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Abstract: Proactive monitoring and control of our natural and built environments is important
in various application scenarios. Semantic Sensor Web technologies have been well researched
and used for environmental monitoring applications to expose sensor data for analysis in order to
provide responsive actions in situations of interest. While these applications provide quick response
to situations, to minimize their unwanted effects, research efforts are still necessary to provide
techniques that can anticipate the future to support proactive control, such that unwanted situations
can be averted altogether. This study integrates a statistical machine learning based predictive model
in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality
monitoring case study. A sliding window approach that employs the Multilayer Perceptron model
to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and
control framework. Results show that the proposed approach can effectively predict short term PM2.5

pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour
prediction horizons, making it possible for the system to warn occupants or even to autonomously
avert the predicted pollution situations within the context of Semantic Sensor Web.

Keywords: proactive; Semantic Sensor Web; stream reasoning; situation prediction; machine learning;
sliding window; multilayer perceptron

1. Introduction

Proactive monitoring of the natural and built environments is important in many day to day
application scenarios in order to take control of environmental situations. Such application areas
include preventing natural disasters, avoiding life threatening situations, enhancing productivity
and improving health and well-being. For example, monitoring and control of indoor air quality in
homes where there are pregnant mothers and infants is essential to avoid excessive exposure of these
sensitive and vulnerable groups to indoor pollutants [1]. Advancements in sensor technology has
made available low cost sensors that are embedded in everyday devices capable of observing and
monitoring different properties of the environment. The goal of proactive computing is to bridge
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the gap between the virtual and the physical world by making sensor equipped computing devices
understand the environment, anticipate the user’s goal and act on his or her behalf [2,3].

Sensor Web Enablement (SWE), an initiative of the Open Geospatial Consortium, has provided
standards and techniques for the discovery of sensors and their observations, exchange and processing
of sensor observations, and tasking of sensors and sensor systems as services on the web [4]. In a typical
sensor application, real world occurrences are measured and captured as observations by sensors,
formatted and transmitted continually through a communication network to a processing device that
analyses and makes sense of the streaming sensor observation data to determine if any responsive
actions are required. SWE supports exposing sensor observation data on the web for a plethora of
application areas. However, to provide more expressive descriptions and enhanced access to sensor
data on the web, the Semantic Sensor Web (SSW) initiative aims to extend SWE with Semantic Web
technologies [5].

Semantic Web technologies, for example, ontologies, can be used to model concepts and
relationships in a domain of interest [6,7]. Standardization efforts in the SSW has led to the Semantic
Sensor Network (SSN) ontology which has become the de-facto ontology for SSW applications [8].
Raw sensor observation data is annotated and encoded with semantic metadata which allows for the
integration and fusion of sensor data from heterogeneous sources. It also facilitates reasoning to make
inferences about the observed feature of interest in the environment by evaluating semantic queries
on semantically enriched data [5,9]. However, the inherent nature of sensor data streams requires
specialized techniques for analysis, to infer knowledge from the streaming observation data [9,10].

Stream reasoning is a growing multidisciplinary research area that extends Semantic Web
techniques to streaming data on the SSW [11–13]. SSW techniques have been investigated for
monitoring and providing environmental decision support in different application domains [14,15].
While some progress has been made in terms of classifying current situations of interest from streaming
data and decision support to mitigate these situations, predicting future situations for proactive
control remains a challenge. In this work, the term situation is understood as an interpretation
of sensor data in the application domain [16] and used in the context of the states of monitored
features in a physical environment. Hence, situation analysis encompass the process of detecting
(situation detection) and predicting (situation prediction) a situation of interest. The challenge of
a proactive application on semantically enriched streaming data includes analyzing the data to detect
situations of interest, to anticipate future occurrences of the situations, to process and enact decisions,
and for knowledge management.

Anticipating the future occurrence of a situation of interest in order to enhance or reduce its
probability of occurrence in favor of the user is the goal of a proactive system [2]. Some recent
efforts have proposed semantic methods for predicting knowledge in semantically annotated data
streams [10,17,18], and although it is an active research area, it is young with new techniques still
emerging. Statistical machine learning provides advanced techniques which support applying learning
algorithms to learn certain properties and patterns of data to predict future trends. This study suggests
that integrating predictive machine learning algorithms in a SSW monitoring system will allow for
taking proactive control actions to enhance or avoid specific future situations in many environmental
monitoring application areas, for example, indoor air quality.

Indoor air quality for occupational health is a growing concern [19–21] and a research area, where
proactive monitoring and control in the SSW can be applied. Most research efforts in indoor air
quality have been directed to monitoring concentration levels of indoor pollutants and exposure levels
of individuals to the pollutants with applications that react to change in target situations [1,14,21].
Such applications allow for responsive actions to situations which have already occurred and are useful
for minimizing the effect of these situations. Identifying a possible situation before its occurrence will
allow for proactive actions to be taken to avert or enhance its occurrence. A proactive monitoring
system in a home can anticipate trends of future pollution levels and trigger control actions to avert
the occurrence of such a situation altogether and prevent occupants from exposure to unhealthy levels
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of pollution. Some recent research efforts have proposed achieving proactive behaviors by integrating
predictions in context aware systems [22–24].

In a previous work [1], an ontology driven system for proactive indoor air quality monitoring
and control was proposed. A domain ontology for indoor air quality that imports and extends the SSN
ontology was modeled to support the system. The ontology-driven system was able to successfully
detect air quality states (situation detection) from semantically annotated sensor data. When unhealthy
situations were detected, the system was also able to alert the occupants and infer appropriate control
actions to abate the situation by reasoning on the ontology. Essentially, the system in the previous
work [1] was able to monitor and only react to situations that have already occurred (reactive).

The main contribution of this research study is two-fold. The first is the exploration of machine
learning for situation prediction from streaming indoor air quality sensor data. This resulted in the
selection of a Multilayer Perceptron (MLP) model using a sliding window over the incoming air
quality data to predict future values of PM2.5 pollution levels. Secondly, a mechanism for incorporating
machine learning models in Semantic Sensor Web architectures to support situation prediction is
proposed. This is to support taking appropriate control actions ahead of time in order to prevent
the occurrence of a future unhealthy situation (proactive). The approach is aimed at combining the
high accuracy and performance of statistical predictive techniques and the expressiveness of semantic
analytic techniques for proactive monitoring and control applications.

This paper is organized as follows. In Section 2, we present an overview of the proactive
monitoring and control framework, and in Section 3 we evaluate the framework with an indoor air
quality case study. Section 4 presents the experiments performed to choose appropriate machine
learning method for modeling situation prediction in the case study scenario, while the integration
of the predictive model into a stream reasoning framework is presented in Section 5. The system
is evaluated in Section 6. Section 7 compares this work with related work and Section 8 presents
a discussion, conclusion and future work.

2. Proactive Monitoring and Control in SSW

2.1. Conceptual Framework

The conceptual framework described in this section is an extension of our framework introduced
in [1] (see Figure 1). The main extension is the incorporation of a situation prediction component in the
situation analysis layer. Figure 1, shows the extended conceptual framework and indicates the situation
prediction component which is the focus of this paper. The conceptual framework emphasizes the
use of historical data to predict future situations. Statistical models can learn from historical data and
use the weights generated to analyze current data to predict the future with potentially high precision
and sensitivity.

Figure 1. Conceptual model of proposed system.

The conceptual framework consists of three layers, which are discussed below:
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• Monitoring: It serves as the interface between the system and the monitored environment where
sensor observation data on the features of interest are captured. It represents certain parts of the
system and ontology module that support data and measurements, including both the streaming
sensor observation data and pre-captured static data in the system.

• Situation Analysis: It represents parts of the system and the ontology module that support
situation detection and situation prediction, the two processes that generate the current and
future states, respectfully. The integration of statistical predictive models take place in this layer
and this forms the basis for the proactive behavior of the system. Situation analysis consists of
two sub layers:

– Situation Detection: this sub-layer supports the detection of situations of interest in the system
based on defined indices, thereby identifying current states.

– Situation Prediction: this sub-layer represents the part of the system which enables the
prediction of the future states.

• Control: This layer consists of two sub layers that use the predictions to create decisions and that
transforms the decisions into actions that can be carried out by either human or computer agents.

– Decision Processes: This sub-layer represents parts of the system that are involved in deciding
the control action to take, given the predicted future states. This layer fuses the identified
current situation with the predicted situation to evaluate the most appropriate course of action.

– Action: This sub-layer represents parts of the system that are used to enact the selected
control action that corresponds to the result of the decision process.

2.2. Main Components

Figure 2 below shows the data flow through the main components of the system. Streaming
data for proactive monitoring requires processing on the fly, the output of a process is automatically
channeled as input for the next process. Historical data can be stored for later use, and temporary
storage can be used to structure data as input for the next process. The observation data is streamed
into situation detection and situation prediction components. The output of these two are integrated
for decision processes. The decision output is then used by the action component to produce sets of
actions to be performed by human or computer agents. The monitoring layer and situation detection
component of the situation analysis layer has been reported in previous research [1]. The focus of this
paper is on the implementation of the situation prediction process with a statistical machine learning
based model and integrating the outputs of the situation analysis layer for the decision component.
A detailed explanation of how we implemented the situation analysis component for the present study
is given in Section 5. First, however, a case study and experiments are presented in order to motivate
our approach for the implementation.

Figure 2. Dataflow diagram of the main components of the proactive architecture.
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3. Application Use Case

The use case for this work is an ongoing cohort study [25,26] along with occupational health
researchers investigating the effects of indoor air pollution, especially fine particles pollution on
pregnant mothers and children. Particulate Matter, especially those of the aerodynamic diameter of
2.5 µm or less (also referred to as PM2.5), is one of increasingly incriminated indoor pollutants causing
life threatening illnesses.

Predicting indoor pollution levels of PM2.5 in an indoor environment is a complex and challenging
task. The indoor environment is a dynamic and complex system of various environmental phenomena,
building features, human activities and infiltrations from the outdoor environment, all of which impact
on the fine particles concentration. The proactive monitoring and control system is to predict PM2.5

pollution trends effectively and provide proactive control actions for the occupants when necessary to
avoid excessive exposure to PM2.5 pollution.

3.1. The Area

The use case area is South Durban, a low income residential community in South Africa.
The peculiar characteristics of housing in this community include lack of mechanical heating,
ventilation or cooling systems, highly aggravated indoor pollutants through external pollution, and life
style choices such as smoking and fossil fuel burning. The area is also in proximity of heavy industries;
harmful effects of indoor pollution from outdoor sources have been noted to be more pronounced in
residences that are close to heavy industries.

For this use case, the goal of the occupational health researcher is to keep the occupants’
exposure to particulate pollution within healthy limits. The World Health Organization (WHO)
has recommended an exposure limit of 25 µg/m3 daily average for indoor environments [27,28].
Hence, a Proactive Pollution Monitoring and Control System (PPMC) is required to monitor and
provide control actions to the residents when necessary to avoid exposure to unhealthy PM2.5 pollution
levels. The system will predict the short term future trend of PM2.5 pollution and decide on appropriate
control actions to stimulate proactive actions by the occupants to avert exposure to any anticipated
unhealthy indoor PM2.5 pollution level. The indoor pollution will be controlled via the control of
activities of occupants that influence indoor PM2.5 pollution. The control action will be communicated
as a short message service (SMS) to advise the occupants on proactive actions to take in order to
prevent the predicted pollution from occurring. This is an upgrade to the previous system [1], which
only alerts the occupants of detected unhealthy situation that has already occurred.

Three different houses in the use case area were selected and used for testing the proactive
monitoring and control system. One of the locations was first used as a pilot study for a week in April
2015, during the autumn season and the other two were used in October 2015, during the spring season.

3.2. The Proactive Pollution Monitoring and Control System

Sensor units were installed in the three houses (Site 1, Site 2 and Site 3; See Figure 3). These were
implemented with low-cost sensors, mounted on prototyping platforms such as Raspberry Pi to capture
and format sensor observation data (PM2.5 concentration). The platforms also hosted communication
devices to transmit the observation data to the processing server. The sensors sent streaming data
over the Internet to the processing server located in the Cognitive and Adaptive Systems Research
Laboratory, at the University of KwaZulu-Natal which is 20 km away. Site 1 is about 1.1 km away from
Site 2, and about 300 m away from Site 3, while Site 2 and Site 3 are 900 m apart. The processing server
hosts the knowledge base, and runs the monitoring and control system.
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(a)
(b)

Figure 3. (a) Main hardware components; (b) Google map showing Site 1, Site 2 and Site 3.

The hardware deployed in each site included a sensor network testbed implemented with low
cost sensors for the monitored pollutants. PM2.5 was monitored with two different low cost sensors,
Dylos air quality monitor DC1100 PRO (Dylos monitor) and Nova PM sensor SDS011 (Nova sensor).
(http://www.dylosproducts.com/dc1100paqmc.html, http://inovafitness.com/en/Laser-PM2-5-
Sensor-35.html) Using two low cost sensors for monitoring simultaneously allows for assuring the
quality of the recorded observations. A Raspberry Pi B+ in each location acts as the sensor node
that continually transmits streams of sensor observation data to the processing server. The sensor
node is equipped with a LB-Link BL-WN151 wireless N adapter that connects to the Internet through
HUAWEI E5330 mobile Wi-Fi router and transmits data to the server through a Message Queuing
Telemetry Transport (MQTT) service.

The software for the PPMC includes the indoor environmental quality ontology reported on in
an earlier study [1], which is now extended with terms to support prediction of future pollution levels
and decision rules. The testbed was implemented with Apache Jena framework in Eclipse integrated
development environment. C-SPARQL library, a stream reasoning engine and Apache Jena TDB,
a triple store were also integrated into the framework.

A predictive model that employs a trained MLP, a Neural Network model to predict short
term pollution levels of PM2.5, was implemented for the situation prediction component. This was
implemented with the Waikato Environment for Knowledge Analysis (WEKA) [29] libraries in the
Java environment and integrated in the architecture. The stream reasoning engine supports integrating
both the current and future PM2.5 pollution states to determine appropriate feedback messages. An
actuator module is then invoked to send pre-formatted control actions via SMS to the occupant when
necessary.

3.3. Situation Prediction: Statistical Predictive Modeling

The situation prediction component of the PPMC system aims to predict short term trends of
fine particulate matter in the indoor environment. Several factors have been noted to influence PM2.5

concentration in the indoor environment, such as indoor and outdoor sources of the particles, fine
particles resting on different surfaces can also be resuspended in the air due to impact during activities.
Activities, including sweeping, cooking, burning of incense and cigarette smoking are known to
influence the concentration of PM2.5 captured in the sensor observation data. In this application
scenario, a short time prediction is considered useful to take control of the impending unhealthy
situation before it occurs.

A sensor data stream is essentially time series data, which requires a time series approach
for predicting future values. Prediction of future states can be achieved by pattern classification

http://www.dylosproducts.com/dc1100paqmc.html
http://inovafitness.com/en/Laser-PM2-5-Sensor-35.html
http://inovafitness.com/en/Laser-PM2-5-Sensor-35.html
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with a sliding window technique [30,31]. Classification is an area of machine learning that involves
constructing classifiers for characterizing datasets. A classifier is a function that maps the instances
described by a set of attributes to one of a finite set of class labels [32]. Examples of classifiers
include Bayesian Network classifiers, Neural Networks classifiers and Decision Trees classifiers.
Classification techniques employ machine learning algorithms to identify and generate a model that
fits the relationship between the attribute set and class label of the input data, such that the model
can accurately predict class labels of new attribute sets [33]. Situation prediction in this application
scenario is treated as binary classification [34]. The classifier is made to predict the PM2.5 state over a
prediction horizon into one of two non-overlapping classes (“Good” or “Poor”) guided by the WHO
recommended exposure limits for indoor PM2.5 [27].

The sliding window approach [30,31] for classification on time series data was adopted to predict
PM2.5 short term pollution levels 30 minutes and 1 hour(h) into the future. A sliding window is a fixed
length of data that slides through the temporally ordered data stream [30,32]. Sliding windows can
be useful for two main purposes in time series data classification tasks. First, to select a fixed size of
the most recent attributes from the evolving time series data as input for the classifier for predictions.
Second, to slide through historical data and select a fixed size of data to update the classifier. In our
approach, a sliding window is used to select attributes for generating feature-sets for the classifer to
make predictions. Five different classifiers were considered for predicting PM2.5 short term pollution
levels in this study. These are discussed below.

• Bayesian Network (BN): BN also referred to as belief network is an annotated directed acyclic
graph that support representation of joint probability distribution over a set of random variables.
A vertex in the graph represents a random variable while the edges represent dependencies
between the variables. A conditional probability table is maintained at each node. A BN classifier
can learn appropriate Bayesian network structure, and the probability tables from training data
given the class variable. Classification is done based on joint probability distributions over class
variables, given the particular instance of input variables. A class label with the highest posterior
probability is predicted [32]. BayesNet is an implementation of BN in WEKA library [35].

• Multilayer Perceptron (MLP): MLP is one of a family of computation models called Artificial
Neural Networks (ANN). They are used in machine learning and cognitive science to emulate the
biological nervous system in computing functions. An ANN consists of several interconnected
’neurons’ and is capable of changing its structure based on the data that flows through it
either from external or internal source. ANNs have been found notably suitable for non-linear
classification tasks. MLP consists of three type of layers: the input layer, one or more hidden
layers and the output layer. MLP has been widely and successfully used for time series prediction
tasks [36].

• Decision Table (DT): DT is a rule based classifier which functions in the form of a look up table.
DT consists of hierarchical tables such that each entry in a higher level table is broken down by the
values of a pair of additional attributes to form another table, a process called decomposition [37].
As such, DT has two components, a list of attributes also called a schema, and a multiset of
labeled instances referred to as the body. Every instance consists of a value for the label [38].

• J48: This is a Java implementation of the C4.5, a decision tree method. Decision tree classification
methods build decision trees from labeled input datasets. A non-leaf node on the tree represents
an attribute variable, while leaf nodes represents class variables. The J48 classifier implements a
concept referred to as information gain, a mathematical tool which is used to measure the amount
of information a dataset contains. This is used to assign the best fit variable in each of the nodes.

• Random Forests (RF): RF is an ensemble learning method. Ensembles are methods that implement
several classifiers and aggregates their results. RF employs a method called bagging to aggregate
results from several decision tree classifiers. Successive trees in bagging are independently
constructed using a bootstrap sample of the dataset, such that a simple majority vote is taken on
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the result of the trees to make a prediction [39,40]. RF has been noted to give good performance
on time series data [41,42].

3.3.1. Data Pre-Processing and Feature Engineering

The data set consists of time series data of the historical PM2.5 concentration level generated from
the sensor observation data. One week of continuous PM2.5 sensor observation data of one minute
resolution was collected from each site for this study. The data was captured by two sensors, the Dylos
monitor and the Nova sensor. Dylos monitor records PM2.5 observations in particle counts per cubic
feet, while the Nova sensor records observation in micrograms per cubic meter (µg/m3). Conversion
of the data from Dylos monitor to µg/m3 was achieved using the widely used method derived by
Semple et al. [43,44].

Sensor data from low cost sensors can be inherently noisy. Hence, to minimize the noise in the
data, a 30 min simple moving average of the actual 1 min resolution sensor observation data is used
for the analysis. The sliding window technique maintains a queue of constant length in the form of
first in first out (FIFO) with one minute resolution sensor observation data. At every minute a new
sequence is formed which differs from the previous sequence only by addition of the newest time step
observation data, and removal of the oldest time step observation data in the sequence. More formally,
if Ot represents the observation at current time t, at every time step, a new sequence consisting of a
series of n observations is formed by pushing-in the new observation as Ot and popping out the oldest
observation Ot−(n−1) from the previous sequence.

The features for building the classifiers include timestamps, mean of the sliding window sequence,
class value for the mean, and class label for the target class. The class value and class label are
categorical and binary, that is, two non overlapping classes (“Good” and “Poor”). Guided by the WHO
recommended exposure limits to indoor PM2.5 [27], concentration values that are less than or equal to
25 µg/m3 are set to “Good” and those that are greater than 25 µg/m3 are set to “Poor” (see Table 1).

Table 1. Class values guided by WHO recommended exposure limits for indoor PM2.5 [27].

PM2.5 Concentration (µg/m3) Class Value

≤25 “Good”
>25 “Poor”

4. Experiments

Several experiments were carried out with time series techniques such as Auto Regressive
Integrated Moving Average (ARIMA) but yielded no satisfying result for this case study. Hence,
the adoption of a sliding window technique. 6480 data points of one minutes resolution, which
corresponds to four and a half day continuous observation data was selected from each site data for
analysis. The data was analyzed to select the appropriate machine learning algorithm for the case study
and to determine the optimal training methods for the model. The experiments are described below:

4.1. Experiment 1: Data Visualization

The aim of the data visualization is to visualize the data from each site and understand class
distribution of the data. First, the one minute resolution raw observation data from both Dylos monitor
and Nova sensor were plotted together in line charts to show the trends of PM2.5 in the sites and also
to see the agreement between the two sensors. Second, 30 min moving average data from both sensors
was also plotted.

Figure 4 shows the visualization of the raw PM2.5 observations from the sites. The data captured
by the Nova sensor (see Figure 4) is much more noisy compared to Dylos monitor observations
(see Figure 4), therefore, data captured by the Dylos monitor is used for the remaining experiments.
The figure shows Site 1 to be a heavily polluted house. This corresponds to the characteristics of the
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house; highly congested with one of the windows perpetually opened. Site 2 and Site 3 are much less
polluted, they are cleaner and less congested. The high frequency of “Poor” class in Site 1 may also be
due to seasonal variations, since Site 1 data was collected in April during the autumn season and data
from the other two sites was collected in October during the spring season.

Figure 4. Line graph of raw sensor observation from the monitored sites. (a) Site 1; (b) Site 2; and
(c) Site 3.

Figure 5 shows the 30 min simple moving average of observation data from the three sites and
the target exposure limit for PM2.5. From the graph, Site 1 is identified to fall in the category of the
houses targeted for the PPMC system.

As a result of the visualization experiments, Site 1 is identified to fall into the category of the houses
whose occupants are at risk of excessive exposure to fine particle pollution. Hence, the remaining
experiments are performed on the data from Site 1, captured with Dylos monitor.
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Figure 5. Line charts showing 1 min data from the monitored sites. (a) Site 1; (b) Site 2; and (c) Site 3.

4.2. Experiment 2: Evaluation of Classifiers for Predictive Modeling

The aim of Experiment 2 is to select the appropriate classifier for a short term prediction of PM2.5

in the indoor environment. This experiment simulates the real live use case of the predictive model.
For this experiment, the 1 min resolution data was further resampled to 30 min resolution such that
a data point represents an average of sensor observation for the past 30 min. Resampling to 30 min
resolution makes the prediction task over a 30 min horizon a one time-step prediction. The 30 min
resolution data is used to generate input data for the classifiers in this experiment. The dataset is
partitioned to allow for the classifiers to slide through the entire dataset at 6 h time-steps.

First, the model initializes by training the classifiers with the first 36 h observation data, then the
classifier is made to predict target labels of unseen data for the following 6 h. After the prediction, the
6 h of unseen data is added to the training data and the classifier is retrained (see Table 2). This process
is repeated through the entire dataset. All the classifiers were evaluated through the dataset in this
manner. Table 2 shows the partitioning of the dataset for this experiment.



Sensors 2017, 17, 807 11 of 23

Table 2. Dataset partitions for evaluating classifiers.

Training Train Set Size Testing Test Set Size
From To From To

3 April 2015 10:00 4 April 2015 21:30 72 4 April 2015 22:00 5 April 2015 3:30 12
3 April 2015 10:00 5 April 2015 3:30 84 5 April 2015 4:00 5 April 2015 9:30 12
3 April 2015 10:00 5 April 2015 9:30 96 5 April 2015 10:00 5 April 2015 15:30 12
3 April 2015 10:00 5 April 2015 15:30 108 5 April 2015 16:00 5 April 2015 21:30 12
3 April 2015 10:00 5 April 2015 21:30 120 5 April 2015 22:00 6 April 2015 3:30 12
3 April 2015 10:00 6 April 2015 3:30 132 6 April 2015 4:00 6 April 2015 9:30 12
3 April 2015 10:00 6 April 2015 9:30 144 6 April 2015 10:00 6 April 2015 15:30 12
3 April 2015 10:00 6 April 2015 15:30 156 6 April 2015 16:00 6 April 2015 21:30 12
3 April 2015 10:00 6 April 2015 21:30 168 6 April 2015 22:00 7 April 2015 3:30 12
3 April 2015 10:00 7 April 2015 3:30 180 7 April 2015 4:00 7 April 2015 9:30 12
3 April 2015 10:00 7 April 2015 9:30 192 7 April 2015 10:00 7 April 2015 15:30 12

Two different classifiers were constructed and evaluated for each of the five different classification
methods selected. The first classifier is trained to predict for the half hour horizon and the second
classifier is trained to predict for one hour horizon.

4.2.1. Evaluation Criteria

In order to evaluate the performance of selected classifiers, a confusion matrix (see Table 3)
was constructed from the results of the classification, and the widely accepted metrics for binary
classification tasks in machine learning community which include Accuracy, Precision, Recall (Sensitivity),
Specificity and F-Measure [34,45], were calculated from the confusion matrix. This classification task
is focused on identifying the classifier that can better predict the “Poor” classes in the dataset over
the prediction horizon. Therefore, when a “Poor” state is correctly classified as “Poor”, it is regarded
as true positive (TP), and when a “Good” state is correctly classified as “Good”, it is regarded as true
negative (TN). Likewise, a “Good” state wrongly classified as “Poor” is false positive (FP) and a “Poor”
state wrongly classified as “Good” is false negative (FN). The counts of TP, TN, FP and FN predicted
by the classifier is used to generate the confusion matrix (see Table 3) and the evaluation metrics as
discussed below.

Table 3. Confusion matrix.

Actual Class Value Classified as “Poor” Classified as “Good”

“Poor” TP FN
“Good” FP TN

• Accuracy: Accuracy represents the overall performance of the classifier and it denotes the
proportion of the whole testset (TP + FP + TN + FN) that are correctly classified (TP + TN) [34].

• Precision: Precision also referred to as confidence in Data mining community [45] denotes the
proportion of predicted positive cases that are actually positive (“Poor”) in reality.

• Sensitivity: This is otherwise known as recall and it evaluates the proportion of the real positive
states that are predicted positive [45].

• Specificity: Specificity or true negative rate is an inverse of recall, which denotes the proportion of
real negative cases (“Good”) that are correctly predicted negative [34].

• F-Measure: F-Measure is an harmonic mean which combines precision and recall [34,45].

4.2.2. Result

Table 4 presents the result of the evaluation on the classifiers for predictive modeling. Most of the
classifiers show good precision and classification accuracy; however, for the analysis we are focused
on not only precision but also on the balance between how sensitive the classifier is to the “Poor” states
and how much it recognizes the “Good” classes (specificity). Random Forests classifier demonstrated
the highest precision of 0.906 for the half hour prediction horizon but has the least sensitivity (0.774)
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(see Table 4). This is evident in the bias to the “Good” classes observed in the prediction task. The BN
and the MLP demonstrate best performance in predicting PM2.5 states for the half hour horizon (see
bold figures in Table 4), but the BN demonstrates lesser precision in predicting states for the one hour
horizon. As a result of this experiment, MLP was chosen to model this case study.

Table 4. Precision, sensitivity, specificity and F-Measure of evaluated classifiers on Site 1 dataset.

Prediction Horizon Classifier Accuracy Precision Sensitivity Specificity F-Measure

BN 0.864 0.855 0.855 0.871 0.855
DT 0.856 0.864 0.823 0.886 0.843

30 min J48 0.856 0.852 0.839 0.871 0.846
MLP 0.864 0.855 0.855 0.871 0.855
RF 0.856 0.906 0.774 0.929 0.835

BN 0.780 0.758 0.770 0.789 0.764
DT 0.773 0.804 0.672 0.859 0.732

1 h J48 0.773 0.816 0.656 0.873 0.727
MLP 0.788 0.780 0.754 0.817 0.767
RF 0.758 0.822 0.607 0.887 0.698

4.3. Experiment 3: Evaluation of Sliding Window Sizes

This experiment aims to determine the optimal sliding window length for training the MLP that
was selected for this study in Experiment 2. MLP classifiers were evaluated on four different datasets,
each of which were prepared with different sliding window lengths (n = 1, n = 10, n = 20 and n = 30)
and partitioned as shown in Table 2. The classifiers were made to predict next class values for both 30
min and 1 h prediction horizons. The performance of the classifiers in terms of precision, recall and
specificity on each of set of the data was plotted in line charts.

4.3.1. Result

Figure 6 shows the result of this experiment. This experiment reveals that increasing the sliding
window lengths of input data to the classifiers steadily decreases the performance of the classifiers
in predicting the target classes. The point at which specificity and precision starts increasing when
sensitivity (recall) keeps decreasing demonstrates a point where bias towards one of the target classes
(“Good”) sets in, and starts increasing. That is, the model steadily loses sensitivity to the “Poor” class
from this point. The dataset with window length n = 1 gave the best performance (highlighted with
dotted vertical lines in the Figure 6). Sensitivity especially demonstrates a free fall with the increase
in sliding windows length. This observation may be due to the notion that more recent data is more
relevant to the future than older ones [46]. A more detailed tabulated result of this experiment is
presented in Table A1 of the appendix.

(a) (b)

Figure 6. Line charts showing precision, recall and specificity against different sliding window length,
(a) half hour prediction horizon; (b) one hour prediction horizon.
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5. Integration of Predictive Model in the Framework

The selected MLP predictive classifier was integrated into the system using the WEKA library
in Eclipse, a Java based Itegrated Development Environment. The situation prediction component
consists of two different MLP classifiers to achieve two different horizons of prediction. The first was
trained to predict pollution levels for the next half hour, and the second for the next one hour. The result
of the situation prediction generated from the models is integrated into the stream reasoning framework
by encoding it as Resource Description Framework (RDF) triples (see Figure 7). The C-SPARQL RDF
stream reasoning engine supports registered queries to combine RDF streams and static RDF triples (in
ontologies) for reasoning. Through this process, the RDF streams of predicted PM2.5 pollution trends
which correspond to the future situation of the indoor air quality is combined with RDF streams of the
current situation detected by the air quality index for decision processing.

Figure 7. Integration of predictive modules into the PPMC system.

5.1. The Monitoring and Control Process

Three continuous queries are registered with the C-SPARQL engine to filter the RDF streams for
air quality states at the current time (as indicated by the air quality index module) at the next half hour
and at the next one hour. In order to be unobstructive, the system does nothing when the air quality is

“Good”. At any time that either the current state or the predicted state is “Poor”, the decision processing
module in the control layer is notified. The values detected by the monitoring queries are recorded
in the ontology for reasoning by the decision processing module. Figure 8 shows a fragment of the
ontology illustrating how an observation is stored. The model is based on the SSN ontology [8].
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Figure 8. Fragment of the ontology showing the data model.

The following listings illustrate how triples are stored in the ontology, and how they can be
processed for monitoring and control with continuous queries. We use iaq-owl as a shorthand notation
for the Internationalized Resource Identifier (IRI).

• How Data is Stored in the ontology

iaq−owl : SEQ2500 iaq−owl : generatedFrom iaq−owl : s i t e 0 1
iaq−owl : SEQ2500 iaq−owl : generatedAt " 0 1 : 2 5 : 1 2 . 1 0 0 "^^xsd : time
iaq−owl : SEQ2500 iaq−owl : hasPredic t ion iaq−owl : PRE7900
iaq−owl : SEQ2500 iaq−owl : hasIndex " good "^^xsd : s t r i n g
iaq−owl : PRE7900 iaq−owl : halfHourValue " poor "^^xsd : s t r i n g
iaq−owl : PRE7900 iaq−owl : oneHourValue " poor "^^xsd : s t r i n g

• Monitoring Current Air Quality State

This query continually filters through the indoor air quality index stream to notify the decision
manager of the current air quality detected by the index.

REGISTER QUERY CurrentStateQuery
AS PREFIX iaq−owl : <http :// iaq−ukzn . ac . za/iaq . owl#>
SELECT ? s i t e ? current ? t
FROM STREAM <http :// iaq−ukzn . ac . za/iaqindex/stream > [RANGE 10 m STEP

10 m]
WHERE { ? seq iaq−owl : hasSeqID ? s id

? s id iaq−owl : generatedFrom ? s i t e .
? s id iaq−owl : generatedAt ? t .
? pid iaq−owl : hasIndex ? current .
FILTER ( ? current = " good "^^xsd : s t r i n g ) }

• Monitoring Half Hour Prediction State:

This query monitors the predictions over 30 min horizon; it is activated to notify the decision
manager when air quality predicted in the next 30 min is “Poor”.
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REGISTER QUERY halfHourPredictionQuery
AS PREFIX iaq−owl : <http :// iaq−ukzn . ac . za/iaq . owl#>
SELECT ? s i t e ?p1 ? t
FROM STREAM <http :// iaq−ukzn . ac . za/ p r e d i c t i o n /stream > [RANGE 10 m STEP

10 m]
WHERE { ? seq iaq−owl : hasSeqID ? s id

? seq iaq−owl : generatedFrom ? s i t e .
? s id iaq−owl : generatedAt ? t .
? s id iaq−owl : hasPredic t ion ?p .
?p iaq−owl : halfHourValue ?p1 .
FILTER ( ? p1 = " poor "^^xsd : s t r i n g ) }

• Monitoring One Hour Prediction State

This query is activated to notify the decision manager when air quality predicted in the next
one hour is “Poor”.

REGISTER QUERY oneHourPredictionQuery
AS PREFIX iaq−owl : <http :// iaq−ukzn . ac . za/iaq . owl#>
SELECT ? s i t e ?p2 ? t
FROM STREAM <http :// iaq−ukzn . ac . za/ p r e d i c t i o n /stream > [RANGE 10 m STEP

10 m]
WHERE { ? seq iaq−owl : hasSeqID ? s id

? seq iaq−owl : generatedFrom ? s i t e .
? s id iaq−owl : generatedAt ? t .
? s id iaq−owl : hasPredic t ion ?p .
?p iaq−owl : oneHourValue ?p2 .
FILTER ( ? p2 = " poor "^^xsd : s t r i n g ) }

RANGE and STEP are operators used in C-SPARQL queries to support time windows. RANGE
specifies the size of the time window that the query filters through, while STEP specifies time steps with
which the time window slides forward. Setting both RANGE and STEP to the same value (for example
10 min as used in this use case) specifies a tumbling window scenario, in which the time window does
not slide, but rather, at the end of a time window, another time window starts in a tumbling manner.
This means that subsequent results do not contain observations from previous results. In this example,
the window’s size is set to 10 min, but this can be set as desired.

The states values detected by the continuous queries can be used by the decision manager for
reasoning with decision rules in the ontology in order to determine the appropriate actions at a point
in time. For example, consider as a target future “PM2.5 pollution” situation a point when PM2.5 state
is “Poor” consistently for up to thirty minutes. We can represent this in the system as when both the
half hour and one hour prediction results are “Poor”, while the current state is not “Poor”. In this
situation, the Proactive Pollution Monitoring and Control System needs to warn occupants to take
some recommended proactive actions to avoid the predicted situation. The listing below demonstrates
reasoning-logic by the decision manager in this example.

house ( ? s i t e ) , sequence ( ? s id ) ,
generatedFrom ( ? sid , ? s i t e ) ,
hasIndex ( ? sid , ! " poor " ) ,
hasPredic t ion ( ? sid , ? pid ) ,
halfHourValue ( ? pid , " poor " )
oneHourValue ( ? pid , " poor " ) ,
−> PM25pollutionPredicted ( ? s i t e , ? t rue )
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The decision rule can be implemented in any reasoning infrastructure that is compatible with
the Semantic Web, such as Semantic Web Rule Language (SWRL), SPARQL or the JENA rule engine
(www.w3.org/Submission/SWRL/, https://jena.apache.org/documentation/inference/#rules). In
the use case scenario, when the pollution is predicted, the decision manager can activate the actuation
module to send an appropriate control action to the occupants in order to prevent the pending
unhealthy situations from happening. An example of this could be: “Alert: Unhealthy Fine Particle
Level predicted soon; Proactive Control Advice: Please avoid smoking, burning incense and excessive cooking
indoors”. More details about using activities to control indoor PM2.5 pollution is presented in our
previous work [1].

6. System Analysis and Evaluation

In order to determine how the Proactive Pollution Monitoring and Control System will perform
in the field, we carried out evaluation tests based on the test data used to evaluate the classifiers (see
Section 4). The test data consists of 132 observations in all. The data was made to run through the
components of the system. The performance of the components and the overall efficiency of the system
was analyzed. The system used for the evaluation is an ASUS laptop running Windows 7, with Corei5
(Intel(R) Core(TM)i5-3337U CPU @1.80GHz) processor and 12.0 GB installed memory. Result of the
analysis and evaluation of the system with respect to design decisions made on each of the components
are discussed below.

The situation prediction component initializes by training the classifiers with 36 h of historical
data (see Section 4.2). Over ten runs, the average initialization time was 39,208.0 ms (≈0.65 min) to
train MLP classifiers for the half hour prediction and 47,098.4 ms (≈0.78 min) to train the classifiers for
the one hour prediction. The classifiers then effectively processed each subsequent prediction task in a
maximum of 1 ms in all the cases. However, the system is also designed to update the classifiers every
6 h with the most recent data. We compared the training times of the MLP classifiers with that of BN
classifiers which was found equally suitable for this work (see Section 4.2). Table 5 shows the variation
of training time as the size of datasets grows. The re-training time for MLP classifiers increases rapidly
as the dataset grows, while the re-training time of BN is minimal and remains relatively constant after
the initialization. This experiment reveals that although the MLP model has a slightly better predictive
performance than BN in this study, it is not as scalable as BN. Hence, the choice of MLP over BN for the
system is a trade-off between the predictive performance and scalability. Given the poor model update
speed of the MLP as the data set grows, the BN is a more likely choice for implementation. However,
further investigation is required on mechanisms for reducing the model update time for the MLP.

Table 5. Performance of situation prediction classifiers during updates.

MLP BN

One Hour Classifier Half Hour Classifier One Hour Classifier Half Hour ClassifierDataset Size
Training Time (ms) Training Time (ms) Training Time (ms) Training Time (ms)

72 39,208.0 47,098.4 288.2 301.2
84 45,280.4 49,701.2 4.8 3.7
96 54,979.6 55,967.2 4.2 3.0

108 64,487.0 62,518.6 3.4 3.7
120 74,083.8 65,513.8 3.4 3.1
132 76,995.2 71,036.4 3.2 2.9
144 85,660.4 81,994.4 3.0 3.5
156 92,779.4 91,990.8 3.2 4.1
168 92,376.6 97,852.6 4.2 7.0
180 97,573.0 104,304.6 3.8 3.3
192 109,404.8 111,131.4 4.8 4.5

www.w3.org/Submission/SWRL/
https://jena.apache.org/documentation/inference/#rules
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The situation detection component, which detects the current situation by interpreting observation
data based on the air quality index (see Section 3.3.1) identifies all the situations correctly. The output of
this component also serves directly as labeled data for retraining the classifiers during system updates.

Stream reasoning with C-SPARQL is used to monitor three different streams (see Section 5.1) in the
system, that is, the current pollution situation, the half hour prediction and the one hour predictions.
Out of the 132 observations in the test data, 62 observations have either half hour predictions or one
hour predictions that are “Poor”. The queries effectively detected all the targeted situations correctly.
Detected situations are appropriately recorded in the ontology.

The decision to activate alarms is based on the result of a SPARQL query that is evaluated on the
ontology at specified intervals, which was set to 10 min for the purpose of this evaluation. The query
filters through the data to detect situations in which half hour and one hour predictions are both
“Poor” for the past 10 min in order to activate control actions. When C-SPARQL is used to filter the
predictions, only 62 prediction triples that have either half hour prediction or one hour predictions
as “Poor” were recorded in the ontology. In a query test that was repeated ten times, the average
execution time of SPARQL query was found to be 295 ms. We compared this with the execution time
of SPARQL query when all the observations were streamed into the ontology, that is, when C-SPARQL
is not used. The dataset in the ontology now includes the triples representing the predictions of all the
132 observations. The average execution time of the query is 441 ms. The difference of 146 ms may
seems little because of the minimal dataset for now, but as the number of triples in the ontology grows,
the performance difference may be much more pronounced. Stream reasoning queries could also have
been used to activate decisions on the fly, without storing data in the ontology, however, the ontology
supports combining the stream reasoning with other static data pre-captured in the ontology including
the control actions to be recommended to the occupants.

In order to asses the overall effectiveness of the system, we compared the number of times that
the system raised alarms for predicting pollution with the number of times that the corresponding
records in the actual data specifies that both half hour situations and one hour situations are “Poor”.
Out of the 132 observations in the test data, the “Poor” condition is satisfied 52 times, however, the
system raised alarms 59 times, giving 7 (11.86%) false alarms. The false alarms were found to be due to
false positive predictions by the situation prediction component.

7. Related Work

There is growing research interest in the design and application of proactive systems. Some of the
proactive techniques that have been proposed have been reviewed by VanSyckel et al. [47]. Wang and
Cao [48] reported on a proactive method for large-scale transportation Internet of Things. They
integrated a multi-layered Adaptive Dynamic Bayesian Network predictive method into a probabilistic
event detection system and applied it to predict and abate traffic congestion in a simulated environment.
This study is different from Wang and Cao’s [48] in that it integrates statistical machine learning into
Semantic Sensor Web applications using stream reasoning techniques. Wang and Cao did not utilize
semantic sensor techniques nor did they apply stream reasoning methods.

Anaya [23] integrated predictive analysis in self-adaptive systems. The author proposed statistical
machine learning techniques for predicting the future, and fuzzy logic for control mechanisms.
Although the concept of this work is similar to Anaya’s [23], who sought to achieve proactive behaviors
by integrating predictive analysis in a context aware system, he did not utilize semantic methods.

There has also been previous work done on air quality monitoring and control. Yu et al. [20]
proposed an intelligent wireless sensing and control system to improve indoor air quality: monitoring,
prediction, and pre-action. They used low cost sensors for monitoring indoor carbon dioxide (CO2)
levels and employed the integration of Auto Regression Moving Average (ARIMA) time series
forecasting method to predict future concentration levels of CO2 and they used fuzzy logic to make
control decisions. This study is different from Yu et al. [20] in many ways. First, they based air quality
on CO2 concentration levels, while this study is focused on air quality with respect to fine particulate
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matter (PM2.5) concentration levels. Second, the uncertainty in the continuity of indoor levels of PM2.5

requires techniques different from ARIMA to predict future levels. We employed a sliding window
classification approach to predict PM2.5 pollution levels. Finally, this study advocates Semantic Sensor
Web techniques to manage semantically annotated streaming observation data, which was not used by
Yu et al.

Saad et al. [21] proposed Artificial Neural networks in indoor air quality monitoring system.
Their work is related to this study in two ways. First their study was based on indoor air quality
monitoring, and second they proposed the use of a Neural Network model for pattern recognition.
However, their work is different from this study in the following ways. Firstly, their application of the
Neural Network model was to identify the sources of indoor air pollution and not to predict future
trends like ours. Secondly, their system was not focused on proactive control like ours, and thirdly,
they did not employ semantic techniques in their study.

Artificial Neural Network models have been found useful for short term prediction tasks in
many intelligent real time application scenarios. Dia [49] successfully employed Neural Network for
predicting short time traffic situations from 5 to 15 min into the future with great accuracy. Kani and
Ardehali [50] also proposed a Neural Network model for predicting short term wind speed few
seconds, minutes and about an hour into the future. In this work, MLP, a Neural Network classifier
also proves useful in predicting short term trend of PM2.5 30 min and 1 h into the future with great
precision and sensitivity.

Vafaeipour et al. [30] reported on a successful sliding window approach with neural networks
models on time series data to predict wind velocity. Their work is related to this study as regards using
sliding window with Neural Network model on time series data. However, their work is different
from ours in the following ways. First, their approach was focused towards regression, while the
approach used in this study is directed towards binary classification. Second, their application was in
an entirely different domain; they are predicting ambient wind speed for power generation, while the
predictive model in this study is applied to PM2.5 trends in the indoor environment.

The high precision of up to 0.86 (86%) achieved in predicting trends of indoor PM2.5 in this study
is comparable with Yu et al. [51] achieved a precision of 81% in inferring ambient air quality index
with a Random Forests classification approach, especially PM2.5 in urban areas. While their approach
was based on using several attributes from urban sensing systems, this study employs solely time
series observation data from low cost sensors and a Neural Network model. This study suggests that
fine particle pollution can be predicted with comparable high precision or perhaps better in the indoor
environment by applying Neural Networks classifiers on data from low cost sensors.

8. Discussion and Conclusions

We have presented an approach to achieve proactive monitoring and control in the Semantic
Sensor Web by integrating a statistical prediction model in the processing space of a stream reasoning
framework. The proactive monitoring and control approach was illustrated with an indoor air quality
scenario and data streams from a real live case study in a low-cost residential setting. The proposed
system provides a mechanism to combine the high accuracy and performance of statistical predictive
techniques and the expressiveness of semantic analytic techniques for proactive monitoring and
control. Although the concept of proactive computing is not new [22,23], many Semantic Sensor Web
monitoring applications are still designed in reactive manners. The reason is perhaps due to the fact
that the predictive methods, such as predictive reasoning [17,18], that are native to Semantic Web
technologies, are still emerging [10]. And although recent works in the stream reasoning community
offer support for integration of heterogeneous data stream sources, more work is needed, especially
on the approaches to integrate predictive models within the processing space of a stream reasoning
framework for Semantic Sensor Web applications. This study proposes an architecture that attempts to
fill this gap. The architecture was shown to be effective for combining both stream reasoning processes
and the outputs of predictive models for predicting situations of interest. While the mechanism was
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designed to be application interdependent, we are in the process of testing it on other applications to
verify this.

Secondly, we propose a sliding window approach that employs MLP classifiers for predicting
states of indoor PM2.5 pollution levels from low cost sensor observation data streams. This study
suggests that predicting particulate matter pollution levels in the indoor environment requires a
different technique than ARIMA proposed by Yu et al. [20] for indoor air quality based on CO2.
The unsatisfactory results observed with ARIMA may be due to the uncertainty in the continuity of
the PM2.5 levels in the indoor environment. From the dataset used for this study, the concentration
level of indoor PM2.5 does not follow a regular pattern. Hence, it may be difficult for a method like
ARIMA to effectively predict indoor levels of PM2.5 in this study.

The sliding window approach to manage time series data for prediction has been demonstrated
to be useful for modeling other real time environmental domains [30,31]. This study demonstrates
that the sliding window approach can also be used with a MLP model on time series data to predict
indoor PM2.5 pollution levels with high precision and sensitivity. As far as we know, our work is the
first attempt to use this approach for predicting PM2.5 in the indoor environment. And although some
efforts have employed Dylos sensors for detection of particulate matter, to the best our knowledge,
our work is the first approach to attempt predicting future levels of PM2.5 with data from Dylos 1100
PRO, a low cost particle sensor.

In real time data stream scenarios, especially in a dynamic environment, the relationship between
the data and the properties of the target variable, which the statistical models predict is known to drift
over time (concept drift) [52]. Sliding window methods are among approaches that have been proposed
to overcome concept drifts [53].

This study further suggests that an appropriately trained MLP and BN classifiers can effectively
predict short term trend of PM2.5 with high precision and sensitivity. In our experiments, we achieved
precision of up to 0.86 and sensitivity of up to 0.85 using these two classifiers with our sliding windows
approach for predicting PM2.5 states 30 min into the future.

MLP, a member of the Artificial Neural Network family of models and BN prove to be the best
method for modeling the situation prediction component of the proactive monitoring and control
framework, given the case study at hand. Although MLP demonstrated a slightly better performance,
it is known to be difficult to train [54], making the choice between MLP and BN a trade-off between
predictive performance and scalability. This suggests that a particular method may not be applicable
in all scenarios. Therefore, careful experiments should be carried out to determine the best predictive
model for each specific situation to be modeled.

The use of stream reasoning in this study fulfills three important design goals. First, it provides a
means to integrate the output of situation prediction into the system for further processing. Secondly,
it ensures that only target situations are recorded in the ontology, which is in turn important for better
query performance on the ontology. And finally, stream reasoning is an elegant means to keep the
system’s components decoupled, which supports easy reconfiguration without the need for hardwiring
of the components. However, existing stream reasoning approaches still have known limitations
with respect to lack of standards, performance issues and the maturity of reasoning support [55].
More expressive queries take a longer time to execute, especially when applied to large real time data
streams. We expect that ongoing efforts in the stream reasoning community are addressing these
potential shortcomings [56] (https://www.w3.org/community/rsp/).

The combination of Machine Learning and ontology driven components in an architecture as
demonstrated in this study, especially the use of the data output of the situation detection as labeled
data for retraining classifiers for situation prediction, highlights an added value. This suggests that
semantic components of the system can support and enhance the functionalities of the predictive
components. This in turn may enhance the dynamism of the system and improve automation.

The decision processing of the proactive system is demonstrated by reasoning on the ontology in
Sections 5 and 6. In an ongoing effort, we are investigating advanced proactive decision processing

https://www.w3.org/community/rsp/
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mechanisms, which incorporate the classical principles of decision theory for Semantic Sensor Web
applications. We are also interested in investigating how ontologies can capture the pattern of
predictive errors made by the system, which may be useful in minimizing the false alarms raised.
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Abbreviations

The following abbreviations are used in this manuscript:

SSW Semantic Sensor Web
PM2.5 Fine particles of aerodynamic diameter less than 2.5 µm
PPMC Proactive Pollution Monitoring and Control System
BN BayesNet
MLP Multilayer Perceptron
DT Decision Table
RF Random Forests
RDF Resource Description Framework

Appendix A

Table A1. Accuracy, precision, recall, specificity and F-measure of MLP classifiers in dataset with
different sliding windows.

Sliding Window Length Accuracy Precision Recall Specificity F-Measure

1 0.864 0.855 0.855 0.871 0.855
30 min 10 0.833 0.823 0.823 0.843 0.823

20 0.795 0.787 0.774 0.814 0.780
30 0.803 0.821 0.742 0.857 0.780

1 0.788 0.780 0.754 0.817 0.767
1 h 10 0.773 0.772 0.721 0.817 0.746

20 0.697 0.684 0.639 0.746 0.661
30 0.705 0.739 0.557 0.831 0.636
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