage of target beliefs and possessions. A further
four sets of trees can be used to store the successful beliefs, successful
possessions, failed beliefs and failed possessions for each principal upon
the completion of a successful GNY analysis. A set of structured trees
is also created for every formula that has extensions, these extensions
being de�ned in the Visual GNY environment.

Five tabbed panes are used to guide a user through the process of spec-
ifying initial GNY assumptions, goals and analyzing a protocol. Within



Figure 2 The Visual GNY environment.

each of these tabbed panes, a drop-down combo-box and a selection of
radio buttons are used to select the appropriate set of structured trees
to modify or view. The currently selected set of structured trees is dis-
played in a tree-view component centered within the client area of the
tabbed pane. Changing either the combo-box or radio button selection
changes the set of structured trees being displayed in the tree-view. A
label situated below the tree-view indicates the number of GNY state-
ments represented by the set of structured trees displayed in the tree
view. All interaction with the structured tree takes place through pop-
up menus that are dynamically constructed depending on the selected
tree node.
The pop-up menus that are used in the Visual GNY environment

are constructed dynamically so as to guide a user as she constructs the
structured tree representation of a given GNY statement. Commands
on a pop-up menu present a user with a choice of GNY statement types,
principal names and message formulae to include in a structured tree.
The structured trees are always ensured of being syntactically correct as
the pop-up menus used in their construction reveal only the commands
applicable to the currently selected node.
The Visual GNY environment attempts to structure and organize

GNY analyses. The tabbed panes give an indication of the information
required for an analysis, and are roughly laid out in the order that this
information would be supplied. Nodes within a given structured tree can
be expanded or collapsed as required. If a node contains children then



1

Define the protocol specification in GYPSIE.

2

Define the initial belief and
possession sets for each principal.

3

Define the target belief and
possession sets for each principal.

4

Attach extensions to selected formulae.

5

Provide execution details for the GYNGER
analyzer and then invoke the analysis.

View valid and failed possession
and belief sets for each principal.

6

7

View all derived GNY statements in English-style
textual form.

8

View the annotated English-style GNY proof
for a successful possession or belief statement.

Figure 3 Steps undertaken when conducting a GNY protocol analysis.

a clickable token is displayed to its left. Clicking on this token allows
the node to be collapsed or expanded, thus allowing a user to control
the amount of information which is presented. In this way the level of
detail provided by the interface can be varied appropriately.

GNY statements created within the Visual GNY environment can
be exported to an English-style textual format, a mathematical-style
LATEX format, or to GYNGER-compatible Prolog statements. When
hovering a mouse pointer over the tree node that terminates a given
GNY statement in a structured tree, a tooltip containing the English-
style text representing the statement is displayed. Besides this aid, a
user can also view all of the statements contained in a given tree-view
as English-style text in a pop-up window. This feature is activated from
the pop-up menus.



5. GNY ANALYSIS WITH SPEAR II

In Figure 3 we sketch the steps that are undertaken during a typi-
cal analysis session. Such a session normally begins by specifying the
principals, messages and formulae of the protocol in question within
the GYPSIE speci�cation environment. Once this phase has been com-
pleted, the Visual GNY environment is invoked and the initial assump-
tions and goals of each principal are speci�ed as required. Extensions are
also appended to formulae. Once all of the necessary preconditions have
been de�ned, details such as the location of the Prolog interpreter, the
location of the GNY rules Prolog source, working directories and output
�les are de�ned within the Analysis tabbed pane. Upon the initiation
of the analysis process, the structured GNY trees are all translated into
a GYNGER-compatible Prolog syntax, the GNY protocol parser is in-
voked, and the analyzer is then called with the relevant parameters.
The Visual GNY environment monitors the analysis thread, and when
it is complete, retrieves the results from the output �les, parses these
results, and then constructs the appropriate structured trees to display
in the Results pane. Proofs and the list of all derived statements are also
stored.
As we can see, a typical analysis session is very visual, with the graph-

ical environment being used as much as possible to aid and guide the
user. The Results tab is only displayed if an analysis has been conducted,
and is hidden if any deletions are made from the GNY preconditions.
To view the proof for a valid target goal, one merely needs to right-click
on the terminal node of the statement's structured tree representation
and then select the View GNY Proof menu item. To view all of the
GNY statements derived during the most recent analysis, the button in
the lower right of the Analysis tabbed pane is pressed. All of the con-
structed GNY statements and analysis results are saved together with
the GYPSIE protocol speci�cation. The analysis results are also saved
to an output �le de�ned within the Analysis tabbed pane. The undo and
redo feature within GYPSIE is very useful for protocol analysis, since it
allows a user to conduct analyses on variations of the same protocol. For
instance, an analysis can be conducted with a certain formula contained
within the protocol messages. This formula can then be deleted and
another analysis conducted, with the two results being compared at the
end. If the �rst results are better, then the deletion of the formula can
be undone. In this way, we can determine whether a given formula is
redundant with respect to its e�ect on helping to achieve the protocol
goals.



6. EXPERIENCES WITH USING SPEAR II

Over the past few months we have conducted a number of usability
and practical usage experiments with SPEAR II. The usability experi-
ments tested the interface of the Visual GNY environment and the ease
with which individuals work within the GYPSIE modelling environment.
Besides these user experiments, we have also tested the GYNGER ana-
lyzer and used it to analyze a wide variety of authentication protocols, as
well as information exchange protocols. Some of these protocols include,
the Needham Schroeder and Voting Protocols [8], the Wide Mouth Frog,
Yahalom and Kerberos Protocols [1], as well as a number of authentica-
tion protocols from [10]. All the results from our analyses worked out
as expected and returned accurate results and proofs.

The Visual GNY experiments returned some interesting results. We
tested the interface on �fteen fourth-year Computer Science students
who had taken a course in network security and protocol analysis with
GNY. The last time any of these students had used GNY was almost six
months prior to the experiment. They were each asked to specify a set of
GNY statements in both conventional mathematical syntax and struc-
tured tree notation using the Visual GNY environment. On average,
they speci�ed 78% of the GNY statements correctly using mathematical
notation, and 98% correctly using the Visual GNY environment. Only
substitution errors were made when using the Visual GNY environment,
as syntactic correctness correctness is enforced by the interface. When
we asked these students to translate Visual GNY and mathematical style
statements into English-style text, they got approximately 85% correct
on average. This demonstrates that Visual GNY does not improve the
readability of GNY statements. However, this is not much of an issue, as
the tooltips and `View GNY Statements as Text' features both display
the constructed GNY structured trees as English-style text.

Experiments conducted with the GYPSIE interface set out to test
how individuals interacted with the environment and how e�ectively
they could specify protocols. We made use of another batch of twenty
fourth-year Computer Science students who had all studied network se-
curity techniques. They were asked to specify three protocols: a voting
protocol, an authentication protocol and the Needham-Schroeder proto-
col. On average, 0.5 mistakes were made in the voting protocol, 0.20 in
the authentication protocol, and 0.65 in the Needham-Schroder proto-
col. The average construction times were 300 seconds, 378 seconds, and
589 seconds respectively. As evidenced by these �gures, the GYPSIE
environment facilitates accurate protocol construction, and intuitively
we can assume that it will make individuals more productive and more



e�ective than they would be in a text-based system, since they do not
need to concern themselves with syntactical issues but can instead focus
on the protocol at hand and its associated semantics.

7. CONCLUSION

Security protocol engineers need to be familiar with security protocol
analysis techniques and must also be able to e�ectively put these into
practice. However, to be useful an analysis method must also be usable.
We cannot expect individuals to be able to readily recall the syntax
associated with a modal logic such as GNY or the plethora of inference
rules used in an analysis, as this syntactical knowledge is often forgotten
after it has not been applied for a while. Instead, the associated semantic
issues and an understanding of how an analysis occurs should be the
focus of an individual's analysis arsenal, tools and reference material
being used to �ll in any syntactical gaps.
There are a number of tools that can be used to carry out automated

GNY protocol analysis [12, 9]. However, an impediment to using most of
these is the construction of the speci�cation which describes the protocol
messages, formulae, initial assumptions and target goals. Supplying this
information is not always a simple and straight-forward task and its
prompt, eÆcient and error-free delivery often depends on the type of
software being used. For this reason, the use of software that helps
to distance protocol engineers from the syntactical element of protocol
analysis, allowing them to focus more on the underlying critical issues,
should be encouraged.
A formal analysis method should not just be studied and forgotten.

Instead, the security community should be encouraged to develop tools
that facilitate and encourage its use by a broad spectrum of individuals.
When creating such tools, we should bear in mind that they should
promote information recall, not require it. A tremendous amount of
research has been carried out on security protocol analysis techniques [6],
but how much of this research actually gets used in the �eld by the
engineers who work there? Let's not allow good techniques to go unused.
By encouraging more protocol analysis techniques to be applied, we will
encourage the development of more robust and secure protocols.
Thus, by leveraging specially developed tools and techniques, a large

portion of the diÆculties that individuals encounter when using formal
methods can be resolved. The SPEAR II tool 1 is a graphically-based
analysis environment within which GNY protocol analysis can be con-
ducted. SPEAR II places a user-friendly front-end on the GNY analysis
process, thus freeing individuals to focus more on an analysis and the



issues related thereto, instead of having them bogged down in syntax
and tedious inference rule application. We hope to continue develop-
ment of the SPEAR II framework by adding more analysis techniques
and ensuring that these techniques can be used by protocol engineers
when implementing and designing network security protocols.

Notes

1. Available from http://www.cs.uct.ac.za/Research/DNA/SPEAR2.

References

[1] M. Abadi, M. Burrows, and R. Needham. A Logic of Authentication.
In Proceedings of the Royal Society, Series A, 426, 1871, pages 233 {
271, December 1989.

[2] M. Abadi and R. Needham. Prudent Engineering Practice for Cryp-
tographic Protocols. IEEE Transactions on Software Engineering,
22(1):6 { 15, January 1996.

[3] J.P. Beckmann, P. De Goede, and A.C.M. Hutchison. SPEAR: Se-
curity Protocol Engineering and Analysis Resources. In DIMACS

Workshop on Design and Formal Veri�cation of Security Protocols.
Rutgers University, September 1997.

[4] J. Clark and J. Jacob. A Survey of Authentication Protocol Litera-

ture: Version 1.0, November 1997.

[5] V.D. Gligor, L. Gong, R. Kailar, and S. Stubblebine. Logics for Cryp-
tographic Protocols { Virtues and Limitations. In Proceedings of the

Fourth IEEE Computer Security Foundations Workshop, pages 219
{ 226, Franconia, New Hampshire, October 1991. IEEE Computer
Society Press.

[6] P. Georgiadis, S. Gritzalis, and D. Spinellis. Security Protocols
Over Open Networks and Distributed Systems: Formal Methods for
Their Analysis, Design and Veri�cation. Computer Communications,
22(8):695 { 707, May 1999.

[7] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in
Cryptographic Protocols. In Proceedings of the 1990 IEEE Sympo-

sium on Research in Security and Privacy, pages 234 { 248, Oakland,
California, 1990. IEEE Computer Society Press.

[8] L. Gong. Cryptographic Protocols for Distributed Systems. PhD
thesis, University of Cambridge, April 1990.

[9] R. Lichota, G. Hammonds, and S.H. Brackin. Verifying the Correct-
ness of Cryptographic Protocols using Convince. In Proceedings of



the Twelfth IEEE Computer Security Applications Conference, pages
117 { 128. IEEE Computer Society Press, 1996.

[10] L. Gong Lower Bounds on Messages and Rounds for Network Au-
thentication Protocols. In Proceedings of the 1st ACM Conference

on Computer and Communications Security, pages 26 { 37, Fairfax,
Virginia, November 1993.

[11] C.A. Meadows. Formal Veri�cation of Cryptographic Protocols: A
Survey. In Advances in Cryptology - Asiacrypt '94, pages 133 { 150.
Springer-Verlag, 1995.

[12] A. Mathuria, R. Safavi-Naini, and P. Nickolas. On the Automa-
tion of GNY Logic. In Proceedings of the 18th Australian Computer

Science Conference, volume 17, pages 370 { 379, Glenelg, South Aus-
tralia, February 1995.

[13] E. Saul and A.C.M. Hutchison. A Generic Graphical Speci�cation
Environment for Security Protocol Modelling. In Proceedings of the

Sixth Annual Working Conference on Information Security, pages
311 { 320, Beijing, China, August 2000. Kluwer Academic Publishers.

[14] E. Saul and A.C.M. Hutchison. A Graphical Environment for the
Facilitation of Logic-Based Security Protocol Analysis. South African
Computer Journal, (26):196 { 200, November 2000.


