

RFI Monitoring for the MeerKAT Radio
Telescope

Christopher Schollar

Department of Computer Science

University of Cape Town

Thesis submitted for the degree of Master of Science

February 2015

Supervisors:

Sarah Blyth

Michelle Kuttel

Anja Schroeder

Plagiarism Declaration

I know the meaning of plagiarism and declare that all of the work in this thesis,

save for that which is properly acknowledged, is my own.

Christopher Schollar

Abstract
South Africa is currently building MeerKAT, a 64 dish radio telescope array, as a pre-cursor for the

proposed Square Kilometre Array (SKA). Both telescopes will be located at a remote site in the Karoo

with a low level of Radio Frequency Interference (RFI). It is important to maintain a low level of RFI

to ensure that MeerKAT has an unobstructed view of the universe across its bandwidth. The only

way to effectively manage the environment is with a record of RFI around the telescope.

The RFI management team on the MeerKAT site has multiple tools for monitoring RFI. There is a 7

dish radio telescope array called KAT7 which is used for bi-weekly RFI scans on the horizon. The team

has two RFI trailers which provide a mobile spectrum and transient measurement system. They also

have commercial handheld spectrum analysers. Most of these tools are only used sporadically

during RFI measurement campaigns. None of the tools provided a continuous record of the

environment and none of them perform automatic RFI detection.

Here we design and implement an automatic, continuous RFI monitoring solution for MeerKAT. The

monitor consists of an auxiliary antenna on site which continuously captures and stores radio

spectra. The statistics of the spectra describe the radio frequency environment and identify potential

RFI sources. All of the stored RFI data is accessible over the web. Users can view the data using

interactive visualisations or download the raw data. The monitor thus provides a continuous record

of the RF environment, automatically detects RFI and makes this information easily accessible.

This RFI monitor functioned successfully for over a year with minimal human intervention. The

monitor assisted RFI management on site during RFI campaigns. The data has proved to be accurate,

the RFI detection algorithm shown to be effective and the web visualisations have been tested by

MeerKAT engineers and astronomers and proven to be useful. The monitor represents a clear

improvement over previous monitoring solutions used by MeerKAT and is an effective site

management tool.

Contents

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Aims ... 2

1.3 Approach ... 2

1.4 Contribution .. 2

1.5 Thesis Overview .. 3

2 Background .. 4

2.1 Astronomy ... 4

2.2 Radio Astronomy ... 8

2.2.1 Radio Telescopes .. 12

2.3 Radio Frequency Interference (RFI) .. 16

2.3.1 RFI Characteristics .. 18

2.3.2 Effects of RFI on Science .. 20

2.4 RFI Mitigation .. 21

2.4.1 Legislation .. 21

2.4.2 Monitoring ... 23

2.4.3 RFI Flagging .. 27

2.4.4 Spatial Nulling and RFI Excision .. 28

2.5 RFI Monitoring at MeerKAT .. 28

2.5.1 SKA Site Bid – RFI Measurement Campaign ... 28

2.5.2 Current RFI monitoring .. 33

2.5.3 ReAl Time Transient analYser (RATTY) ... 34

2.6 RFI Detection Algorithms .. 35

2.6.1 Data .. 36

2.6.2 Frequency and Temporal Thresholding ... 38

2.7 Technology .. 40

2.7.1 Databases ... 40

2.7.2 Highly Definable File Format .. 41

2.7.3 Web .. 42

2.7.4 Reconfigurable Open Architecture Computing Hardware (ROACH) 44

2.7.5 Python .. 45

3 Design ... 46

3.1 High Level Requirements ... 46

3.2 Resources .. 46

3.2.1 Limitations .. 49

3.3 Users ... 50

3.3.1 Astronomers .. 50

3.3.2 Engineers .. 50

3.3.3 Site Management .. 51

3.3.4 User Requirements .. 51

3.4 Design Approach ... 52

3.5 Design Decisions ... 54

3.5.1 RATTY ... 54

3.5.2 RFI Detection .. 54

3.5.3 Storage ... 55

3.5.4 Access ... 59

4 Implementation ... 62

4.1 Prototype 1: Basic Operations .. 62

4.1.1 Data Collection - RATTY Software Consolidation ... 62

4.1.2 Data Storage - Database Prototype ... 64

4.1.3 Data Access - Visualisation Prototype .. 66

4.1.4 Calibration and Installation .. 67

4.1.5 Discussion ... 69

4.2 Prototype 2: Archival Functionality .. 69

4.3 Prototype 3 : RFI Detection ... 71

4.3.2 RFI event extraction ... 72

4.4 Prototype 4 : Web Interface ... 74

4.3.1 Visualizations ... 75

4.5 Database Structures .. 81

4.6 Conclusions ... 85

5 Validation and Testing ... 86

5.1 Data Calibration .. 86

5.2 Database Access .. 86

5.2.1 Inserting ... 86

5.2.2 Retrieval ... 87

5.3 RFI Detection ... 89

5.4 Visualisation and Web Page .. 91

5.4.1 Line Chart ... 92

5.4.2 Waterfall Plot ... 94

5.4.3 General Comments .. 95

5.5 Case study ... 96

6 Conclusions .. 99

6.1 Further work ... 100

7 References ... 102

Appendix A : Code ... 106

A.1 Roach_handle.py .. 106

A.2 cam.py ... 112

A.3 Cal.py .. 119

A.4 rfi_monitor.py ... 125

A.5 dBControl.py ... 128

A.6 rfi_event.py ... 145

Appendix B: RFI measurements .. 152

1

Acronyms
ADC – Analogue to Digital Converter

AGA – Astronomy Geographic Advantage act

ASIC – Application Specific Integrated Circuit

CSS – Cascading Style Sheet

CSV – Comma Separated Value

CUDA – Compute Unified Device Architecture

DBMS – Database Management System

DSP – Digital Signal Processing

FD – Frequency Domain

FPGA – Field Programmable Gate Array

GMRT – Giant Metrewave Radio Telescope

GPS – Global Positioning System

GSM – Global System for Mobile Communications

GUI – Graphical User Interface

HDF – Highly Definable Format

HTML – Hypertext Markup Language

HTTP – Hypertext Transfer Protocol

ICASA – Independent Communication Authority of South Africa

IP – Internet Protocol

ITU – International Telecommunications Union

KAT – Karoo Array Telescope

KCAAA – Karoo Core Central Astronomy Advantage Area

LAN – Local Area Network

LOFAR – Low Frequency Array

MAD – Median Absolute Distance

MMS – Mobile Measurement System

MPI – Message Passing Interface

PAPER – Precision Array for Probing the Epoch of Reionization

PC – Personal Computer

PDF – Portable Document Format

PNG – Portable Network Graphics

RA – Regulatory Article

RAS – Radio Astronomy Service

RATTY – Real Time Transient Analyser

RF – Radio Frequency

RFI – Radio Frequency Interference

ROACH – Reconfigurable Open Architecture Computing Hardware

RQZ – Radio Quiet Zone

SARAS – South African Radio Astronomy Service

SKA – Square Kilometre Array

SKA SA – Square Kilometre Array South Africa

SNR – Signal to Noise Ration

SQL – Structured Query Language

2

TCP – Transmission Control Protocol

TD – Time Domain

XHTML – Extended Hypertext Markup Language

1

1 Introduction

In 2012 South Africa and Australia were chosen to host the Square Kilometre Array (SKA) radio

telescope. The telescope, an array of many antennas, will be the largest and most sensitive radio

telescope ever built. It is planned to be built over the coming decade. The National Research

Foundation (NRF) has created a business unit called Square Kilometre Array South Africa (SKA SA) to

construct a precursor instrument called the MeerKAT telescope on the South African site of the

planned SKA telescope. Helping to ensure a clear view of the sky for the MeerKAT and SKA

telescopes is the motivation for this thesis.

The telescopes observe radio waves emitted by astronomical objects. Man-made sources of radio

waves can interfere with observations. We call this radio frequency interference (RFI). The main

sources of RFI are modern telecommunications and satellites, although all electronics produce some

RFI. In order to avoid RFI, these telescopes are situated in a remote area of the Karoo. The relative

radio quietness of this site is a major reason why South Africa was awarded a large part of the SKA

telescope. Maintaining this radio quietness is an important part of the SKA project. If the area

around the telescope becomes too noisy, some science goals of the telescope will become more

difficult or even impossible.

Over the years radio telescopes have become more sensitive while the use of radio for

communication and of electronics in general have become ubiquitous. As such RFI has become

increasingly problematic for radio astronomy. Many strategies to protect radio telescopes from RFI

have been developed. These approaches are grouped under the term RFI mitigation. They include

laws preventing the use of certain electronics around telescopes, monitoring RFI, avoiding RFI during

observations, detecting RFI in observations, removing corrupted data automatically from

observations. This thesis focuses on providing a RFI monitoring system for the MeerKAT site.

1.1 Motivation

RFI monitoring makes other aspects of RFI mitigation easier. It simplifies location and removal of RFI

sources, making legislative protection of radio telescopes enforceable. Avoiding RFI is only possible if

it is well characterised, especially in terms of direction and frequency. Finally, good knowledge of the

properties of RFI on site can help in the process of RFI detection and removal from collected data.

At the beginning of this thesis, the SKA SA team had many tools which allowed measuring RFI on the

MeerKAT site. These included a 7 dish radio telescope called the KAT7 telescope, commercial hand

2

held spectrometers and special built transient RFI measurement systems. However the team did not

have an automatic, continuous RFI monitoring system. This meant that some RFI was not measured

as it occurred outside of the times those tools were used. It also meant that there was no standard,

easy way to monitor RFI in conjunction with an observation.

Although it was technically feasible to fulfil most RFI monitoring with the tools the team already had,

setting up on site RFI monitoring systems involved significant use of man hours. There was no

dedicated RFI monitoring team to perform these tasks or to analyse the data. Adequately monitoring

RFI with existing tools would be an inefficient use of the SKA SA’s available technical skills. There was

a clear need for a system which could continuously monitor the environment and automatically

detect RFI. This thesis describes the development of such an RFI monitoring system.

1.2 Aims

The main aim of this thesis was to provide an automatic RFI monitoring system for the MeerKAT site.

This RFI monitor had to fulfil three criteria: to provide a continuous record of the Radio Frequency

(RF) environment, automatic RFI detection using this data and effective access to the collected data.

Consequently a record of the RFs on site allows site administrators and engineers to understand how

new equipment on site affects the radio quietness of the site. Automatic RFI detection allows RFI

management to know when unusual sources of RFI are present. Providing effective access makes it

possible for this information to be quickly digested and acted upon by astronomers, engineers and

site management.

1.3 Approach

The approach used in this thesis was to build iterative prototypes, each prototype adding new

features to the monitor. This approach was chosen so that the features of the RFI monitor could be

tested by stakeholders before the final monitor was finished. The main benefit was the continued

support of stakeholders who had the opportunity to point out problems early on. Having basic

functionality from early in the thesis also allowed for the most basic functionality to be well tested

over long periods of time. This provided insights into issues that were not obvious initially and

allowed the design to be shaped by actual use of the RFI monitor.

1.4 Contribution

The RFI monitor created in the completion of this thesis provided the SKA SA team with a

continuous, automatic RFI monitoring system. This provides a new tool for managing RFI. It has been

used multiple times in testing the effect of equipment on site, corroborating tests performed with

other systems and in revealing RFI before other available RFI monitoring could have.

3

The RFI monitor was always intended to be a prototype system. Due to hardware restraints, it could

not cover the bands of the MeerKAT telescope. Since the completion of the final prototype, a new,

upgraded monitoring system has been developed using the software and experience developed in

this thesis. The new monitoring system, which covers the whole MeerKAT band, has recently been

installed on site.

In the interests of clarity, I state here the parts of the monitor which I did not develop. The Real Time

Transient analYser (RATTY), described in section 2.5.3 was developed by Jason Manley. The Median

Absolute Distance Thresholding algorithm (section 2.6.2) was suggested to me by Sean Passmoor,

however I developed the code. Jason and Sean are both employees of SKA SA. The Javascript bar

chart visualisation (section 4.3.1.1) is developed by a company called amCharts. All other work is my

own.

1.5 Thesis Overview

The structure of this thesis is as follows.

Chapter 2 contains the background necessary to understand the motivation and technology in this

thesis. Sections 2.1 and 2.2 cover some basic ideas in Astronomy, Radio Astronomy and Radio

Telescopes. Section 2.3 covers Radio Frequency interference and 2.4 covers the different ways in

which RFI can be mitigated. Section 2.5 focuses on RFI monitoring at the MeerKAT site. Section 2.6

covers RFI detection. Finally 2.7 Covers the technology we used in providing our RFI monitor.

Chapter 3 covers the Design process of the RFI monitor. This includes specifying the goals, defining

the users and their requirements and discussing the limitations of our equipment. We state the

design approach and the design decisions for the different prototypes that were developed,

including the initial data capture, archival, RFI detection and visualisation prototypes.

Chapter 4 covers the implementation of the RFI monitor. This chapter follows the development of

each of the four prototypes. Rather than describing the databases developed for each prototype, a

section is dedicated to all the databases for each prototype. The final part of this chapter shows how

each prototype fulfilled the goals and user requirements defined in the design chapter.

Chapter 5 contains the validation and testing. This covers the reliability of the measurements, the

efficiency of the database storage and retrieval, the accuracy of the RFI detection algorithms and the

user test of the visualisations and web site which provide access to data. This is followed by out

Conclusions and further work in Chapter 6.

4

2 Background

2.1 Astronomy

Objects in the universe radiate electromagnetic waves/particles. These waves/particles, travelling at

the speed of light, are the only evidence we have that the universe is populated with countless stars,

galaxies, planets and other astronomical objects. Observational astronomy is the study of

electromagnetic emission from objects in space using instruments called telescopes. Astronomy

includes some of the most interesting problems in modern science, such as searching for earth-like

planets, searching for extra-terrestrial life, and learning about the structure of planets, stars,

galaxies, the early universe and how they evolve over time (Burke, 2010). Astronomy is also used as

a way of investigating fundamental forces such as the theories of relativity and particle physics

(Chaisson & McMillan, 2005).

Observing the skies has been something of an obsession for human beings for millennia. Before

there was any kind of professional astronomer, people were observing the sky and learning about

how the stars and planets moved and how this related to the Earth. Ancient people built

observatories that could be used to tell important times in the year from the positions of celestial

bodies. Observation was performed purely through human eyes which was the cutting edge of

astronomy up until the beginning of the scientific revolution. One of the last great astronomers who

performed all of his observations by the power of his eyes was Tycho Brahe. His observations of

Mars were instrumental in formulating and supporting Kepler’s laws of planetary motion which were

the precursor for Newton’s laws of gravity.

That these fundamental physical concepts could be explored using nothing more than the naked eye

and what seems like rudimentary equipment is impressive. However the astronomy we perform

today is far removed from charting the location of astronomical objects which was the essential

practice of observatories in the past. There are two things which allowed astronomers to move past

these ancient practices.

The first was the application of lenses to studying the sky. In the early 17th century when the first

telescopes were pointed at the sky they revealed many objects which had never before been visible.

From those times one of the main goals of astronomers has been to build ever larger telescopes in

the hopes that the more sensitive telescopes will allow us to better see and understand

astronomical objects. However good these telescopes were, they did not allow astronomers to delve

into the nature of the objects they studied. All they could do is find the position and relative

brightness of these objects to ever higher levels of accuracy.

5

The next revolution in astronomy was the understanding that the relative strength of the

frequencies emitted by celestial could help us understand the nature of those celestial objects. By

studying the frequencies emitted by an object you can deduce the chemical composition,

temperature, density, mass, distance and relative motion of that object. The study of splitting up

light into its constituent frequencies is called spectroscopy.

The form of electromagnetic radiation humans are most familiar with is visible light, however

astronomical objects typically radiate over a range of wavelengths which are invisible to the naked

eye in addition to visible light. For the rest of this thesis we shall use the term light to mean all

electromagnetic radiation, regardless of whether it is visible to the human eye. Accelerating electric

charges produce light which can travel through the vacuum of space for millennia. The dual nature

of light means that its behaviour can be described as both a wave and as a particle (called a photon).

These particles/waves transmit energy that is collected by telescopes to create an image or

spectrum of astronomical objects (Chaisson & McMillan, 2005). We provide a graphical

representation of the electric and magnetic fields that constitute a light wave in Figure 1.

Figure 1 - Electromagnetic waves are formed by vibrations of electric and magnetic fields. The vibrations in these fields

are perpendicular to each other and the direction of the wave’s propagation. The figure depicts the magnetic field in

blue, the electric field in red and the direction of propagation as moving towards the right.

Figure source: http://missionscience.nasa.gov/images/ems/emsAnatomy_mainContent_EMwave.png

Not all light is equal; we talk about light being a spectrum. Some light is very energetic and can be

harmful to us; other light is very low powered and can be safely used for communications

technologies like radio-waves. We use 3 related terms to describe where on the spectrum a

particular photon of light belongs. These terms are wavelength, frequency and energy. Figure 2 is a

graphic representation of the spectrum and these related ideas. The figure shows that the

wavelengths of light span from the order of hundreds of metres, to incredibly small in the order of

nanometres or less.

6

We can imagine that a photon is a packet of electromagnetic energy with where is

Planck’s constant is frequency (Chaisson & McMillan, 2005); it travels through space until it hits

our telescope’s receiver. For radio telescopes the electromagnetic energy is converted into electrical

energy which we can digitise and analyse. We describe photons using the standard unit of the

electron volt (). Frequency is inversely proportional to wavelength. This means that a large

wavelength of light will be transmitted by low energy photons with a low frequency (Chaisson &

McMillan, 2005).

Observational astronomers spend their careers collecting and analysing photons which have been

emitted by astronomical objects. Some photons reach Earth many billions of years after they were

first emitted. The energy in light emissions at a receiver will be inversely proportional to the distance

that emission has travelled from its source. This is called the inverse square law and it is for this

reason that distant astronomical objects are incredibly faint and need very sensitive telescopes in

order to be observed.

Figure 2 – The electromagnetic spectrum. The figure above shows the wavelengths, frequencies and energy

electromagnetic waves across the spectrum. The wavelengths are compared to objects of a similar size.

Figure source: http://www.scienceinschool.org/repository/images/issue20em2_l.jpg

Although the distance that light has travelled should not affect the frequency of that light, there is a

way in which the wavelength that we observe is different from the wavelength that was emitted by

the source. These changes are similar to the Doppler Effect we see in sound waves. The relative

velocity of the source to the observer changes the frequency of the light observed. Objects emitting

light at the same frequency will be observed to emit at different frequencies if their motion relative

7

to the observer is different. Objects moving away from the observer will appear to emit at longer

wavelengths and objects moving towards the observer will appear to emit at shorter wavelengths. In

astronomy we call these situations red shift (moving away, longer wavelengths) and blue shift

(moving towards, shorter wavelengths) (Chaisson & McMillan, 2005). The collective term for both is

called the Doppler shift.

Studying the spectrum of emission and absorption of astronomical objects allows us to categorise

them and understand them. These emissions are separated into two distinct types for our purposes.

Firstly, there are continuum emissions which are electromagnetic emissions which vary continuously

with frequency, otherwise known as broadband emissions. The energy from astronomical objects is

spread across all frequencies.

One form of continuum emission is blackbody emission. Blackbodies are objects which absorb light

and emit that energy on all frequencies at the same rate that they receive energy, thereby

maintaining a constant temperature (Chaisson & McMillan, 2005). The amount of radiation emitted

on each frequency is dependent on the temperature of the object. In Figure 3 we see example

emissions for blackbodies at different temperatures. The figure shows that a blackbody will have a

peak frequency on which most energy is emitted. Warmer objects have more energy and emit more

energy on higher energy (shorter) wavelengths, they will also have a higher peak frequency. Stars

and plasma are examples of objects which can be approximated as blackbodies (Miller, 1998).

Figure 3 - Brightness of electromagnetic radiation at different wavelengths for blackbody objects at various

temperatures. Astronomers can use the peak frequency of an object to deduce the temperature of that object.

Figure source: http://astronomyonline.org/Science/RadioAstronomy.asp

8

The second type of emission that spectral astronomy categorises is spectral line emission. Spectral

lines are a result of discrete changes in the energy states of atoms/molecules. They can be divided

into two forms, absorption and emission lines. Since atoms/molecules have discrete energy states,

to change from one energy state to another it needs to either absorb or emit exactly the amount of

energy that separates two states. Therefore the only photons that can be either emitted or absorbed

by an atom/molecule are those photons that have the same quantum of energy as the difference

between two energy states of the atom/molecule (Chaisson & McMillan, 2005).

This means that all molecules have a distinct spectral signature (Chaisson & McMillan, 2005). In the

case of emission lines we see radiation which is emitted due to atoms moving from higher energy to

lower energy states. For absorption lines, a gas is in between a source of continuum emission and

the observer. When we observe the continuum emission we see discrete gaps where those

frequencies are being absorbed by the gas.

Figure 4 - Spectral lines of Hydrogen. The bar shows absorption lines and the bottom bar shows emission lines

Figure source: http://jtgnew.sjrdesign.net/images/spectra_hydrogen.jpg

For any given element or element/molecule the frequencies of absorption and emission lines are

identical. The set of spectral lines of every element/molecule in the laboratory creates a unique

signature similar to Figure 4. By understanding the spectral lines of molecules on Earth, we can infer

the elements that make up astronomical objects and the interstellar medium based on the spectral

lines in their emission. We can also learn about the temperature, pressure, relative motion and

magnetic properties of objects based on the structure of their spectral lines (Tennyson, 2010), as all

of these properties cause observable effects on spectral lines.

2.2 Radio Astronomy

Radio astronomy is the study of astronomical objects and phenomena which are observable in the

radio part of the electromagnetic spectrum. Radio waves are low energy, low frequency and long

wavelength electromagnetic waves. There are good reasons to observe in the radio spectrum. The

first is that some astronomical objects emit most radiation in the radio part of the spectrum, if we

9

did not observe radio waves we would not know about these objects. Some examples of objects

which are observable in different parts of the spectrum are provided in Table 1. One can see that

there are some objects, like interstellar gas, which are only commonly studied using radio.

Another reason is that wavelengths of light are absorbed by the Earth’s atmosphere before reaching

the ground. This means that the only way to observe those wavelengths is by placing a telescope

outside of the Earth’s atmosphere. However a large part of the radio spectrum can pass through the

atmosphere (Miller, 1998). This “radio window” allows us to build large radio telescopes on Earth

which can be orders of magnitude larger than anything that could be launched into space.

For the last 50 years astronomers have measured radio waves with instruments called radio

telescopes, which are generally composed of a receiver and a dish to focus radio waves from an area

onto that receiver. The larger the dish, the more radio waves that it can catch and focus on the

receiver which means the telescope can detect weaker signals. The scale of these radio telescopes

has been increasing since their inception in the 1950s (Burke, 2010; Chaisson & McMillan, 2005;

Dewdney, Hall, & Schilizzi, 2009; National Astronomy and Ionosphere Center, n.d.). This growth in

the size of telescopes culminated with the world’s largest single dish telescope in Arecibo which has

a diameter of 305m (National Astronomy and Ionosphere Center, n.d.). Arecibo is soon to be

replaced as the largest single dish telescope by the planned Five-hundred-meter Aperture Spherical

radio Telescope (FAST) being constructed in Guizhou Province in southern China (Quick, 2011).

Astronomers would like to have more sensitive telescopes than Arecibo or FAST, however these

monolithic dishes are only possible in areas where there is already a suitable natural depression in

mountainous regions and the cost of building them is prohibitive. Fortunately it is possible to

combine the response of many small dishes into one signal with the resulting signal having the

sensitivity and resolution of a single dish higher than any of the composite dishes (Thompson, 1999).

All these dishes and the computer which combines their signals are collectively called an

interferometer. These arrays of dishes have their own kind of engineering problems, mostly these

issues are related to the infrastructure of the array and the computation required in combining

multiple feeds. However this technology has allowed astronomers to continue building more

sensitive steerable telescopes than would be possible with single dish telescopes (Dewdney et al.,

2009; Thompson, 1999).

The reason that a larger dish telescope can detect weaker objects in the sky is because it collects

more photons from that object. The power of the received signal is the amount of energy received

per second. If a larger dish collects more photons from a source, the observed power of that source

10

will be higher for the larger telescope. This creates a problem, how can we objectively compare the

brightness of objects observed by different telescopes which have different collecting areas? For

point sources the solution is to divide the power of the signal by the collecting area of the telescope.

This gives us the flux of the object.

There is one further issue which should be considered before we can easily compare observations of

from different telescopes. That is the bandwidth over which the observation is performed. A

observation will typically only measure a portion of the frequencies emitted by a source. Any energy

emitted by the source which is not captured will make the source seem to have a lower flux. To

remove this bias, astronomers refer to the flux density of a source. This is the flux per unit

frequency.

The units of flux density are watts per unit area per unit frequency (

.). Using these units most

radio sources have very low values of flux density, typically on the order of , for this reason

radio astronomers created a unit called the Jansky (). The Jansky is equal to

 . Radio

sources will typically have flux densities from a few milli Janskys to a for thousand Janskys.

There are plans to build a new interferometer called the Square Kilometre Array (SKA) by 2024 (SKA

SA, 2006b). SKA will consist of thousands of dishes and will be the largest and most sensitive radio

telescope ever built. The telescope will contain 3 different types of antennas and be split between

South Africa and Australia. South Africa will host the mid frequency arrays while Australia will host

the low frequency aperture array (SKA, 2015). The location of the SKA high has yet to be decided.

This telescope is so ambitious that it is not possible for it to be built with current technology and as a

result there are a number of precursor projects which are being built to test its design principles and

develop the technologies which will make SKA possible.

11

Table 1 - List of subsets of the spectrum and their common applications (Chaisson & McMillan, 2005)

Type of Electromagnetic wave Common applications

Radio Radar studies of planets

Planetary magnetic fields

Interstellar gas clouds and molecules

Galactic structure

Galactic nuclei and active galaxies

Cosmic background radiation

Infrared Star formation

Centre of milky way galaxy

Active galaxies

Large-scale structure of the universe

Visible Planets

Stars and stellar evolution

Normal and active galaxies

Large-scale structure of the universe

Ultraviolet Interstellar medium

Hot stars

X-ray Stellar atmospheres

Neuron stars and black holes

Active galactic nuclei

Hot gas in galaxy clusters

Gamma-ray Neutron stars

Active galactic nuclei

One of these precursors is the MeerKAT interferometer being built in the Karoo region of South

Africa which will also be the core site for the African part of the SKA (SKA, 2015). MeerKAT is planned

to be operational by 2017 and will have 64 dishes (SKA SA, 2011). The volume of data created by

these interferometers will be incredibly large, with MeerKAT producing 100s Gb/s and SKA

producing Pb/s (Dewdney et al., 2009; SKA SA, 2011).

The South African portion of the SKA telescope is planned to be built on the same site as the

MeerKAT telescope. The MeerKAT dishes will eventually be incorporated into the SKA telescope.

Figure 5 shows the location that these instruments will be built in South Africa. To date there are

12

already two operational radio telescopes on the site. There is the KAT7 instrument, which is a 7 dish

precursor to the MeerKAT telescope and the Precision Array for Probing the Epoch of Reionization

(PAPER) instrument, a telescope run by the University of California in Berkeley (PAPER, n.d.).

Figure 5 - The red circle shows the location of the MeerKAT array. The closest town, Carnarvon is shown as a red pin.

Carnarvan is approximately 73km in a straight line from the core of the MeerKAT array

Figure Source: Google Earth

2.2.1 Radio Telescopes

A radio telescope is a large dish which reflects waves onto a receiver. Figure 6 shows how the dish

reflects light so that it focuses on a receiver which converts the electromagnetic signal into a radio

frequency (RF) voltage signal. This voltage is sampled by an Analogue to Digital Converter (ADC).

The ADC is a device which quantises continuous analogue signals, the ADC would be placed in

between the receiver/amplifier and the computer system. The voltage of the signal is converted into

a number of discrete voltage levels determined by the ADC resolution (the number of bits in the ADC

output). In the case of an 8 bit ADC the power is converted into one of 256 power levels. The input

values can be of any power; however the output will always have a defined range which does not

cover all possible analogue values. There are therefore some signals which will be too powerful or

too weak to be quantised, in this case we say the ADC over-ranges. The ADC samples the analogue

signal at discrete intervals in time and the number of samples collected per second is called the

ADC’s sampling rate. Figure 6 is a simple diagram which shows how these different components

13

work together to direct a radio signal from an astronomical source to a computer which can be used

to analyse the signal.

In radio astronomy the goal is to measure the RF power signal of an astronomical radio source. The

signals of astronomical sources are stochastic in nature. This means the signal is a random variable

with a defined probability function. The PDF of the emitted signal from most astronomical sources

are normally distributed. The challenge is to be able to tell if a signal is a bona fide astronomical

signal or if the signal is just noise. All astronomical signals are embedded in the cosmic background

noise, which is unavoidable. The receiver itself also introduces noise to the signal. Both types of

noise have a normal distribution (Fridman, 2010).

Figure 6 - Diagram of a typical radio telescope. The main reflector collects light from an astronomical source. The radio

waves are reflected towards the subreflector which again reflects the radio waves to the feed horn. The feed horn

converts the radio waves into an electric signal which can be amplified and digitised using an ADC. It is then fed into a

computer to be processed, analysed and stored.

Figure source: http://pixgood.com/radio-telescope-diagram.html

The aim of the engineers building MeerKAT is to create an instrument which allows astronomers to

distinguish weak astronomical signals from the noise of the receiver. The factors that affect the

noise of the receiver can be described with the radiometer equation.

14

In this equation is the uncertainty of the receiver detected power, is the effective noise

temperature of the detected power, is the bandwidth over which we receive and t is the amount

of time the signal is integrated over (Kraus, 1986). A receiver with a low uncertainty will provide the

clearest view of an astronomical signal.

By lowering the uncertainty of the receiver detected power we increase the Signal to Noise Ratio

(SNR). SNR is defined as the ratio of the power of the desired astronomical signal over the power of

background noise. It can be quoted in decibels (dB) using the formula and is calculated using the

formula

 . From the radiometer equation we see we can lower

uncertainty by lowering . One way of lowering is by cooling the physical receiver to very low

temperatures, for instance the receiver of the MeerKAT dishes is cooled by helium to an operating

temperature of around 13 degrees Kelvin.

Another way to increase the SNR of the signal is to accumulate the signal (Miller, 1998).

Accumulation is the process of adding multiple contiguous samples of a signal, this accumulation

time is represented by in the radiometer equation. When the signal is accumulated, the random

noise rises by the square of the accumulated time while a signal present in all samples will rise

linearly with the accumulated time. Therefore the uncertainty of the received signal will fall as the

square root of the accumulation time. Accumulation has the added benefit of reducing the amount

of data that needs to be handled by the signal chain. Accumulation is called integration in the case

we are dealing with a continuous analogue signal, rather than a digital signal with discrete values.

As we said earlier, another way to increase the sensitivity or SNR of a telescope is to combine the

input of separate dishes. The signal from each of the dishes must be combined in a sensible way so

that signals that are common to all dishes become more powerful and signals which are not

common for each dish (i.e. the internal noise of the separate receivers) are diminished. We call

signals which are common to two dishes coherent signals. This process of combining the signals from

multiple dishes is called correlating the signals.

Correlation is performed by a computer or cluster of computers called a correlator. The function of a

correlator is that it correlates the signals from all possible pairs of dishes in the array. We call each

pair of dishes in an interferometer a baseline. Correlation means multiplying each pair of values

from each baseline together, which will tend to increase the coherent signals and diminish the effect

of noise signals. It is important to ensure that the signals from different dishes are delayed before

being correlated. Figure 7 shows how the angle of the dishes affects the time each dish will sample

the same signal. The angle a dish observes at will affect the time that dish samples a wavefront.

15

Dishes which sample earlier must be delayed in order to preserve the phase of the signal. As

correlation is performed on each baseline, the computational complexity of correlation rises as the

square of the number of dishes in the interferometer.

Figure 7 - A diagram showing the geometric delay between two dishes in an interferometer. We assume the incoming

signal is a plane. As such, unless the incoming plane is perpendicular to the dishes in the array, the signal will arrive at

each dish at different times.

Figure source: http://www.aanda.org/articles/aa/full/2008/40/aa8117-07/aa8117-07.html

All of the combined signals of the interferometer create something called a synthesised beam. This

represents the directions which the interferometer is sensitive to. The shape of the beam can be

changed by applying weights to the signals from the separate baselines and the beam can be

directed by changing the direction the dishes point at. In Figure 8 you see an example of a

hypothetical beam of an interferometer. It is made up of a main beam which is the direction which

we observe objects with. The beam also has less sensitive areas which point away from the main

beam. These areas are called the side lobes of the beam. It is not possible to differentiate which

signals come from the main beam and which come from the side-lobes, although the

interferometers are generally designed to suppress the side-lobes so that they are far less sensitive

than the main beam. Nonetheless it is possible that powerful signal in a side lobe would obscure a

weak signal in the main beam.

16

Figure 8 - A hypothetical beam of a radio telescope. The distance of the line from the centre represents the sensitivity of

the telescope in that direction. You can see the main beam is by far the most sensitive beam. This image is a 2

dimensional representation or a three dimensional beam.

Figure source: http://www.ras.ucalgary.ca/radiotel/calibration.html

An interferometer can be judged on two basic metrics. The first is sensitivity; the larger the

combined area of the dishes in an interferometer, the more sensitive that telescope is. The second is

the angular resolution which is related to the size of the main beam. The angular resolution is a

measure which tells us the smallest angle between two objects at which they can be resolved as

separate objects. If two objects are closer together than the angular resolution, they will appear as

one object with the combined power of both objects. That is, they will not be resolved.

The angular resolution of an interferometer is determined by the length of its longest baseline, i.e.

the maximum distance between two dishes in the array. This means that a longer baseline provides

a smaller angular resolution. This allows us to resolve objects that are close to each other on the sky.

It is important to remember that for a given angular resolution objects which are further from the

observer also need to be further apart from each other in order to be resolved, as the distance

needed to satisfy the minimum angle grows with the distance from the observer. Providing long

baselines is the main reason that the planned SKA telescope will be spread across the continent of

Africa, as no single country is large enough to contain an interferometer with the angular resolution

that SKA requires to perform its science goals.

2.3 Radio Frequency Interference (RFI)

Radio Frequency Interference (RFI) is any signal captured by a radio telescope which does not come

from astronomical objects. RFI can be separated into 2 categories; internal and external RFI. Internal

RFI is interference generated by the telescope system itself. As the telescope is made from

17

electronic devices which emit radio waves, all radio telescopes pick up some radiation which is

generated by its own internal components. External RFI comprises all interference generated by

sources on the Earth and its satellites. This RFI may be generated by anything from electric fences to

lightning to aeroplanes and satellites (Porko, 2011; Ekers & Bell, 1999).

Figure 9 : Example of the effect of RFI. Both images were obtained from the LOFAR test station of exactly the same part

of the sky at the same time, on separate frequencies. The image on the right is on a frequency which has a strong

transmitter, the objects which you can see in the RFI free case (left) are totally obscured.

 Figure source : http://www.ece.vt.edu/swe/RFI2004/18p.PDF

Radio telescopes suffer from RFI in much the same way that optical telescopes suffer from light

pollution. As astronomical signals are generally 60 dB below the receiver noise level (Gillani, 2010),

even relatively weak man-made sources can completely obscure astronomical signals, placing an

effective limit on sensitivity (Gillani, 2010). Figure 9 shows just how badly a local source can affect an

observation. The RFI contaminated observation on the right contains artefacts from an RFI source

which completely obscures the astronomical sources visible in the image on the left. As radio

telescopes become more sensitive, RFI becomes a bigger problem. For example, a telescope as

sensitive as SKA could pick up the signal made by a cell phone tower from hundreds of kilometres

away (SKA SA, 2006b).

In recent times the radio spectrum has been widely used as a communication medium and we

expect that both the spectrum use and power of wireless technologies will continue to increase.

Some forms of interference can be avoided; however the use of telecommunications and GPS

satellites creates interference all over the globe. As a result it has become increasingly difficult to

avoid interference by building telescopes in radio quiet areas. As such it is inevitable that some

observations will be corrupted by RFI and it is now essential that radio telescopes have some form of

automated RFI monitoring and flagging or excision (Fridman & Baan, 2001; Offringa, Bruyn, & Biehl,

2010; Ekers & Bell, 1999).

18

Figure 10 : The allocated uses of the radio spectrum for communication. The spectrum which SKA will observe on is

shown by the transparent red boxes and the spectrum which MeerKAT will observe on a surrounded by the transparent

blue boxes. As you can see most parts of the radio spectrum are allocated to some form of communication.

Figure source: http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.PDF

2.3.1 RFI Characteristics

All RFI sources have a combination of the characteristics defined below.

Broadband – The source emits on a range of frequency channels

Narrowband – The RFI emits on discrete frequencies, for our purposes a RFI source is narrowband if

it is received on discrete frequency channels

Persistent – The RFI source is always emitting

Intermittent – The RFI source emits intermittently for periods of minutes to hours

Burst-like – The RFI source emits in short bursts of the order of milliseconds to seconds

High-powered – The RFI is more powerful than the instrument noise

Low-powered – The RFI has a similar power to the instrument noise

Stationary – The RFI source is stationary

Mobile – The RFI source is moving

Polarised – The RFI source emits mostly polarised emissions

19

Table 2 - List of RFI sources and their characteristics

RFI Source Characteristics

Two way radio Narrowband, Intermittent, High-powered, Mobile, Polarised

GPS satellites Narrowband, Persistent, High-powered, Stationary, Polarised

Electric fences Broadband, Burst-like, power dependent on distance, Polarised

Ethernet cables Broadband, Intermittent, High-powered, not Polarised

Lightning Broadband, Burst-like, High-powered, not Polarised

TV Narrowband, Persistent, High-powered, Stationary, Polarised

Table 2 contains a non-exhaustive list of RFI sources; it illustrates the large range of possible RFI that

can affect observations. As there are so many different types of sources there is no single way to

eliminate RFI from observations (Ekers & Bell, 1999). There are also some astronomical sources and

RFI sources which produce signals with similar characteristics, it is important to ensure we do not

ignore astronomical sources because of this similarity. For this reason minimising the effect of RFI on

observations is a process which requires multiple and complementary solutions.

Figure 11 - Examples of RFI waveforms in receiver output (power) vs. time; a) b) and c) are impulse-like and

intermittent; d) persistant, narrow-band. In these plots we are looking at power over the whole bandwidth of the

reciever

Figure source: (Friedman & Baan, 2001)

20

Figure 11 shows the waveforms of some representative RFI sources. The first 3 sources are examples

of intermittent burst like RFI, you can clearly see the RFI bursts in a time series. The third source is

has a obvious period, in this case the RFI is generated by radar pulses. The 4th source is a continuous

narrow band signal. One can see that different characteristics of the RFI emission result in different

features in the captured data.

2.3.2 Effects of RFI on Science

RFI can limit the science that is possible with a radio telescope as some parts of the spectrum are

unusable because of constant interference. For example, in the study of the evolution of galaxies

over cosmic time; interference over a small band of frequencies can prevent astronomers from

learning what forms of galaxies existed for certain ranges of time. In order to learn about galaxies

astronomers look for the tell-tale spectral line of neutral hydrogen which emits at the 21cm

wavelength or 1420 MHz (Burke, 2010). This spectral line is called the HI line. Astronomers can use

the HI line to understand how galaxies evolve over cosmic time. If the HI line is obscured by RFI, they

cannot use it to learn about these ancient galaxies.

Studying the evolution of galaxies at different periods of cosmic time is possible because of the

constant speed of light, red-shifting and the expansion of the universe. The universe has been

expanding since the Big Bang and, as a result all objects in the universe other than our local cluster

of galaxies are moving away from us. Those objects which are further away are moving away at a

higher velocity. This means that those objects which are further from us will have a higher red shift

(their HI line will be shifted to a lower frequency). We can approximate the distance to a galaxy

based on the red shift of its HI line using Hubble’s Law (Burke, 2010). Also because light travels at a

constant speed, the light from these distant galaxies must have been travelling for a long time. So HI

emission from high red shift galaxies left those galaxies when the universe was younger than it is

today. The higher the red shift of a HI spectral line of a galaxy, the faster that galaxy is moving away

from us and the younger that galaxy was when it emitted the HI line.

If the frequencies from 1000MHz to 1010MHz were unusable because of RFI, astronomers would not

be able to see what kinds of galaxies existed from 9.14 to 9.26 billion years after the big bang, a gap

of over 100 million years (Bremer, 1995; Kempner, n.d.).This problem is made worse by the fact that

the HI line is a weak signal and for distant galaxies the signals are even weaker. This means that for

studies of the most distant galaxies where observations must be accumulated over long periods of

time, even very low powered and intermittent RFI can corrupt time intensive studies.

RFI has varying effects on different science goals depending on the type of emission. If the science

requires observing spectral line emissions then RFI can completely obscure the emission. If a science

21

goal relies on observing continuum emission then it is possible to ignore frequencies of the emission

which are affected by RFI and use the remaining clean frequencies to achieve your science goal (P A

Fridman & Baan, 2001). Even if the RFI does not make all required frequencies unusable, it still

negatively affects the SNR of any observation made over those frequencies. In order to allow our

new generation of radio telescopes to fulfil the science goals they are being built for we must

mitigate the effects of RFI.

Another consideration when dealing with RFI is the type of telescope being used. Different dishes

have differently shaped beams; the width of the main beam determines how close an RFI source can

be to the astronomical source without interfering. Other than the main beam, side-lobes can pick up

signals which come from unexpected directions. Finally, in an interferometer there is a natural

spatial filter against ground based RFI. As the signal from an interferer will reach dishes at different

locations at different times, it is possible that the RFI will not be correlated. In this case the process

of correlation naturally removes RFI. However, for short baselines and persistent RFI it is far more

likely that RFI will be correlated (Baan, 2011). It is also possible to de-correlate satellite RFI using

fringe washing as satellites do not have sidereal motion.

2.4 RFI Mitigation

There are multiple approaches to preventing RFI from affecting observations. These techniques are

referred to as RFI mitigation. Each radio telescope facility has a RFI mitigation plan which uses those

techniques which are both effective and possible for their environment. These mitigation techniques

range from detection algorithms to physical filter systems to legislative actions (Baan, 2011). As each

telescope exists in a different physical, legislative and radio frequency environment; there is no

unique set of mitigation techniques for all radio telescopes (P A Fridman & Baan, 2001). There are

common techniques which are used in some form by most radio telescopes.

As a rule it is generally better to perform mitigation as early as possible. The best option is to

prevent RFI sources from emitting. If this is not possible we would like to prevent RFI from affecting

observations. The final option is to remove RFI from observations. It is always better to prevent RFI

as removing RFI from observations necessarily lowers the sensitivity of that observation(Baan, 2011).

2.4.1 Legislation

The International Telecommunications Union (ITU) created the ITU regulation RA 769 in 1992 to

provide guidance on the parts of the spectrum which are useful for radio astronomy (ITU-RA, 2005).

They provide guidelines on minimum flux densities of RFI sources that will impact radio telescopes of

a minimum sensitivity. The ITU has allocated some parts of the spectrum exclusively for Radio

22

Astronomy. These parts of the spectrum are called the Radio Astronomy Service (RAS). The RAS

bands can only be used passively, which means no one is allowed to emit signals on those bands.

There are only 21 frequency bands which are allocated to passive use. Some of these bands are

shown in Figure 10, they are shown in bright yellow. They generally protect bands on which

important science relies on, however there is no provision for the effects of red shifting of

astronomical objects (Diepenbeek, 2010). From Figure 10 it is clear that most of the spectrum is not

protected. As spectrum allocation is becoming increasingly valuable economically, it is important

that the radio astronomy community is involved in regulations drafted both internationally and in

their own countries.

Other than general spectrum allocation over the world or country, it is also possible to make special

Radio Quiet Zones (RQZ) in which large parts of the spectrum are legally protected for passive use. In

preparation for the SKA telescope, both the Australian and South African governments have

designated RQZs around the sites of their portions of the SKA (van Driel, Gergely, Liszt, & Ohishi,

2012). These RQZs introduce legislation which guarantees that emissions of electronics and

telecommunications must remain low enough that they do not interfere with radio astronomy.

Figure 12- SARAS protection levels for spectral line and continuum observations. If a RFI source is measured at a dish to
have a higher power than the threshold it violates the AGA

In South Africa the RQZ called the Karoo Core Central Astronomy Advantage Area (KCAAA) (Driel et

al., 2012) is under the purview of the Department of Science and Technology. The protected status

-260.0

-250.0

-240.0

-230.0

-220.0

-210.0

-200.0

10 100 1000 10000 100000

P
ro

te
ct

io
n

 L
e

ve
l [

d
B

m
/H

z]

Frequency [MHz]

South African Radio Astronomy Service (SARAS) Protection
Levels Spectral Line

Continuum

23

of this area was signed into law with the Astronomy Geographic Advantage Act (AGA) of 2007

(Department of Science and Technology, 2007). The area which makes up the KCAAA is shown in

Figure 12. According to the AGA any transmitter going into this area must first get a license from the

minister. These transmitters will only get permission if they do not exceed the levels set by the South

African Radio Astronomy Service (SARAS) shown in figure 13 (van Driel et al., 2012). All transmitters

which already exist in the KCAAA must conform to SARAS levels. Failure to comply with the

regulations can result in a warning, suspension of license, a fine or even jail time (van Driel et al.,

2012).

These legislative measures ensure that radio astronomers will have some guarantee that the area

around new and expensive radio telescopes will be protected from the advance of ever more

powerful telecommunications systems. Unfortunately no national regulation can prevent the

existence of RFI generated by satellites, however satellite emissions are still governed by the ITU and

cannot emit in the RAS part of the spectrum(Zoller, 2011).

2.4.2 Monitoring

For obvious reasons we build radio telescopes in locations which already have as low a level of RFI in

the environment as possible. The site of the MeerKAT telescope for example is in one of the least

densely populated parts of South Africa. It is surrounded by mountains which help block the signals

of high powered radio communications, such as cell phone towers, TV and radio stations and air

traffic control towers, whose signals can be picked up hundreds of kilometres from their source (SKA

SA, 2006b). The site was extensively surveyed to understand the RF environment; however, it is hard

to tell what will happen to the radio frequency environment as the years to come (Bolli,

Gaudiomonte, & Messina, 2010).

24

Figure 13 - Map of the South African Radio Quiet Zone around the future SKA sit

Figure source: http://www.ee.co.za/article/hans-05-how-will-the-ska-affect-people-in-the-astronomy-advantage-area.html

For example, the site of the Northern Cross radio telescope in Medicina, Italy which had a quiet

radio environment when the Northern Cross was built in the 1960s. However, over the years the

growth of the nearby city Bologna, the increasing use of the radio spectrum for telecommunication

and the proliferation of personal electronic devices have caused the environment to seriously

deteriorate. With even the internationally recognised RAS part of the spectrum deteriorating, the

observatory decided to create a team of technicians whose primary responsibility was to monitor RFI

and report official complaints on emitters interfering with the RAS (Bolli et al., 2010). Their

dedication has made it possible to preserve the bands utilised by Medicina’s instruments.

The best way to prevent RFI from corrupting observations is to understand the RFI environment

around the interferometer. If we know the environment well enough it is easier to find and remove

sources which fail to meet legislated levels (Bolli et al., 2010). It is easier to avoid RFI sources during

observations and also to accurately remove that RFI which will inevitably corrupt observations. It

also allows engineers to discover whether RFI is internally or externally generated by having a record

of the external RFI (Boonstra, 2005; Gillani, 2010).

2.4.2.1 RFI Monitoring at Arecibo

The Arecibo radio telescope is the largest single dish radio telescope in the world (National

Astronomy and Ionosphere Center, n.d.). The RFI environment around the dish is monitored by an

25

omni-directional antenna which receives on the 1.7 GHz to 10 GHz range. The system is run 24 hours

a day under computer control. The monitoring system steps through 19 frequency bands, taking 1

minute to observe each band (Perillat, n.d.).

All of the raw data is saved to disk and can only be accessed on site. In Figure 14 one can see the

type of plots generated automatically from data captured each day. These plots can be accessed

through the internet. They include mean power for each frequency channel, image plots of the time-

frequency power, the Root Mean Squared (RMS)/mean and PDF documents containing the dynamic

spectra for all frequencies over the last 8 days. Along with the daily plots there is also a plot of the

power spectrum for the Industrial Scientific and Medical (ISM) band for every 20 minutes for the last

month (Perillat, n.d.).

Figure 14 : Examples of the automatically generated plots from the Arecibo RFI monitoring system. The images from left

to right are mean power, time-frequency power and the rms/mean

Figure source: http://www.naic.edu/~phil/rfi/hilltop/hilltop.html#History_

These plots are the only way to access the data collected by the monitoring system without going to

the site. It is not possible to generate custom plots of selected frequencies or times and there is no

way to search the plots except by eye, which means one has to look through a 30 page document in

the case of some plots (Perillat, n.d.). The monitoring system does not run any kind of RFI detection

algorithm so all analysis must be performed manually.

2.4.2.2 RFI Monitoring at the Giant Metrewave Radio Telescope

The Giant Metrewave Radio Telescope (GMRT) is a radio telescope array consisting of 30 steerable

dishes each with a diameter of 45 metres. It was built 80km outside a town called Pune because of

the low levels of RFI in the area (GMRT, 2008). The observatory also has a RFI monitoring system,

consisting of four antennas each pointing to one of the cardinal points. The system cycles through

each antenna to gather spectral data and is capable of finding the direction of a RFI source (Joardar,

2005).

The system does not operate 24/7 like the monitoring system at Arecibo, it must be initiated using a

terminal connected to the LAN at the facility. The operator can specify how long to observe for, what

26

frequencies to observe on and where to save the spectral data which are collected. There is software

which can visualise the collected data in real time or from a completed data file. Screenshots of the

monitoring software are shown in Figure 15. These screen shots show the time averaged spectral

power plot, the spectrum of a time sample and the direction of a the most powerful source for a

selected band/range (Joardar, 2005). This software can be used by operators to determine in real

time if unusual levels of RFI are present and from which direction that RFI is being emitted.

Figure 15 : Screen shots of the RFI monitoring visualisation system of the GMRT. The image on the left shows the GUI

used to set up and monitor an ongoing observation. The image on the right shows the online data visualiser and the

direction finder, the direction finder shows the direction of a source at the frequency selected by the cursor on the

spectrum visualiser.

Figure source : (Joardar, S. 2005)

The monitoring system also provides an offline RFI analysis program which can flag narrowband and

broadband interference and visualise where this RFI is in the spectrum. Figure 16 shows how the

offline flagging software can show observers on which frequencies and times RFI was emitted. Figure

17 shows how this software can provide spectral occupancy plots from saved data. This allows

observers to find the percentage of time a frequency was contaminated with RFI during an

observation.

27

Figure 16 : Screenshots from the RFI analysis software of the GMRT. From left to right, the first image shows the whole

spectrum as observed by the RFI monitoring system. The second image shows the narrowband RFI and the third image

shows the broadband interference flagged by the analysis software.

Figure source : (Joardar, S. 2005)

Figure 17 : Spectral Occupancy plots for narrowband and broadband interference collected by the RFI monitoring system

of the GMRT and flagged by the analysis software.

Figure source : (Joardar, S. 2005)

2.4.3 RFI Flagging

As even the best RFI mitigation methods cannot totally prevent all RFI (Baan, 2011), there must be

methods which reduce the effect of RFI after observation. One method is to flag those parts of the

spectrum which have RFI and not use those frequencies/times when RFI was present while analysing

observations. As this technique involves removing data from analysis it is imperative that the

flagging process does not erroneously flag real astronomical signals as RFI, otherwise our mitigation

would become counterproductive (Offringa, 2012).

The effectiveness of RFI flagging depends on the accuracy of the RFI detection process. In the past

RFI detection was performed by visual inspection, identification and flagging; however, due to the

huge increase in the amount of data to be flagged, this is no longer a feasible solution for most

telescopes (P A Fridman & Baan, 2001). As a result algorithms which can automatically detect RFI

have been developed. These algorithms detect RFI by looking for characteristics of RFI, but not

astronomical sources, such as high power levels, non normal signals and non-sidereal motion. As

28

with most of the mitigation techniques mentioned, there is no one detection algorithm which is

good at detecting all RFI (P A Fridman & Baan, 2001). As such it is important to consider the

properties of the RFI that must be detected before deciding which detection algorithm to use.

It is important to realise that when telescope data is flagged as RFI, the information of astronomical

signals on that channel is lost. There are situations where flagging RFI will completely remove the

desired astronomical signal from data. In cases where RFI is constant and covers all frequencies on

which a signal can be observed, we need to use either RFI excision or spatial nulling (Baan, 2011).

2.4.4 Spatial Nulling and RFI Excision

Spatial nulling is used in multi-element systems, such as interferometers or dishes with multiple

feeds; it is possible to form a beam such that the null of that beam are in the direction of a known

interferer. In this case the RFI from any source in the null will not affect the observation. This can

only be performed if the location of the RFI source is known and either stationary or follows a known

path.

RFI excision is a technique which allows us to remove the effect of RFI from observations and reveal

the underlying signal (P A Fridman & Baan, 2001). Unlike flagging, this approach allows us to perform

observations on frequencies with interference. This is done is by determining which part of the

observed signal is due to RFI and to then subtract that RFI signal from the observations.

To get an estimate of the RFI signal, we need to have an observing dish which points at the

astronomical source and a reference dish which observes at the same time but points off the source

but also contains the RFI. From both of these data streams it is possible to estimate the signal which

is due to RFI and to subtract that RFI from the observation, revealing the underlying signal. In the

case of a multi-feed dish, where each feed can point to a different part of the sky, this method can

be applied using only one dish(P A Fridman & Baan, 2001).

2.5 RFI Monitoring at MeerKAT

2.5.1 SKA Site Bid – RFI Measurement Campaign

As MeerKAT is being built on the proposed site for SKA, the RFI environment was extensively tested

as part of the SKA site bid. The point of this testing was to find if the site was radio quiet enough to

host the SKA (Manners, 2007). This testing involved 12 months of RFI monitoring at the core site in

the Karoo and at sites in other host countries in Southern Africa. To facilitate this process three

29

mobile measurement systems were developed which allowed for accurate measurements of the

environment.

The Mobile Measurement Systems (MMS) were designed according to SKA specifications for RFI

measurements. They were used to perform high sensitivity, high frequency resolution scans of small

parts of the spectrum with particular astronomy interest, these were called the Mode 2

requirements. Lower sensitivity, lower frequency (> 1Hz) resolution scans of larger parts of the

spectrum were required in Mode 1 requirements, shown in Table 3, which were meant to measure

the RFI environment over most of SKA’s proposed bandwidth from 0.07GHz to 26.5GHz (Manners,

2007).

Table 3 - Mode 1 RFI measurements. The table is divided into the requirements for measurements as required by SKA

and the settings that the MMS had to be set to meet the requirements. The total time shows how long it took to

measure all required frequencies (Manners, 2007).

SKA Requirements Operational Settings

Frequency Band

GHz

RBW

kHz

ms

Integration Time

s

0.07 – 0.15 3 10 1334

0.15 – 0.30 3 10 500

0.30 – 0.80 30 10 167

0.80 – 0.96 30 10 1000

0.96 – 1.40 1000 0.002 900

1.40 – 3.00 30 10 534

3.00 – 22.00 1000 10 190

Total 1.3 hours

Table 3 shows the resolution bandwidth (RBW), i.e. the bandwidth of the frequency channels in the

measured spectrum required by the SKA. The values of are the integration times each band

must be measured in order to get the required sensitivity for the measurements. The mode 1

measurements were far less sensitive and time consuming than those required in the Mode 2

measurements. To see mode2 measurements refer to appendix.

In order to characterise the RFI around the core, Mode 1 measurements were performed at all of

the sites shown in Figure 18. At each site, Mode 1 measurements were made for 3 to 5 antenna

pointings on 2 polarisations each; this process took 27 hours on average and was performed once

30

for each site. The idea of these measurements was to characterise strong interferers in the parts of

the spectrum which are not critical for main SKA science and therefore do not need more sensitive

measurements.

Figure 18 - Locations of the Mode 1 RFI measurements

Figure source : (SKA SA, 2006b)

The result of RFI measurements which are shown in Figure 19 show there was virtually no RFI above

2GHz and although there was significant RFI below 2 GHz, it was contained in the frequency bands

allocated to terrestrial and satellite services (Manners, 2007). This is good news for the SKA and

MeerKAT, however we need to remember that these measurements were not continuous, so it is

unlikely that it characterised intermittent or burst-like interference. Also these measurements only

tell us about the RFI in 2005. The list of strong emitters found is shown in table 4. The site has

changed significantly since then with the introduction of the infrastructure required for MeerKAT

and the on-going construction of MeerKAT, and SKA which will continue until 2024 (SKA SA, 2011).

Some of the radio, TV and cellular transmitters were within the RQZ at the time of the measurement

campaign as the RQZ had not yet been signed into law. As those transmitters are above the levels

required by the RQZ they are going to be replaced by low powered transmitters which will cause less

interference. As of December 2012 TV transmitters are in the process of being replaced. The mobile

communication providers are in consultation with the SKA SA. Different solutions which will not

interfere with MeerKAT, but will allow for mobile communication in the area are being discussed.

Unfortunately, the satellite emitters are not under the purview of South Africa and the avionics

systems are critical for the safety of aircraft. Currently there is no alternative and these emitters will

remain for the foreseeable future.

31

Table 4 - Table of strong emitters and their frequency bands found during the RFI measurement campaign

Frequencies MHz Source

90-108 FM Radio

137-138 Satellite

240 - 270 Satellite

250 - 450 Mobile Communications

170-320 VHF TV

480 - 830 UHF TV

900 - 960 GSM

960 – 1150 Avionics

1164 - 1600 GNSS satellites

Figure 19 - Summary of Mode 2 measurements over the frequency range 150MHz - 22GHz. The top plot shows the

results for vertical polarisation and the bottom plot shows results for horizontal polarisation.

Figure source : (Manners, 2007)

In conjunction with the site measurement campaign a database of transmitters in South Africa was

also built with the help of communications regulator ICASA and the main telecommunications

operators. This database was used to estimate the effect of those transmitters using standard

propagation models. Two independent commercial organisations performed these propagation

32

studies for transmitters up to 200 km from the site and even further for broadcast transmitters(SKA

SA, 2006a).

These propagation studies revealed some issues with the RFI environment. Broadcast and other

radio communication services exceed the thresholds of ITU-R RA 769 even in remote areas (SKA SA,

2006a). The distribution of radio communication transmitters is not tightly correlated to population

density as rural transmitters are often high-powered to improve coverage. Local mountains

(especially to the south) are an effective shield of local transmitters and tropospheric conditions

significantly affect the propagation of distant transmitters.

In addition to studying the propagation of known transmitters, a reciprocal propagation study was

conducted (SKA SA, 2006a). For these studies a hypothetical transmitter is placed at one of the sites

and run through standard propagation models, the result of this modelling is shown in Figure 20.

These studies can be used to find an appropriate size for a RQZ. From these studies it was

determined that even weak, distant transmitters can emit signals that exceed the ITU-R RA 769

thresholds (SKA SA, 2006a). The implication being that it is impossible to limit broadcast and other

radio communication signals to ITU-R levels at any site in the world

Figure 20 - Example reciprocal propagation study for a hypothetical 12W GSM transmitter at the core site. The low (blue)

end of the scale represents a signal flux level of ITU-R RA 769-2 continuum threshold. The circle has a radius of 200km.

As can be seen this type of transmitter will be above the ITU threshold for over 200km in every direction. Also obvious

from the plot is how the mountains to the south of the core provide good protection from RFI.

Figure source : (SKA SA, 2006a)

33

2.5.2 Current RFI monitoring

The 7 dish interferometer (KAT-7) currently on the MeerKAT site can be used to perform high

sensitivity RFI surveys when it is not being used for science purposes. The KAT-7 telescope is used for

2 regular RFI monitoring activities. The first is a 360° scan at 3°, 9° and 15° above the horizon across

the frequency coverage of KAT-7 which is 1200MHz – 1950MHz. Figure 21 shows an example of the

plots generated by this scan. The data are captured in 1 second accumulations and with a channel

resolution of 400 kHz. The data are run through a RFI detection algorithm which flags data which are

11 sigma above the noise. The scan is run twice a week and is meant to monitor the changes in RFI

due to the construction of MeerKAT infrastructure.

Figure 21 - Example plot of the bi-weekly RFI survey using the KAT7 dishes. There have been 472 of these RFI scans run

as of 20/01/2013.

Figure source : (Passmoor, 2013)

The second RFI monitoring activity performs a high elevation scan with a higher frequency resolution

of 6.3 kHz wide channels over the same bandwidth of 1200 kHz-1950 kHz. The purpose of this scan is

to find narrow band RFI which are hidden in the lower resolution scan. This scan was run because RFI

was discovered in narrowband science observations. It was found the RFI was caused by the receiver

component of one of the dishes. Although the internally generated RFI does not show up in

correlated data, it does raise the noise floor of observations. This scan is run once a month to ensure

the problem does not reoccur. RFI can also be detected during science observations by examining

34

the science data. The same software which is used in the monthly scans can be run on science

observations to detect RFI during normal observations.

The results of these scans are discussed at a monthly RFI working group headed by the RFI manager

for MeerKAT. The RFI manager co-ordinates many RFI mitigation activities such as using

spectrometers on site to track down RFI culprits, measuring equipment for potential RFI before it is

installed on site, measuring the shielding efficiency of different buildings, modelling the path loss of

signals generated on site and measuring representative signals to see whether they fit propagation

models.

As of December 2012 there were many RFI mitigation strategies in action at all times with the goal of

maintaining the low RFI levels on site, however there was no continuous monitoring system.

Although the KAT-7 dishes and other RFI campaigns provide useful, high quality information on the

environment, they provided snapshots of RFI. This means that it is likely that there was some RFI

which was not monitored as it occurs outside of these snapshot.

2.5.3 ReAl Time Transient analYser (RATTY)

The RATTY instrument was originally developed in order to study the emissions of electric fences

around the MeerKAT site. An example of the RATTY in use is shown in figure 22. The system was

designed to be portable and consists of an antenna (not shown in the figure), a Reconfigurable Open

Architecture Computing Hardware (ROACH) board and a PC. The antenna collects the

electromagnetic radiation, the ROACH board performs the analogue to digital conversion and signal

processing and the PC is used for control and data storage. The ROACH board is the basic computing

unit used in the KAT7 correlator; we will discuss the ROACH board in more detail in the technology

section of this chapter.

The RATTY can be configured and calibrated to run using many different types of antenna and ADCs.

It can be set to any number of channels, bandwidth or integration time. The states of physical LEDs

on the RATTY can be configured to display the status of different control bits in the ROACH registers

and the IP address of the RATTY device can be updated.

The system can record either time or frequency domain signals. In the case of time domain signals

the power of the signal can be saved at the highest time resolution possible with the connected ADC

which samples at 1.5 GHz. It is possible to capture nanosecond pulses this way, which is exactly the

kind of pulses one gets from electric fences. In the frequency domain, the RATTY system can perform

a 32768 bin Fourier Transform on the time domain data, resulting in a power spectrum from 0 MHz

35

to 850 MHz with a channel resolution of 42 kHz. These spectra can be accumulated for a variable

time to increase the sensitivity of measurements.

Figure 22 - Example of the RATTY system being used in the field

The RATTY system is currently being upgraded to be used as a more general tool for RFI

measurements. As the RFI requirements imposed on MeerKAT subsystems and infrastructure are

extremely stringent the RATTYv2 is being designed to provide measurements which can verify these

requirements. The RATTYv2 will have bandwidth of 50 – 2600 MHz with a channel resolution of 1

kHz to 20 kHz.

2.6 RFI Detection Algorithms

Measuring the spectrum is the first step in RFI monitoring. After collecting data we must detect RFI

in that data. It is possible for an expert to visually inspect the data and find RFI, however this is a

time consuming process. Using signal processing it is possible to perform automatic RFI detection. It

is important to ensure that our RFI detection algorithms are effective; we do not want to falsely

claim a spectrum is free of RFI because our detection algorithm is not sensitive enough. We also do

not want to spuriously classify clean spectra as contaminated with RFI, as this will result in resources

ROACH

ANTENNA

FEED

REAL TIME

SPECTRUM

36

being wasted trying to track down RFI culprits which do not exist. This section discusses what types

of RFI detection algorithms are appropriate for the type of data that the RATTY system collects.

2.6.1 Data

Before describing the different RFI detection algorithms, it is important to have an understanding of

the data. Firstly the data is a quantisation of a continuous signal. In Figure 23, we see that a

continuous signal can be converted into 1 of 4 digital values using two bits. The figure shows that the

digital values that we perform analysis on are not exactly the signal which was received by the

antenna. An Analogue to Digital Converter (ADC) can only sample at a certain rate and we cannot

see features which occur over a shorter time frame than the sampling rate of the ADC. The ADC

quantises continuous voltages into discrete voltage levels at discrete intervals. As a result the digital

value will always be some distance from the actual value; we call this the quantisation error. It is

possible for the real value to be outside of the range of possible values that can be quantised, in this

case we do not know how powerful the real signal was at all, simply that it was higher/lower than

the maximum/minimum value of the ADC.

Figure 23 - The figure on the left shows how the analogue values map to digital values for a 2bit ADC. The figure on the

right shows an example quantisation of an analogue signal

Figure source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node66.html

Although it is possible to perform RFI detection on the voltage data, this only tells us at what time

RFI was present, not on which frequencies it was present. It is possible to calculate the contribution

each frequency makes to total power by using a technique called the Fourier transform. As we

perform our Fourier transform on digital data, the output is a spectrum showing what contribution

was made by frequency channels across the bandwidth of our receiver. Each channel’s power is the

combined power of all of the frequencies within that channel’s band of frequencies.

37

Figure 24 shows what the data coming out of a Fourier transform would look like. At each time step

we can see that some frequencies contribute more power than others. This allows us to see which

frequencies have the highest power emissions. As many RFI sources emit on specific frequencies,

this information allows us to narrow down the possible sources of RFI in our captured data.

Figure 24 - Example of data after it is Fourier transformed. For each time step we get the contribution of each frequency

channel to the total power

Finally the data is a combination of signals from different sources with different power and

probability distributions. The received power signal can be represented by the formula

 (Fridman & Baan, 2001)

 is the signal of interest, or in the case of RFI monitoring, the background noise. is the

noise introduced by the receiver. Both and. have a normal distribution with a mean

of zero and will generally be low powered. is the signal/s of RFI, they can have many kinds of

probability distributions and power levels as there are many different types of RFI.

38

2.6.2 Frequency and Temporal Thresholding

One characteristic which separates RFI and astronomical signals is that RFI can be orders of

magnitude more powerful (A. Offringa, 2012). This characteristic makes thresholding techniques

useful, although other techniques are needed to detect low powered RFI. It is possible to set a

constant threshold for all channels based on the knowledge of the RF environment; however, there

are more sophisticated techniques which estimate thresholds based on the neighbourhood around a

data point. Thresholding techniques are divided into two categories, those which flag in the

temporal domain and those which flag in the frequency domain.

Temporal thresholding can be performed in the time domain, before or after the signal is Fourier

transformed into a power spectrum. In the case that the signal is flagged before being transformed,

flagging the data means that all frequency data is lost, whereas performing the flagging after a

Fourier transform allows for only those frequency channels with RFI to be flagged. The choice is a

trade-off between the extra time and computation required to perform a Fourier transform and to

perform RFI detection on each resulting channel versus the extra sensitivity you get by not throwing

away channels with no RFI. Frequency thresholding can only be performed after a Fourier transform.

The algorithms for thresholding all work the same way in the time or frequency domain. For both

cases the higher the resolution of the data, the more chance there is that RFI will be detected

(Guner, Johnson, & Niamsuwan, 2007). Other than a simple global threshold, it is possible to define a

threshold based on the varience of spectrum or channel. If the distance of a data point is far from

the median or mean of the data in terms of its standard deviation, that data point is likely not

normally distributed, in that case the signal must dominate and the data point can be

flagged (Guner et al., 2007).

We will now describe the steps needed in the algorithm. For our purposes we will detect RFI in a

recorded power signal where varies either in time or

frequency. We are interested in determining whether the power at is contaminated by RFI.

1. Calculate an estimate of the varience in a window of length centred at the point , we

will call this estimate . From this we can estimate the standard deviation

2. Calculate an estimate of the mean or median of the window around the point , we will

call this estimate =

39

3. With a threshold determined by the properties of the environment

a) If > then flag as RFI

b) Else if < - then flag as Unknown

c) Else is RFI free

The result of the algorithm will be either (a) is most likely RFI as it is significantly more powerful

than the window, (b) is significantly weaker than the window or (c) is within the range we

accept as unlikely to be RFI (P. A. Fridman, 2008). The outcome (b) deserves some more discussion;

this result is interesting as it means that the power dips significantly from the immediate neighbours.

In the temporal case this could mean that a long lasting RFI pulse (i.e. at least half the length of the

window) has stopped emitting. In the frequency direction, this is less likely to be a result of RFI and

may indicate an absorption line in a spectrum.

It is important to ensure you have a good estimate of the standard deviation, which is denoted by .

In radio data with interference the combined signal is not strictly normal as RFI introduces strong

outliers. The outliers significantly affect both the mean and standard deviation calculated using

It is important to find robust ways of calculating statistical properties of the data to make

thresholding as effective as possible(P. A. Fridman, 2008).

There are two ways we will use evaluate a robust estimates of statistics. The first is the breakdown

point which describes percentage of the data that can contain outliers before the estimated value

differs from the actual value. For a mean or varience calculated in the standard way this value is 0 as

one outlier can alter the estimation. The breakdown point of the median is 0.5 as 50% of the data

must be outliers before it affects the estimation of the median. The stability of an estimate is

achieved at the expense of effectiveness, in the absence of outliers the robustly estimated varience

is larger than that of a standard estimate. This ratio of the true varience over the estimated varience

is called the LOSS of the robust estimate; the LOSS of an estimator can be in the range with a

value of 1 meaning the estimate is in total agreement with the true varience. In deciding a robust

estimate of the varience it is important to find a robust estimate where the breakdown point and

LOSS are appropriate (P. A. Fridman, 2008).

40

The median absolute distance (MAD) estimator is a robust estimator. The median of distances from

the median is calculated from a sample . The median is found by ordering the data

such that . The median is the value , or if is odd we can interpolate

the median as . The varience can then be calculated using

The MAD estimation lowers the varience of the data, the coefficient 1.4383 corrects for this

underestimation. The breakdown point of the MAD estimator is 0.5 and the LOSS is 0.6 (P. A.

Fridman, 2008). This means that the MAD estimator will be robust up until more than half of the

data points are outliers.

2.7 Technology

In this section we will discuss the different technologies available to provide RFI monitoring at

MeerKAT.

2.7.1 Databases

Databases are essentially collections of information which are stored over a period of time. As this is

a problem which must be solved by many different systems, there exist different database

management systems (DBMS) to provide reliable data storage and recovery. As any RFI monitoring

system is going to have to store spectral information over long periods of time, it makes sense to use

a DBMS to store and access this data(Garcia-Molina, Ullman, & Widom, n.d.).

A DBMS allows users to create a database with a specified logical data structure (schema); it should

be able to retrieve (query) the data using an appropriate language; allow the storage of large

amounts of data; allow for the recovery of data in the case of errors or misuse and control who gets

access to the data (Garcia-Molina et al., n.d.). As DBMSs have been used for 50 years, there are

many mature and reliable DBMSs to choose from.

Most DBMSs are relational databases where all data are logically stored in a table. This allows the

user to work with a high level language to perform logical operations and create relationships on the

data without knowing the data storage structure. Separating the data structure allows for more

complicated and more efficient structures to be used while allowing the database to be conceptually

simple. Relational databases are the de facto standard for databases which must store large

amounts of data.

41

In order to create, update and access a relational database we use a programming language called a

structured query language (SQL). SQL is a language which allows for data definition for declaring

database schemas and for data manipulation. It allows the user to query and modify a database and

allows users to create relationships between different data fields. It also allows users to perform

queries based not only on the values of fields, but the relations between them.

There are a few different options of DBMSs. Some of the most popular options are Oracle, MYSQL,

PostGreSQL, Microsoft SQL server and IBMs DB2. Of these MYSQL and PostGreSQL are open source

packages. This means they are free but lack some of the features of the other offerings.

2.7.2 Highly Definable File Format

The KAT7 telescope uses the Highly Definable File v5 (HDF5) format to store most of its data and the

MeerKAT telescope is planned to use the same format. HDF5 is a technology suite which includes a

portable file format, a software library to efficiently access and manipulate those files with

interfaces for most common programming languages. It also includes tools for viewing, manipulating

and analysing that data. The HDF format was developed by the National Centre for Supercomputing

(HDF Group, 2011). The development has since been taken up by the HDF Group which is

responsible for the latest version of HDF and its accompanying technologies called HDF5. The HDF5

data model, file format, API, library, and tools are all open source and can be used free of charge.

The HDF format allows users to define their own hierarchical data format which can store multiple

data groups each of which can contain multi-dimensional arrays with associated metadata (HDF

Group, n.d.-a). The format allows for the creation of HDF5 groups and datasets. A group is a

structure containing HDF5 objects which could be other groups or datasets; each group also contains

a set of metadata which describes that group. The contents of a group can be defined by the user. A

dataset is a multi-dimensional array of data along with metadata.

HDF5 files have some useful features; they can be compressed with a range of algorithms. This

compression can be performed on subsets of the file or chunks of a dataset. This allows access to

parts of the file without having to decompress the entire file. There is also a parallel version of HDF5

which allows for parallel access to files using standard libraries such as OpenMP and MPI (HDF

Group, n.d.-b).

42

2.7.3 Web

For RFI monitoring systems it is important that information about RFI is easy to access and that

observers can be alerted to potential RFI as quickly as possible. We have seen that at some

telescopes the RFI monitoring systems use static PDF files or offline data analysis and special

software packages to provide data to users. These systems either do not provide immediate access

to RFI data or required access to the RFI monitoring servers. Although these methods have been

successful, it is possible to provide data quickly to users on client machines far faster. Widely

disseminating information to computers without using any specialised software other than a web

browser is exactly what the web was designed to do. As such the web should always be considered

when information must be shared easily and quickly.

The World Wide Web is a set of technologies which allows for the sharing of information over the

internet. It is based on 3 fundamental technologies developed in the 90s (World Wide Web

Foundation, 2012); these are the HyperText Markup Language (HTML) a language for formatting

documents; the Uniform Resource Identifier (URI), a unique address for each web page on the web

and Hypertext Transfer Protocol (HTTP), which allows for retrieving resources across the internet

using a link on a webpage. Web uses the internet to make access to data around the world simple

and universal, that is anyone with an internet connection and a web browser has access to all of the

information on the web.

In order to provide interoperability of services on the web, an organisation called the World Wide

Web Consortium (W3C) develops standards for web services, servers and browsers. These standards

are implemented in many open source and proprietary solutions. The standards ensure that web

pages and services are interoperable regardless of who implemented them. This set of standards is

what allows for virtually any kind of computer with a compliant browser to access most web sites

and services. The easy access to information provided by these technologies is what makes the web

arguably the most powerful communication medium on Earth.

Two important standards developed by W3C make designing attractive and functional websites

simpler are Extended HTML (XHTML) and Cascading Style Sheets (CSS). XHTML provides a language

for defining the structure of the web site. XHTML includes the ability to publish documents, text and

images, provide hypertext links which point to other online information and to embed web

applications directly into a webpage. CSS is a language for describing the presentation of the

information in HTML; CSS defines the colours, layout and fonts of the page. CSS also allows for the

43

content of the web page to be displayed differently according to the device the page is viewed on

(World Wide Web Consortium, n.d.-a).

One of the most powerful technologies available for web development is scripting, mainly

performed using a language called JavaScript. JavaScript is a programming language which does not

need to be compiled to be run. The browser will run the code straight from the source file. JavaScript

allows for the web page to be dynamic; content on the page can be altered and content can be sent

from the page to a server without resending the HTML or CSS pages. Data can be sent which simply

update elements already present. The scripts also allow web pages to incorporate data from the

user’s environment such as location, local time, etc. This added dynamism allows for web pages to

act as fully fledged applications, much like traditional programs. The caveat being that the web

browser used must implement all of the required functionality JavaScript used in the application.

JavaScript is generally slower than native code such as c++ and different browsers will have different

performance (Webber, 2011; World Wide Web Consortium, n.d.-b).

HTTP is the protocol used to send information between applications on the web (Kristol, n.d.). The

HTTP protocol is a request/response protocol, where one application must request information in

order to get a response containing the information it requires. HTTP is used on top of the normal

internet protocols, normally the Transmission Control Protocol (TCP).

Most of the time people deal with the client side of the web, using their PCs or other devices to

access information which is being served. However to create a website a server of some kind is

needed. A server can be divided into 2 sections, the hardware and the software. The hardware is

generally a computer which is connected to the internet. The server software responds to HTTP

messages sent over the internet by clients who are interested in accessing information on that

server.

Servers contain the files required to serve a webpage to clients. These include the HTML, CSS,

JavaScript files and content, such as images, sounds, videos and documents. These files are stored

using the basic file system, a database or a content management system. The Server software

decodes a HTTP request and returns the files needed to render a webpage. There is a large and

growing number of possible server software available. The most popular of these software in order

of popularity are Apache, Microsoft and nginx which are used by 42%, 29% and 14% of websites

respectively (Netcraft, 2014).

44

2.7.4 Reconfigurable Open Architecture Computing Hardware (ROACH)

The ROACH board is a primary building block of the signal processing chain for many modern radio

telescopes, including the KAT7 and PAPER telescopes. The ROACH board was developed largely in

South Africa by MeerKAT engineers as part of the Collaboration for Astronomy Signal Processing and

Electronics Research (CASPER) (CASPER, 2013; Parsons, Werthimer, & Backer, 2009). The idea behind

the ROACH board was to facilitate the development of signal processing back ends. Rather than

developing Application Specific Integrated Circuits (ASIC) and customised networking protocols for

radio telescopes, the ROACH philosophy is to use commodity products where ever it is

advantageous. The ROACH board is built using commodity processors and networking.

Previously the signal processing systems of radio telescopes needed to be custom built due to the

costs of Digital Signal Processing (DSP) technology. However this approach requires years of

development and integration in order to create a functioning telescope. As the commercial use of

DSP technology has increased, advances in commercial DSP technology have made the older

approach counter-productive (Parsons et al., 2009). By using commodity hardware, all advances in

the commercial DSP field can be included in telescopes. This allows engineers to focus on the

construction of scalable, general purpose solutions to radio astronomy DSP problems. New

telescopes can then use the solutions of older systems scaled appropriately, rather than designing

new systems (CASPER, 2013).

The ROACH v1 board is a DSP computing platform designed with these ideas in mind. The main

processing is performed by a commodity Virtex5 (CASPER, 2013) based Field Programmable Gate

Array (FPGA). FPGAs are chips which can be programmed after manufacture. Unlike an ASIC which

has a pre-determined function an FPGA can be re-programmed to adapt to new standards and

applications.

It is possible to develop libraries for FPGAs which allow the functionality of algorithm to be

parameterised and installed on different FPGAs (Parsons et al., 2009). This allows for a DSP algorithm

to be taken from an old FPGA and redeployed on a newer, faster FPGA, or to scale the algorithm up

or down depending on the particular application. Upgrading or altering ASICs on the other hand

requires designing and manufacturing a completely new chip.

The other major advantage of ROACH boards is that they use commodity networking hardware and

protocols. This means that it is possible to connect the ROACH to any other commodity hardware

which has implemented the same network interface/protocol. This allows the ROACH board to be

45

used in heterogeneous computing systems where data is processed by FPGAs, commodity CPUs and

Graphical Processing Units (GPU).

2.7.5 Python

Python is one of the most popular, high level programming languages in use today(Redmonk, 2014).

It is an interpreted language which, although it generally runs slower than compiled languages like

c++, it also has a lower development time. It is interoperable with many other languages and runs on

the major operating systems, with many wrappers for popular languages such as MATLAB, Java, c++

and CUDA (Python Software Foundation, 2012), this makes it very useful for interfacing with diverse

systems.

Python is slow for large numerical calculations. There are libraries which can mitigate this problem

for scientific applications. The library used by MeerKAT engineers is Scipy. The most fundamental

part of Scipy in terms of efficiency is Numpy which implements N-dimensional array manipulation in

C (Numpy Developers, 2013). When performing Numpy functions on Numpy data types and arrays,

the processing is generally 3 orders of magnitude faster than normal python code.

For these reasons Python is the scripting language of choice used by MeerKAT engineers. The ROACH

board has a Python interface and all of the scripts for the RATTY device are written in Python. Python

has libraries for manipulating HDF5 files and popular databases, there are also web frameworks

developed for Python. It can fulfil most of the scripting needs of the engineers at SKA SA. Also as the

development timeline for the MeerKAT telescope is short and the manpower limited, the quick

development cycle of Python is useful.

46

3 Design

In order to provide RFI monitoring for the MeerKAT telescope we designed and implemented a

system which samples the Radio Frequency (RF) environment, detects Radio Frequency Interference

(RFI) events and makes this data available for the end users. We call our monitoring solution the “RFI

monitor” or simply “monitor” for the rest of this thesis.

In this chapter we state the goals of our RFI monitor in section 2.1. The limitations of the available

resources are discussed in section 2.2. We describe the users of the monitor and their requirements

in section 2.3. We provide the reasoning behind our design approach in section 2.4. Finally we state

our design decisions and show how these decisions were informed by the goals, requirements and

limitations in section 2.5.

3.1 High Level Requirements

The first requirement of the monitor was to provide a continuous high time resolution record of the

RF environment. The resolution of the data need to be high enough in the time dimension to

describe short spikes in RF that are caused by transient events, such as lightning strikes and sparks

which last in the order of 10s of microseconds. As we cannot predict when these events will occur, it

is necessary to monitor continuously to ensure that no RFI is missed.

The second requirement of the station was to provide automatic RFI detection. This automatic

detection allows the system to be an active part of the site management. Rather than simply

providing continuous data from which the user can find RFI themselves, this allows the user to be

informed of new RFI as and when it is detected. This also allows users to know when and where the

most RFI is generated, allowing for RFI to be avoided when using valuable observation time.

The third requirement of the station was to provide access to the data. This was an obvious but very

important requirement for the station, since the data are not useful if they are impossible to obtain

or understand. The requirement was not only to make the data available, but also to provide useful

visualisations of the data which allows the user to easily work with and understand the RF

environment. To ensure users cannot corrupt the data they are not allowed access to the original

raw data files as they could mistakenly alter values or corrupt the formatting.

3.2 Resources

Our RFI monitor was implemented using hardware made available by SKA-SA. As our resources were

finite the hardware placed limitations on our monitor. We had to understand these limitations in

order to ensure that our goals could be met. We also had access to existing software which provided

some basic functionality required by the system. In this section all of the hardware available for the

47

system will be described and the limitations the hardware placed on our system will be discussed.

We will also see what software was available and whether this software could be used as part of the

monitor.

Table 5 - Table of the resources provided by SKA SA and a description of each resource

Resource Description

ROACH board Standalone FPGA processing board based on Virtex5 FPGA

KatADC 8 bit ADC

1.5 GHz max sampling frequency

Sampled bandwidth 50MHz to 850MHz

DELL PowerEdge R410 server 2 × Quad-core Intel E5640 @ 2.67GHz

1TB HDD

8GB DDR3 RAM

Rohde & Schwarz HL033 Antenna Frequency range: 80MHz to 2 GHz

Directional

Typical radiation pattern shown in figure 26

Spectrum analyser code FPGA code to calculate a spectrum from time domain power

values collected by the ADC

Data collection scripts Python scripts used to control the RATTY system

 Configure ROACH

 Start data capture

 Display spectra

 Save spectra to hdf5 file

 Display saved spectra

48

Figure 25 - Diagram of the RATTY system. The antenna is connected to the RATTY via a coaxial cable. The signal goes
through the analogue chain and is digitised by the ADC. Then the signal is run through a polyphase filterbank,
accumulated and sent to a connected PC which can store and analyse the data.

The resources available were essentially all of the components of a RATTY system along with some

extra hardware which was donated by the SKA-SA group. A more full description of the RATTY system

can be found in the background chapter. In Table 5 we show each resource along with a short

description of each resource.

A diagram for the RATTY system is shown in Figure 25. It shows how the voltage signal from the

antenna is sent into the analogue chain of the RATTY system, which amplifies the signal, passes it

through a low pass filter, and a low noise amplifier before it is digitised with the ADC. The ADC is

connected directly to the ROACH board, the digital signal is processed on the ROACH boards FPGA.

The FPGA is programmed to run the signal through a 4 tap Finite Impulse Response Filter and a

32768 sample FFT. It is then accumulated for a configurable amount of time. At this stage we have an

accumulated spectrum. The spectra are sent to a connected PC over Ethernet where the spectra are

converted into power spectra and finally saved to an HDF file.

49

Figure 26 - Typical radiation patterns for antenna
Image src : http://cdn.rohde-

schwarz.com/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/HL033_cat_2015_78-79.pdf

3.2.1 Limitations

These resources imposed limitations on our system. The limitations are listed below in order of how

serious the limitation was to our system.

Limited bandwidth – The ADC could only capture spectra below 850MHz. This meant that our

system would only be able to monitor a portion of MeerKAT’s observation bands (SKA SA, 2011). As

such our monitor was a proof of concept and could not be used for the final monitoring solution until

an adequate ADC is used.

Limited storage – An inevitable consequence of continuous monitoring was that the data would

eventually grow larger than the hard drive.

Limited memory (RAM) – The data was large. We would not be able to hold all of the data in

memory, processing should be performed on pieces of data which can fit in memory.

Limited Processing – We had 8 cores to perform processing; it was unlikely that we would need more

processing power.

50

3.3 Users

The RFI monitor has 3 types of users; astronomers, engineers and site management. Each of these

users gains valuable information from the RFI monitor. This section describes how each of these

users could use the RFI monitor if it were to accomplish all of the goals stated earlier.

3.3.1 Astronomers

Astronomers are the main end users of the telescope. They are generally skilled in mathematics and

physics. They are typically comfortable working with spectra as raw data as well as standard

visualisations of spectra. Astronomers are experienced in computers and have some programming

experience, most are comfortable working with standard programs such as spread sheets, web

browsers and other common computer applications (Asa, 2013).

There are a few possible ways that astronomers would use the RFI monitor:

RFI detection/removal – RFI is likely to contaminate at least some of the bands that an astronomer is

observing on. The astronomer must identify RFI present during their observations or risk inaccurate

results (Ekers & Bell, 1999). The astronomer can use the RFI monitor to find when and on which

channels RFI was detected and whether the power of the signal was high enough to corrupt their

observations. This information can be used to find and remove RFI from their observations.

RFI avoidance – When planning their observations astronomers will have access to occupancy charts

for each hour of the day and each channel captured by the RFI monitor. They can use this

information to decide whether they should use certain channels or times of day for their

observations. This is arguably more valuable than RFI detection as the ability to intelligently avoid RFI

contamination will lead to less corrupted data in observations (Boonstra, 2001).

3.3.2 Engineers

The MeerKAT telescope is being built by a group consisting largely of electrical engineers. They

generally have a very good knowledge of computer systems and programming and most have

significant knowledge of the spectrum. They should also be comfortable working with raw data as

well as standard visualisations of spectra. Most are comfortable working with standard computing

applications and are likely comfortable working with technical applications, using the command line

and other more advanced uses of computers.

RFI detection – One of the main goals of the engineers is to ensure that the RFI generated by the

instrument itself and the surrounding infrastructure is minimal. They will be able to use the RFI

monitor to check if there was a significant increase in RFI after they installed a particular piece of

equipment (Boonstra, 2001).

51

RFI record – Engineers need to know the likelihood of strong narrow-band RFI so that they can

design the signal chain with enough headroom. Otherwise strong RFI could damage the system. If

they find that there is some RFI in observations and engineers are unsure whether this is internally or

externally generated, they can check whether the RFI was captured by the monitor. If both MeerKAT

and the monitor capture the same signal, then that signal cannot be introduced from some internal

component of the signal pipeline. This will allow them to not waste time looking for possible internal

RFI which in fact does not exist (Boonstra, 2001).

3.3.3 Site Management

Site managers are likely to be technically skilled; a dedicated RFI manager will have intimate

knowledge of the radio spectrum. However other site managers may not be comfortable working

with the raw data and would benefit significantly from clear visualisations of spectral data and

automatically generated lists of RFI events (R. Lord, personal communication, 7 June 2013).

RF record - The most valuable part of the monitor for site management is likely to be the continuous

record of the spectrum and RFI events. This will allow the manager to find or be notified when there

is a significant increase in the amount of RFI being captured. This will allow them to act as soon as a

new RFI culprit starts emitting signals. It is important to stop RFI culprits as early as possible before

the use of the device becomes habitual, at which stage it will be significantly harder to stop people

from using it.

RFI detection and RFI record - Another valuable use of the monitor is that it can be used to prove to

a RFI culprit that they are indeed causing an unacceptable amount of RFI. The radio frequencies

around the site are protected in a radio quiet zone, which makes the use of certain electronics illegal.

However, without any proof, it will be hard to convince locals that a particular device is in fact

causing a problem. If it can be demonstrated that a certain type of RFI captured by the monitor only

occurs when the device is in operation, this will give the RFI manager far more leverage in

confrontations with RFI culprits. If there were no monitor, it is likely that RFI culprits would be

noticed later; be harder to find and it would be harder to prove culpability.

3.3.4 User Requirements

From the description of the users above we distilled some requirements of our RFI monitor. These

were the data products that the RFI monitor had to make available to satisfy the needs of all users.

The requirements and the users of each requirement are shown in table 6.

52

Table 6 - Table showing user requirements of the RFI monitor

Requirement High-level

requirement

Description Users

Automatic RFI

detection

Automatic RFI

Detection

The monitor must automatically

detect RFI events

Astronomers

Engineers

Site

Management

RFI record Continuous high time

resolution record of

the RF environment

The monitor must maintain a

record of every detected RFI event

Astronomers

Engineers

Site

Management

RF record Continuous high time

resolution record of

the RF environment

The monitor must maintain a long-

term continuous record of the RF

environment

Site

Management

Access to raw data Access to the data Allow experienced users to perform

their own analysis

Astronomers

Engineers

Data Visualisations Access to the data Make large data set

comprehensible

Allow users with less experience

with spectra to use data

Astronomers

Engineers

Site

Management

Descriptive

statistics

Continuous high time

resolution record of

the RF environment

Statistics which add understanding

to the underlying signal provided

along with spectral data.

Astronomers

Engineers

Site

Management

3.4 Design Approach
The design approach which we used was evolutionary prototyping. Evolutionary prototyping is an

iterative process which allows for user input throughout the development process. The basic idea

with this approach is to provide a basic prototype which can be incorporated into the final system.

The prototype is presented to the users who provide feedback. The developer then uses this

feedback to design the next prototype which ideally is built on the previous prototype. This process

continues until the final prototype fulfils all of the user requirements. The final prototype is the final

53

system, unlike “throw-away” prototypes, where small prototypes are used to test out ideas but

ultimately are not used as part of the final system (Vennapoosa, 2012).

The motivation for using evolutionary prototyping for this project was that our monitor should start

collecting data before the whole system was complete. This was valuable as the longer the record we

have of the RF environment, the easier it is to see long term changes in RFI. Also, as the whole

system was supposed to work automatically for very long periods, we needed to test each

component for a number of months to ensure it could function over those periods. If we used throw-

away prototypes, we would have had to stop testing the functionality of the last prototype each time

we implemented a new prototype. This was mainly because we only had 1 ROACH board and

antenna, so we could not simultaneously run two instances of the monitor.

Table 7 - The 4 prototypes, the functionality they add and which requirements they satisfy

Prototype Functionality Requirements satisfied

1 - Data capture Capture spectra from RATTY

Save spectra in searchable format

RF record

2 - Archival Calculate hourly descriptive statistics

Store statistics in searchable format

Delete “old” raw data

Descriptive statistics

3 - RFI detection Perform RFI detection on raw data

Extract RFI events

Calculate descriptive statistics from RFI events

Store in searchable format

Automatic RFI detection

RFI record

4 - Access Create web site with access to:

Raw data

Visualisations

Access to raw data

Data visualisations

For our monitor we designed and implemented 4 prototypes to provide and test the functionality of

data collection, storage and access. Table 7 shows the 4 different prototypes and the requirements

which they satisfied. The first prototype provided the ability to capture and store raw spectral data.

The second prototype provided the calculation of descriptive statistics and long term archiving of

these statistics. The third prototype provided automatic RFI detection and storage. The final

prototype added the ability to access the data which the first 3 prototypes collect, calculate and

store.

54

3.5 Design Decisions
After gathering user requirements it was possible for us to get a high-level idea of what the RFI

monitor should do. First it had to automatically and continuously gather data from the existing

RATTY system. After collecting data the monitor should then run an automatic RFI detection on

collected spectra and calculate a number of descriptive statistics that astronomers and engineers

use to better understand the spectra. The raw spectral data, RFI detections and descriptive statistics

are then stored in a searchable format. Finally the monitor had to provide access to these data.

Figure 27 presents a high-level diagram showing data flow and processing for the RFI monitor.

3.5.1 RATTY

In order to use the RATTY system to measure spectra for our monitor, we first needed to alter the

existing software to make data collection automatic and continuous. Originally human guidance was

needed throughout the data capture process. We needed to alter the RATTY so that it could be

started and run indefinitely with no human intervention. The control scripts for RATTY were written

in Python. Converting these scripts to perform automatic spectra capture was the first task when

developing the initial raw data capture prototype.

3.5.2 RFI Detection

There are many algorithms which exist to detect RFI in a signal; ranging from very simple

thresholding to complicated statistical techniques which require intimate knowledge of the RF

environment. The method chosen to implement was called thresholding based on the varience of

the signal. The reason we chose this method is that it is simple and effective. The algorithm was

already being used for the bi-weekly RFI scans and had proven its reliability. We allowed for other

RFI detection algorithm to be used instead of thresholding if a better algorithm was found by

defining interfaces on both sides of the RFI detection algorithm. Any algorithm implemented with

the correct interface would fit easily in the RFI monitor.

Figure 27- High level data flow of RFI monitor

55

Once RFI has been detected we store the detections in the form of RFI ‘signatures’ which could be

used to find the cause of RFI. The information that would make up a RFI signature is described

below.

Detection time – The time that the RFI signal was detected

Event length – The duration of the RFI event

Average power – The average power for each channel that RFI affected

Max power – The maximum power level for each channel

Min power – The minimum power level for each channel

Median power – The median power for each channel

Low channel – The lowest channel affected by the event

High channel – The highest channel affected by the event

We also store the raw data for the time period and channels which are affected by RFI. This will

allow for users to better understand what the source of the RFI might have been.

3.5.3 Storage

Monitoring RFI creates a large amount of data. It is important to store this data in a way which

maintains the data integrity and can handle both the continuous input from the RATTY system and

intermittent access from users. The best way to achieve this was to use a database. This is because

databases are mature technology which has been designed for maintaining large collections of data.

All of the databases were implemented in MYSQL because it is a mature and reliable product which

is free and many people have experience using it. It is also the format that the current bi weekly RFI

scans (See section 2.5.2) are stored. It made sense for all databases to have the same format.

From our requirements we saw that there are 3 different types of data that users would be

interested in. The raw spectral data which is provided by RATTY, the descriptive statistics which are

calculated each hour and the RFI detection data. As most of the incoming data is raw data, it makes

sense to separate this data into a high-input database which can handle a high amount of

continuous input. It was important to make this data easy to search and we should store it in a

database which focuses on efficient access.

As the process of this design was iterative there were 3 prototypes implemented to test the design

of data capture and storage. Figure 28 shows what processing is performed by each prototype. Each

of the three data types are stored in a separate databases; each prototype focuses on providing the

data that belongs in each database. In order to effectively use our multi-core machine, each

prototype’s processing is performed by a separate thread.

56

3.5.3.1 Basic prototype

The idea for the first prototype was to provide a database which could store all the data which is

captured and calculated each second. The DB had to store at least the raw data and most basic data

products to ensure that we could store a complete description of the RF environment with a high

enough resolution to be used for the intended RFI detection.

This design was meant to hold just the data which describes the RF environment. It did not contain

any extra information on RFI as there was no RFI detection for the first prototype. The goal with this

initial implementation was to have a system which could store all of the data at the rate that the

RATTY system captures. We also wanted to ensure that the database could respond to requests. This

prototype was meant to be a skeleton on top of which the rest of the monitor could be built.

We decided to use the Frequency Domain capture of the RATTY. It was the most appropriate for our

continuous monitoring system. The data rate of the time domain capture is simply too high. The

trade-off is that more time samples in the particular frequency than is strictly necessary may be

flagged. Also, in the event that there is RFI for which we do need to get a high resolution TD scan,

we can stop monitoring with the FD mode and use the original RATTY software to perform a TD scan.

The functionality will still exist, it will just not be the standard mode of operation

3.5.3.2 Archival prototype

After implementing the above database and running the monitor for 3 months, it became apparent

that the data rate of the monitor was too high to store high resolution data permanently. In fact it

took only 3 months to fill the entire 1 TB hard drive on which the database was stored. Seeing as this

RFI monitor is meant to store many years’ worth of data this was a situation which we had to rectify.

There were two options to increase the lifetime of the monitor storage, the simple solution was to

simply increase the amount of storage space. The other option was to reduce the amount of stored

data. If we chose the second approach we had to ensure that the data stored could describe the

general RF environment and how it changed over long periods of time and also be able to describe

RFI events in a high resolution. In both cases we could consider archiving the data on a separate

storage medium like DVDs for long term storage, although that data would no longer be easily

accessible.

57

Figure 28 - Diagram of first 3 prototypes and how they communicate.

We preferred option two, the main reason was that high resolution data was not required to

describe the average RF environment or how it changes over years. Hourly statistics are more than

adequate for a long term description of the RF environment. We did still need high resolution data

to detect and characterise RFI. However, RFI affects only a small fraction of the spectral range

captured. It was not cost effective to store data where only a small percentage of that data would

58

actually be required. Since we planned on implementing an RFI detection algorithm, we could use

detection information to intelligently ‘compress’ the data.

Table 8 - Table showing the expected data rate for each form of data

Data Data rate

Raw spectral data 450.00 MB per hour

Hourly statistics 1.06 MB per hour

RFI data 11.25 MB per hour

Total 462.31 MB per hour

We were planning on calculating hourly statistics for each channel which described the RF

environment and how it changed over long periods of time. This data had to be stored indefinitely to

fulfil our long term record requirement. If the only high res data we stored indefinitely was those

parts of the spectrum which were affected by RFI, we would save space while still having a long term

record of the RF environment and high resolution data on RFI events. If we assumed RFI to be

present in 5% of high resolution data and we knew that the hourly statistics are 150th of the space

of the raw data over that hour, then storing only the hourly stats and high resolution RFI spectra we

could increase the storage time of the RFI monitor from 3 months to 55 months. If we always stored

at least the last 2 months of high resolution data, we can still increase the lifetime of the RFI monitor

to 20 months, without adding any extra hard drives. Table 8 shows the expected data rate for each

of the data types.

Eventually it would be necessary to either add more hard drives to the monitor or move some of the

data on the monitor to another location. This was an inevitable outcome of providing a continuous

record of the RF environment. However extending the lifetime of the monitor in this way made it a

far more cost-effective solution.

3.5.3.3 RFI archival prototype

We needed to keep a permanent record of all detected RFI, however because of space concerns we

chose to delete all raw data after two months of capturing it. In order to keep high resolution data

on all detected RFI, we had to extract the high resolution data from our initial database and store it

permanently in an RFI archive before deleting the raw data. This database meant that even if a user

wanted to access high resolution data on RFI many months after the original data had been removed

59

from our raw database, they would still be able to get high resolution data on the detected RFI

events.

3.5.4 Access

We needed to provide an interface through which users could access and interact with the data. The

interface had to make it easy to quickly access relevant information. The intention was that the

interface would provide visualisations that add value to the data products.

As we wanted to make data access as simple as possible, we decided to provide access using a web

site. This meant that anyone with a web browser would be able to access our RFI monitor. Another

reason to use the web was that there are many products available to make the web design and

implementation process easier.

3.5.4.1 Web Framework

As creating web sites has become such a common task there are many frameworks to choose from

which provide a skeleton of a website as well as the ability to generate web pages based on

templates and variable data. These frameworks make the process of building and maintaining a

website easier and generally allow for a standard and clear separation between content, style and

templates.

The web framework we used for the web interface was the Pyramid framework. This is a python

based web framework. The reasons for using Pyramid were that all of the software written for the

original RATTY system was in python and a lot of the MeerKAT tools were in Python. It seemed

prudent to use the same programming language for the whole system. Other than being a python

framework, pyramid was powerful enough to provide all of the functionality we required for our

interface and had a strong online community with good tutorials.

3.5.4.2 Visualisations

As the amount of data produced by the RATTY device was large, it was not possible to quickly

understand the data by simply looking at the raw values. While many users would have the skills to

analyse the data, the process of downloading and analysing the data would reduce the ability for the

information to be acted upon timeously. It is important that the data is provided in a format which

can be quickly digested. For this reason we decided that the monitor had to include some data

visualisations to make the information truly accessible.

We decided to provide two visualisations which are standard tools of radio astronomy and RF

engineering and also have wide usage in most fields that deal with data analysis. The visualisations

chosen were a simple line chart and a waterfall plot (you may be more familiar with the term heat

60

map).We decided it should be possible to save the visualisation as an image file and that

graphs/plots should be interactive. The users should be able to zoom in and pan around the data.

We also wanted to display the value of any data point which can be selected with the cursor.

Line Charts

Figure 29 shows an example of a 1 second spectrum captured using the RATTY software. The

channels shown span from 0 – 900MHz. This plot was produced using the standard visualisation

available using HDFView, a standard program to view HDF5 files. We decided to create a javascript

linechart library which could plot all frequency channels in one spectrum in the web browser.

For the initial prototype we decided to provide a line chart which updates as new data is captured,

allowing the user to see the latest spectrum captured. After this we it would be trivial to use the

same visualisation to plot all hourly stats and also allow individual channels to be plotted over time.

Figure 29 - Example line chart of RATTY spectral data created by HDFView

Waterfall plots

Waterfall plots are a classic way to graph frequency, time and signal amplitude. Figure 30 shows an

example with time and frequency on the axes and amplitude plotted as colour intensity. These plots

use the same idea as a heat map. These plots would allow our users to view the changes on multiple

channels and times at once. We decided the user should also have a overlay which shows when and

on which channels RFI was detected by the system. The users would then be able to look at an entire

Channel number

d
B

u
V

/m

61

hours worth of data and have a quick visual cue to how much RFI was present across that spectrum

over the hour and which channels were worst affected.

Figure 30 - Example waterfall plot generated with using an hour of data from RATTY. The intensity of the colour maps to

the power of the RF at that time and channel.

3.5.4.3 Files

We decided to provide users with the ability to specify a selection of data to download. The data

would be available in Comma Separated Value (CSV) format. This would allow astronomers to

download all high resolution data from the database after their observations, so long as they got the

high resolution data within 2 months of their observation. If data was retrieved after the 2 month

deadline there would still be high resolution data on all RFI detected by the RFI monitor. Hence

anyone could use the data to perform their own analysis in the program they are most comfortable.

62

4 Implementation

In this chapter we discuss the implementation of the RFI monitor. In this process, the RFI monitor

went through four prototypes. The initial horizontal prototype constructed a basic RFI monitoring

system. Subsequent prototypes developed the long term archival of data, RFI detection and

visualisation via the web. Here we describe the implementation of the prototypes which culminated

in a working RFI monitor on the site of the MeerKAT telescope. In the interests of keeping each

section focussed on the main goals of each prototype, the final database structures implemented for

each prototypes 2, 3 and 4 have been described in a separate section 4.5. All code can be found in

the appendix.

4.1 Prototype 1: Basic Operations

The initial prototype comprised a data collection class based on the original RATTY code, a database

to store the data and a web page running on a web framework which provides access to the data.

The database and web framework combined make a classic Model, View, Controller (MVC) pattern.

The model is all of the data which is contained in the DB, the controller is the web framework

combined with the RATTY code and the view is the web pages in the framework and the structural

data contained in the HTML. Figure 31 shows the components of the RFI monitor in the initial

prototype.

Figure 31 – Components of the initial prototype. Green blocks were complete. Yellow blocks had basic functionality and

grey blocks had no functionality in the initial prototype.

4.1.1 Data Collection - RATTY Software Consolidation

The software is reliant on the RATTY board (discussed in section 2.5.3). The original RATTY software

contains a script rfi_spectrum.py which initialises the RATTY in FD, sets the calibration for the

system, sets the integration time of data capture and saves that data to an HDF file. This code was

encapsulated in a class which allows integration with other applications. The class roach_handle.py

contains all of this functionality. The only change to the original code is that the initialisation of the

RATTY is moved into two methods. Communication with the ROACH board was moved from the

init script into the roach_handle object initialisation. The rest of the initialisation contained in the

63

rfi_spectrum script was copied into a method called rfi_init which loads the FPGA code onto a

connected RATTY device. All of the data access methods were simply copied as they were in the

rfi_spectrum.py script. This gives us one class, roach_handle, which can initialise the RATTY system,

calibrate the system, set the integration time, start data collection and pass that data to another

application.

Table 9 - Hardcoded values which were moved into the system_parameters file

Hardcoded value name Description

bitstream Location of the firmware to load onto the ROACH FPGA

n_chans Number of channels in each spectrum

n_par_streams Number of data streams in the FPGA firmware

desired_rf_level The desired power level of signal

adc_type Type of ADC connected to ROACH

Spectrum_bits Number of bits for value of each channel in spectrum

fft_shift Number of channels to shift fft by

gain_map Array of gain mappings. This was moved to the gain_map csv. The

system_parameters file simply has the location of the gain_map file

bandpass Location of bandpass csv

The initial code contains two classes, one for control and monitoring (cam.py) and one for calibration

(cal.py). The cam.py class was not changed, however the cal class contained hard coded values.

These hard-coded values are shown in table 9. We removed the hard-coded values from within the

cal class and the rfi_spectrum script into csv files and a human readable configuration file called

system_parameters. The antenna calibration and gains are either already in csv files or are hard

coded into Numpy arrays. We copied the hard coded values into separate csv files and added the

location of those files in our system_parameters configuration file. All of the values in the config file

can be accessed using python’s standard option parser library. Now, to change the configuration of

the RATTY system we edit one, human readable configuration file. To calibrate the system for a new

antenna or ADC for example, we calibrate that new part of the system and save the calibration data

in a CSV file.

This means RATTY can be altered to accommodate new hardware as and when it became available

without the need to alter any code. We can simply run the standard python setup.py file provided

and the RATTY will be accessible in any python code or the python interpreter by importing the

library. After re-structuring the RATTY system had the structure shown in Figure 32.

64

Figure 32 - Structure of roach_handle class. It contains instances of cam and cal to gather spectra with the RATTY.

cam.py controls the RATTY and data access. cal.py calibrates the RATTY using data from the system parameters. The

diamonds indicate that the an instance of the class is used. The arrows are simply links which point to data in another

file.

By this point all initialization was handled by the roach_handle class and using a roach_handle object

we can start the RATTY system collecting spectra. All data could be accessed using the method

get_unpacked_data. The data is returned as a Numpy array, it is then possible to pass it to code

which analyzes the data, displays the data or simply saves the data to file.

4.1.2 Data Storage - Database Prototype

The data capture prototype software has a simple database which holds the spectra captured by the

RATTY system and a class to handle databases requests. MYSQL was chosen as the DBMS we would

use for our RFI monitoring system.

There are two tables in the database. The system table contains configuration information of the RFI

monitor; this allows us to recreate the system used to capture a spectrum. The contents of the

system table are shown in Table 10. In case we discover that the data is unreliable and need to

recalibrate it; we will know the configuration of the system which captured it. Table 11 shows the

structure of the spectrum table. This contains the data returned by the get_unpacked_data method,

this includes the actual spectrum and a timestamp of the spectrum.

65

Table 10 - The System table. It contains all data on the configuration of the RFI monitor

Field name Data type Description

n_chans integer Number of channels in each spectra

n_accs integer Amount of accumulations for each spectra

(determines the rate of spectral dumps)

bitstream String The location of the FPGA code

bandwidth Double the size of the range of frequencies that can be

observed

adc_type String the name of the ADC used

spectrum_bits integer the number of bits for each value in the spectrum

rf_gain double The gain of the antenna

Table 11 - The spectrum table. It contains all the data captured with each spectrum

Field name Data type Description

spectra Variable length string Spectrum

acc_cnt integer The number of spectra captured since capture

started

timestamp Unsigned integer The time the spectrum was captured as a Unix

timestamp

adc_overrange int 1 if the voltage level was too high to be captured by

the ADC for any sample in the sample period, 0

otherwise

fft_overrange int 1 if the power of a channel of the spectrum was too

high to fit in 32 bits

adc_level double The lowest power level the ADC could capture

ambient_temp double The temperature at the time of capture

adc_temp double The temperature of the ADC

system_id Unsigned integer The id of the system configuration

The database is accessible by other parts of the RFI monitor code. We coded a python interface

between the database and other software. This class is called dBControl.py. It contains methods

66

which allow data to be added to the database and to retrieve the latest spectrum in the database,

insertDump and getCurrentSpectrum respectively.

For the initial prototype we store all of the spectra directly in the database as a variable length

string. The spectra can only be identified by the timestamp values associated with each spectrum.

This is also the primary way of querying the database. This means that a spectrum can be found

quickly if searched a timestamp is used to identify it.

We created a program that accesses the RATTY and saves data to the database using the dbControl

class. We call this the rfi_monitor.py class. The roach_handle and dbControl functions are run on

separate processes spawned from the rfi_monitor class. In this way data can be collected from the

RATTY using one process dedicated to roach_handle. The rfi_monitor class then co-ordinates passing

that data to the dbControl thread; dbControl inserts data into our database.

4.1.3 Data Access - Visualisation Prototype

The visualisation prototype comprised a simple one page website. This one page website displays

the latest captured spectrum using a Javascript line chart, Figure 33 shows an example spectrum

displayed with this line chart. The Python based web framework Pyramid was used to serve the web

page. This makes interfacing with the python based dbControl class simpler.

Figure 33 - Example plot of the Visualisation prototype

The pyramid web framework separates the web page’s structural and styling content (HTML, CSS)

from the server side processing logic. The processing logic is defined as views, which are python

methods which return a dictionary containing data required for each web page. The data in the

dictionary can by placed symbolically in the HTML files and the pyramid framework will replace

those symbols with content created by a view each time the associated page is requested.

The web framework runs from a class called rfiWeb which connects to the database through a new

instance of dbControl. The MYSQL database ensures the data is easily accessible by the web server

which handles requests from machines across a network. The server provides the latest spectra

67

captured to each client using the pyramid framework. The data is displayed on the client side using

the JavaScript line chart. At this stage the RFI monitor had the structure shown in Figure 34.

Figure 34 - The structure of the initial RFI monitor prototype. The diamonds indicate a class is called in another class. The

arrows indicate a link over which data can flow.

4.1.4 Calibration and Installation

To provide good quality information on the Radio Frequency Environment (RFE) the signal chain

must be calibrated. The signal passes from the antenna, through an amplifier, along a coaxial cable

and into an ADC. At each stage of this process, the signal is analogue and can be altered by the

characteristics of the path it travels along. To calibrate the signal chain, we must determine the gain

for the complete signal chain so that it can be de-embedded from the measured signal to regain the

incident signal.

The antenna comes with an antenna factor and a calibration file which records the calibration values

of the antenna. The signal chain from the antenna output to the spectra output from the RATTY was

calibrated using a simple python script to find the highest response of each frequency channel of the

RATTY to a constant tone which swept through the band 0-900MHz. The difference between the

constant known tone and the output was used to calibrate the response of the RFI monitoring signal

chain. This calibration file is called bandpass.csv and can be found in the cal_files folder of the RATTY

source.

The final stage of the initial RFI monitoring prototype was to actually install the equipment at the

MeerKAT site on Wednesday 18 July 2012. The MeerKAT engineer who designed and built the

68

original RATTY system assisted. The antenna, a ROACH board, a signal amplifier and the DELL server

to control the monitoring system were in place.

Figure 35 - RFI monitor antenna and ASC container at the KAT7 site

We mounted the antenna on the mast of a disused RFI trailer which had been used to perform site

measurements during the 2005 RFI measuring campaign. Figure 35 shows the antenna situated at

the current KAT7 site, next to a shielded container which contains the ROACH board and our server.

The ROACH board and DELL server (Figure 36) were installed into a rack in the ASC container. We

connected the antenna to the RATTY, attached the RATTY to the server and then connected the

server to the KAT network (the internal network between the site and the SKA SA offices in

Johannesburg and Cape Town). The network is connected to the internet and can be accessed from

any internet connected PC provided we have access to the proxy. This allowed us to continue with

the rest of our RFI monitor development from Cape Town, so long as we did not need to physically

alter the monitor’s signal chain.

Figure 36- The ROACH board and DELL server that perform the processing for our RFI monitor. The ROACH is marked by

the red box and the server by the blue box.

69

After we had physically set up the RATTY system, we performed the calibration process again. This

time however we performed a faster sweep of the channels in order to check our previous

calibration process. The results showed our previous calibration made in Cape Town was accurate

enough and we could trust the spectra gathered by this system.

4.1.5 Discussion

Once installed, the initial prototype was a functioning data capture system which could store all

captured spectra and allow users to view the latest spectrum captured with a web page. We set up

the monitor to capture a spectrum once a second. This translates to 0.1246 MB/s or 315.4 GB per

month of data. The databases could easily handle this data rate while serving the data to a web

page. Unfortunately, with only 1TB of hard drive space we would only be able to store about 3

months of data, not including the RFI detection data and useful statistics which we planned on

storing. This represented a serious risk for achieving our goal of storing a long term record of the RF

environment. A solution which allows long term storage of data became the focus of the next

prototype.

The other aspects of the first prototype performed well, the RATTY software was complete and did

not require any changes. The web server and database handled multiple simultaneous queries while

simultaneously inputting new data. However the data visualisation library from Highcharts cannot be

used for free by SKA SA as it is not a non-profit organisation. Although it is legal to use for

development purposes we had to come up with our own visualisation solution for the final RFI

monitor.

4.2 Prototype 2: Archival Functionality

For the archival prototype we moved data from the text form saved in the databases into an HDF5

file. This allowed us to save the overhead of representing a binary python object as text. It also

allows us to use HDF5’s compression algorithms. However HDF5 does not support simultaneous

reading and writing to the same file so there was no way to watch how the current spectrum

changed as it was captured by RATTY. We created a new database called current_spectra to

duplicate the last hour’s worth of data. In this way we could access the latest data via the

current_spectra database and we could access older data using the HDF5 files.

Each file contains an hour’s worth of data, starting on the hour. We altered the spectra table so that

instead of containing the individual spectrum the table points to the file which contains the

spectrum. Each spectrum is placed in chronological order. This allows us to find a time within the file

70

based on the location of the data in that file. For more information on the structure of the database

see section 4.5.

The best option to increase the length of time that we could store data was to average the data over

1 hour periods and delete the original data to maintain enough space. The archive class takes in an

hour’s worth of data and calculates statistics which describe the data for each channel over that

hour. Table 12 describes the statistics that we calculated for each channel and each hour.

A class called archive_rfi_spectra.py, contains methods to take an HDF5 file and calculate these

statistics for all channels in that file each hour. We also added methods to the dbControl class which

take the statistics and stores them in an archive database. We added a process to the rfi_monitor

class which would create a new archive_rfi_spectra object after each hour to archive new data. We

can see all of the processes controlled by the rfi_monitor class in figure 37.

To store more than 3 months of data, we always maintain at least 10% free space on the HDD.

Whenever the HDD is more than 90% filled the data storage process will deletes hours of data stored

in the HDF5 files and remove records on those files from the rfimonitor database. We still keep a

long term record of the RF record in the archival database which has a resolution of 1 hour and a

short term record of the RF at a resolution of 1 second. This extends the lifetime of the rfi_monitor

to approximately 3 years assuming we maintain a minimum of two weeks of high resolution data.

Table 12 - Table of values in archival database

Statistic Data type Description

Mean double Mean power in channel over an hour

Min double Minimum value in channel over an hour

Max double Maximum value in channel over an hour

Standard Deviation double Standard deviation of channel over an hour

Median double The median value of channel over an hour

Percentiles (99,95,

90,80,70,60,40,30,20,10)

double The value which is higher than n% of the values of

channel over an hour, with n = 99,95,90, etc

Time Occupancy (3 sigma, 6

sigma)

double The percentage of the time that values where 3 or

6 sigma above the standard deviation

Prototype 2 consists of a long term monitoring system which records the RF environmental changes

over long periods of time and a short term record of the last couple of months/weeks in high

resolution. We were still missing a vital component, that of automatic RFI detection. This was the

focus of the 3rd prototype.

71

4.3 Prototype 3 : RFI Detection

For the third prototype we introduced the RFI detection. To provide RFI detection we needed to

decide on a RFI detection algorithm. The algorithm had to be able to perform RFI detection on data

at least as quickly as data was captured and to do so reliably. Many of the concepts discussed here

have already been described in the RFI detection part of the background chapter.

Figure 37 - Flowchart of the rfi_monitor class. The rfi_monitor main process, called process 0 starts 2 processes. Process

1 which acquires data from the RATTY and process 2 which adds that data to databases and creates hourly data files.

Process 1 and 2 run continuously. Once an hour Process 2 creates a process 3 which calculates the hourly statistics of the

last hour’s data and stores the result in the archival database.

72

We decided to perform RFI detection using temporal thresholding. Since the thresholding algorithm

is easy to implement, can easily handle the throughput of the RATTY system and has a proven

efficiency. The algorithm has already been discussed in the background section 2.6. We decided to

implement thresholding using the Medium Absolute Distance estimator suggested by the MeerKAT

engineers.

We implemented this algorithm in Python, using Numpy to implement the algorithm. The

implementation could perform RFI detection on an hour’s worth of data in a couple of minutes. The

RFI detection algorithm we implemented detect RFI on a 2 dimensional array of data and returns a 2

dimensional boolean array of the same size. The output array contains a false value at each point

where no RFI was detected and a True value at each point where RFI was detected, this output array

is called the RFI mask. This process is shown in the figure 38.

Figure 38 - Example of the RFI detection process. On the left is the raw spectral data for a few seconds. This data is fed

through the RFI detection algorithm, represented by the arrow. The output is a mask. The red blocks indicate where the

algorithm produces a True value in the RFI mask.

4.3.2 RFI event extraction

As described in the Archival section 2 of this chapter, we delete all of the high resolution data after a

few months. This means we only keep data on short RFI bursts until the high resolution data

containing that event is deleted. Any RFI which lasted for a short period, on the order of a few

seconds, is averaged out and lost in the long term record. This means that we are not providing an

adequate record of RFI events. To solve this problem we decided to extract and save all events

detected by the algorithm in a third RFI_archive database. As RFI affects only a small (<5%) part of

each spectrum, this allows us to store high resolution data on individual RFI events as well as a long

term record of the RF environment while still allowing us to store around 2 years of data on 1TB.

73

The process of extracting RFI events is simple. First we group contiguous parts of the RFI mask to

find RFI events which are most likely caused by 1 source. This was achieved by using a python image

processing library, mahotas, which is implemented in c++ to avoid the efficiency issues with Python.

The mahotas library contains a method which takes in a boolean matrix and labels each contiguous

group as an integer. We select and extract a rectangle around each group, which represents an RFI

event in the original data. These extracted events can then be saved in a RFI database. This process

is shown in the Figure 39.

We created another database called the rfi_archive database to store raw data on all detected

events as well as some metadata to facilitate querying the database. This metadata includes the

start and end times of the event, the low and high channels of the detected events and the average

power of the event. We also calculate hourly RFI related statistics to add to the archival database.

For each channel and each hour we count the number of RFI events on that channel and the period

of time that channel was affected by RFI. The flowchart in Figure 37 shows how the RFI detection

thread interacts with the archival thread in the rfi_monitor process.

Figure 39 - Event Extraction process. We take the RFI mask created by the RFI detection algorithm and process it with

the mohotas label function. This gives us a mask with all of the connected points in the RFI mask labeled as unique

integers. We then use this information to extract RFI events from the original data. To see how this fits in with the

flowchart in figure 37, see figure 40.

74

Figure 40 - How the RFI detection thread interacts with the archival thread. The chart starts at the point in Figure 37

where process 2 branches into a new hour. Process 2 then creates the archival and RFI processes and then continues as

it did in Figure 37 by creating the next hours file. There is only 1 extra step in the archival process. Once the hourly

statistics have been added to the archive, the RFI thread is signalled that there is an archive entry into which it can add

the hourly RFI statistics such as number of events. The process in figure 39 is encapsulated in the block “Perform RFI

Detection and Excision”.

4.4 Prototype 4 : Web Interface

Prototype 3 can access data from the RATTY system, scan that data for potential RFI and archive that

data. In prototype 4, we allow users to access this data. In this section we describe how we made a

functional RFI monitor website from the initial prototype, to enable researchers to access and

interact with RFI data generated at the MeerKAT site.

75

4.3.1 Visualizations

Visualization of the data is a key function of the RFI web interface. The data comprises spectral data,

which is essentially continuous data in time and frequency, hourly statistics and RFI event data which

consists of spectra on the events, RFI event counts for channels and occupancy statistics for each

channel.

Users need to be able to view the data in a variety of ways, including 1 second spectrums or 1

channel over multiples timestamps, a range of times and channels at once and which channels have

the most powerful RFI or the least amount of time corrupted by RFI. These are queries that could

easily be satisfied by graphs and charts. In the final prototype, we implemented three visualizations

to assist researchers in exploring the data: a line chart, a waterfall plot and a bar chart. The

implementation and function of each of these views is described below.

4.3.1.1 Line Chart

We required a line chart which could display up to 14200 points for the visualisation as this is the

number of points in each RATTY spectrum. As there are no free libraries to do this, we implemented

our own system using the processing.js visualisation library. The Processing.js library is a JavaScript

library which can convert a Processing visualization written in Java into a JavaScript canvas.

An example of the line chart is shown in Figure 41. The chart can handle all of the 16384 points

needed to display one spectrum. The point closest to the cursor has a pop-up, which displays the

value of the point. The chart can be zoomed by using the cursor wheel and scrolled by clicking and

dragging; allowing the user to explore the data while zoomed in. The user can also save their view as

a PNG image at any time. The line chart can display a single spectrum or a single channel over many

hours.

Figure 41 - Example of line chart. One spectrum is displayed here.

76

The line charts can plot the latest spectrum as it is collected, giving users a real-time view of the RF

environment. The user can pause the view of the spectrum and also move back and forward in time

through the data while maintaining their zoom. They can see how the whole spectrum or a subset of

the spectrum is changing over time, either in real-time or after the data has been captured. An

example of zooming is provided in Figure 42 a,b and c. The line chart can also show the data on a

single channel over a specified period as shown in Figure 42 d. The user can also choose to display

the hourly statistics using the line chart.

Figure 42 – a,b and c demonstrate the zoom function. Here we show progressive levels of zoom onto the black circle

shown in a. As you can see it is simple to switch between a high level view and a very close view to see small scale

details. d) Example plot of the channel 70.4MHz over 24 hours (86400 points). 70.4MHz is the frequency used by 2 way

radio's on site.

77

In order to provide a continuous flow of data we used the JavaScript/Python library socketIO which

allows real-time communication between a web application and a server. The web browser uses a

socketIO.js file to provide client side connections. In our client side we create a socket which we can

use to access data sent from the server. The socketIO library determines the fastest connection

available to perform data transfer. The server uses the Python socketIO library for real time data

access. The server creates a new greenlet to serve the data to each client. A greenlet is a lightweight

thread in Python to allow multiple clients to be served simultaneously from one python server,

without the overhead of the processing library.

We also created two databases to allow for the current hour of data to be accessible by our

visualizations. The HDF5 files cannot be simultaneously written to and read from, so we keep a copy

of the latest data which can be both written to and read from; a database called current_spectra.

This database is very simple; the structure is shown in Table 13. It contains a timestamp and a

serialized Numpy array containing the spectrum at that timestamp. Each hour, the last hour of data

stored in the database is deleted. In this way, the database will only ever contain data from the

beginning of the current hour.

Table 13 - Data contained in the current_spectra database

Value Data type Description

Timestamp uint(10) Unix timestamp is seconds

Spectrum binary Serialised Numpy array containing the spectrum

Unfortunately deleting an hour’s worth of data can take up to 10 minutes when the server is running

all of the components of the RFI monitor. While this data is being deleted, no new data can be added

to the current_spectra table. Therefore we created two current_spectra databases so that when we

need to delete data from the last hour in the first database we simply start adding data to the

second database. To co-ordinate which database is currently in use we had to add a new table

containing a bit value current. When the value of current is set to 1 then we know that

current_spectra database is the one which contains the latest data and the other current_spectra

database is being deleted from. This allows us to seamlessly transition between hours.

4.3.1.2 Waterfall plot

The web interface also provides a waterfall visualization of the data. Waterfall plots are standard

visualizations for representing three dimensional data in two dimensions. The plot shows time on

the y axis, frequency on the x axis and the power of the particular channel at a point in time is

78

displayed by the intensity of the colour of that point. A waterfall plot can show multiple channels

and times in one plot. This grid was also created using the Processing and Processing.js libraries.

Just ten minutes of data for 14200 channels is over eight million 64 bit numbers. Unfortunately, it is

physically impossible to display these points on a typical screen of resolution 1024 by 768 or

approximately 1 million pixels. The average computer and web browser can only practically display

around forty thousand points. Therefore an interactive waterfall plot using JavaScript we would

need to reduce the number of points used to display data to a manageable amount.

The most straight forward way to reduce the number of points is to simply divide all of the points

into a grid of the amount of points we would like to display and combine the points in each grid cell.

In Figure 43 you can see a small scale example of what we needed to achieve. In this case we take a

200 by 200 grid of points, aggregate those points into a grid of 8 by 8 points and then attempt to

represent the data in those 40 000 points using just 16 points.

Figure 43 - Example of the gridding and data aggregation process. In this example we are reducing 40 000 points to 16

points. In the actual web interface we would be performing data reductions on the order of 10s of millions of points to

10s of thousands of points.

To ensure that the important features of the data are preserved, we decided to aggregate data in

the plot by choosing the maximum value from each grid block. Looking at these plots it is easy to

spot the most powerful signals, which are indicative of a RFI event. The aggregation reduces the

accuracy to which the RFI event can be located. It was important to allow zooming in to the data so

that RFI events can be shown with the highest accuracy.

To solve this problem we decided to implement a Google Maps style zoom function. This allows the

user to zoom into aggregate data and sends higher resolution data when the zoom goes past a

certain limit, we then send this higher resolution data for the part of the data which the user is

zoomed into. The server sends new data whenever a user zooms in to a level where they are

79

displaying a quarter of the points that were previously sent. This means that the data which is

represented by for example a block of 100 by 100 points will be resent however they will be

represented by 200 by 200 points. This way we only send higher resolution data which the user

actually zooms into and each time we only send 0.3KB of data. This process is shown in the Figure

44.

Figure 44 - Example of the zooming process: a) is a fully zoomed out view, the red box shows the area being zoomed to,

b) shows the zoomed view before data is re-aggregated and c) shows the zoomed view after data is re-aggregated.

Figures 44 b and c show how the level of detail changes as the server re-aggregates and transmits

data on zooming. The user can see a high level overview of the data. They can then zoom in on

points until they reach the level of individual samples, allowing them to pinpoint RFI to the second

and channel which it affected. The process is reversed as the user zooms out. Due to the fact that

only the spectra are stored in HDF5 files, this waterfall plot can only display the spectra and none of

80

the other calculated statistics. Although it is not impossible to provide access to the other data, it is

not being implemented for this thesis.

The waterfall chart can also be displayed with a red RFI mask overlay. From Figure 45 we see the

mask shows the results of RFI detection at a glance. The RFI mask can be toggled on and off, so the

user can see the underlying signal if they choose to. The RFI mask is aggregated in the same way as

the underlying data. If any data in the aggregated block contains RFI, that block will be red in the RFI

mask.

Figure 45 - Example of the RFI mask overlay for the waterfall plot.

4.3.1.1 Bar Chart

The third visualization that we provide is a bar chart created with the JavaScript library amCharts1.

Figure 46 shows how the bar chart can displays hourly RFI event counts, channel occupancy and ADC

over ranges. Figures 46 a) and b) show which channels have been worst affected by RFI according to

our RFI detection algorithm. Figure 46 c) shows the times in an hour when the ADC over-ranged. If

there was an ADC over range while a spectrum was collected the spectrum is untrustworthy. ADC

over-ranges occur when there was a powerful signal sampling for the spectrum. The figure shows a

1 www.amcharts.com

81

particularly bad example of ADC over ranging: there were many strong signals generated at the time

of capture.

Figure 46 - Bar chart showing a) the number of RFI event s detected in each channel for each hour and b) Time

occupancy at 3 sigma. c) An hour’s worth of over range data. Each orange bar represents an ADC over range for a 1

second spectrum

4.5 Database Structures

The database structure is for the initial prototype is shown in Figure 47. The current_spectra and

rfi_monitor databases respectively are essentially one table databases with a corresponding system

table containing the information about the state of the RFI monitor at initialisation.

For the final rfi_monitor database the spectral data is stored in hourly HDF5 files. Each entry in the

spectra table contains a path to the file which contains the spectrum. Although the spectral data is

not stored in the database, we can still query the database to find extrema we calculate for each

82

channel every hour. This allows us to quickly find the file which contains the maximum value for a

particular channel as each extrema value also links to a hourly spectra file containing that spectrum.

This can be found by using the MYSQL database.

Figure 47 - Design of the rfi_monitor and current_spectra databases. System contains data which is constant for each

instance of the monitor and spectra contains data which is collected each second

The current_spectra database has the same structure as the rfi_monitor, however spectra are stored

as binary strings in the database, not in files. There are two identical tables to store spectra, one of

which holds current data while the other is emptied. Each hour the roles of the two tables are

swapped. In this case we store the actual spectra in the database as a serialized Numpy array stored

in a string format. We can access the latest data here as hdf5 files cannot be simultaneously written

and read to.

The archive database is broken into five tables, the structure is shown in Figure 48. It has a system

table which is identical to those in the rfi_monitor database. The data is then broken into four

tables. We have an element table which corresponds to a frequency and channel number and

contains an id for each channel. A spectra table containing the first timestamp of an hours worth of

data and a confidence value, the percentage of that hour during which the monitor was collecting

valid data. If a spectrum is not valid because it was not captured or there was an overrange we want

to quantify how this affects the confidence of our hourly statistics. This confidence value ranges

from 0 to 1. Each spectrum also contains a unique id.

83

The value table contains all of the hourly statistics collected. Each value has a three element id made

from the channel id, the timestamp of the hour it was collected in and the type of data value. We

can pinpoint the hour and channel/frequency which any particular value comes from. Having a

datum table allows the user to break the spectra table into separate values before searching for the

times they are interested in. New types of hourly statistic can be added by simply adding an extra

row to the datum table.

Figure 48 - Design of the Archive database

The final database is the rfi_event_archive. This database has an almost identical structure to the

rfi_monitor. Except we have an rfi_event table rather than a spectra table. The rfi_event table

contains the raw data which we extract in the RFI detection process and some metadata describing

time and frequency that the particular RFI event was detected, this is shown in Table 14. The

metadata places each RFI event in the context of the archived data. As RFI is detected on a 6 sigma

threshold, this table contains all points where the power on a channel differed by more than 6 sigma

from the median.

84

Figure 49 - Diagram showing the 3 databases, the data they contain and the amount of time that data is stored. The link
from the raw data to the hourly HDF5 files represents the fact that the database simply stores the location of the HDF5
files which contain the raw data.

Together these databases provide the functionality to store a record of the RF environment at a

resolution of one second for a minimum of two months and the ability to serve the latest collected

data as it is captured. They allow long term storage of hourly aggregated data and raw data on

detected RFI events for periods of up to two years. Together they allow us to easily access good data

on the RFI around the MeerKAT antenna for long periods using a 1TB harddrive.

Table 14 - rfi_event table

Datum Description

id Id of the event

system_id Id of the system used to capture data (corresponds to system table)

startTime The timestamp at the first detection of this event

endTime The timestamp at the last detection of this event

low_chan The lowest channel this event was detected on

high_chan The highest channel this event was detected on

spectra The raw data that was captured between the times and channels above

mask A mask which shows which off the values in the spectra were flagged as RFI

85

4.6 Conclusions

Each of the prototypes helps fulfil at least one of the goals of the RFI monitor: providing a

continuous record of the Radio Frequency (RF) environment, automatic RFI detection and effective

access. Table 15 shows how each prototype progressively improved upon previous prototypes until

all of the requirements were fulfilled. The requirements were designed to achieve our goals. By

prototype 4 all of our goals had been achieved.

Table 15 – Table goals from section 3.1 and the requirements from section 3.3.4 that each prototype fulfils.

Requirements with an asterisk were completely fulfilled at the by that prototype.

Prototype Requirements fulfilled Goals

Prototype 1 : Basic Operations RF record

Access to raw data

Data visualisations

Continuous RF Record

Effective Access

Effective Access

Prototype 2 : Archival

Functionality

RF record

Descriptive statistics*

Continuous RF Record

Continuous RF Record

Prototype 3 : RFI detection Automatic RFI detection*

RF record*

RFI record*

Automatic RFI detection*

Continuous RF Record

Continuous RF Record*

Prototype 4 : Web Interface Data visualisations*

Access to raw data*

Effective Access*

Effective Access

86

5 Validation and Testing

In this Chapter we will discuss the effectiveness of the components of the RFI monitor. Proving the

monitor is reliable is vital if it is to become a useful tool for RFI mitigation. After implementing the

last prototype, the system was allowed to run for six months without any human interaction except

over the web page. This shows that the system is stable over long periods. The rest of this chapter

shows the RFI monitor is also accurate, performs RFI detection efficiently, provides useful

visualisations and is useful for real RFI campaigns on site

5.1 Data Calibration

The first and most important step of calibration was to ensure that the data collected by the RATTY

system are accurate. This was achieved by calibrating the signal chain during RFI monitor installation

on site. Calibration involved sweeping a known signal with a known power across the bandwidth of

the receiver. We compared the measured result with the known input signal and created a gain

calibration for each channel in dBs. This is a floating point number which we add to the value of each

channel to ensure that the measured signal is equal to the expected signal. We also ensured the

archived data is accurate by independently calculating the statistics for twenty hourly data files in

excel and checked that the archived statistics were equal.

5.2 Database Access

There are two ways we tested the database: we showed data could be processed and inserted in a

timely manner and data could be accessed quickly. The first metric shows that our RFI monitor can

handle the incoming data rate. The second metric shows that our database is structured well enough

to make data accessible without long delays.

5.2.1 Inserting

We ensured each spectrum can be captured and stored in less than one second and that hourly

statistics can be calculated in less than 1 hour. We ran the monitor for an hour and found it took an

average of 0.3s to insert one spectrum. This leaves time for a higher data rate if needed for later

upgrades. We tested hourly statistics and RFI detection archiving by running the monitor for one

week and averaging the time of each step of data collection, calculation and insertion. The results

showed our monitor can perform all this data capture and archival in under an hour as necessary.

Table 16 shows the times necessary for each of the archiving processes. Some of the processes are

performed simultaneously. In the end we can expect all of our hourly data to have been calculated

and stored by an average of 33 minutes after a capture period ends. The time taken to store data is

dominated by the hourly percentile calculation as it involves sorting each channel.

87

Table 16 - The timing results for data retrieval and storage.

Data process Time used

Single spectrum archival 0.3 s

Hourly statistic calculation 28 min

Hourly statistic archival 5 min

Hourly RFI detection 2 min

Hourly RFI event extraction and archival 5 min

5.2.2 Retrieval

Data access is important for usability. Although data exists, they are not useful if the retrieval times

are long. The data are presented to the user via the web interface with multiple views. In the graphs

below we show how long data collection takes for each of these views.

Table 17 shows results for views which should take a constant time to retrieve. These views always

show the same amount of data. These results show the time from accessing a view on the web

browser to when the data are visualised. The views were opened 20 times and the mean retrieval

time is shown in the table below. The retrieval times for these views were fast enough that most

users will not notice them.

Table 17 - The Retrieval time for spectra and archival data.

View Retrieval time

Current Spectra 0.007s

Hour Archive 0.171s

The next measurements were tests which show how views with scalable data ranges performed.

These include the graph channel view, the over-range view, the waterfall plot and the hourly statistic

plot. We used the same time ranges for each tests. The first test was for an hour’s worth of which is

an example of a small but meaningful amount of data, the next test is 10 hours worth of data and

finally we tested retrieval of 100 hours worth of data. Unfortunately the waterfall plot cannot

display 100 hours worth of data as it is too large. For the hourly statistics we use retrieval for 10, 100

and 1000 hours as each hour represents 1 value.

88

Table 18 – The scaling of data access for different data. This data is plotted in Figure 49.

Num Hours Over-ranges Channel Waterfall Stats

1 0.008 s 2.47 s 11.48 s

10 0.094 s 1 min 21 s 6 min 52 s 8.45 s

100 3.129 s 17 min 51 s 1 min 32 s

1000 20 min 48s

Figure 49 shows that the retrieval times for the data scales approximately linearly with the number

of hours of data requested. There is a limit to which the data can be retrieved without causing

significant delay. This limits the ranges of data that a user can choose to view at a time. However the

retrieval times are still usable in the data ranges for which the monitor is generally used (1 hour to a

day).

Figure 50 - Chart showing the scalability of different views on the data, both axes are logarithmic.

One issue which is worrying is the amount of time it takes to retrieve the hourly statistics. In this

case the number of values is far lower than the other 3 cases and the retrieval times are

disappointing. In the 10 hour case retrieval takes approximately 8 seconds. We should be able to

retrieve this data far faster. The main reason for this disappointing speed is that the hourly statistics

are stored in a large database with approximately 2 years worth of data. As the database grows, the

seek time dominates the retrieval time.

0.001

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Overranges

Channel

Waterfall

Stats

Ti
m

e
(s

)

Hours of data retrieved

89

This problem could be solved by storing the hourly statistics in data files in the same way that the

raw data is stored. This should increase the retrieval time for the hourly statistics to the same speed

as retrieval for spectra. This is the recommended way to store hourly statistics in the next iteration

of the monitor.

5.3 RFI Detection

One of the goals of the RFI monitor is storing a long term record of RFI on site. As discussed

previously, we perform this task without storing all of the raw data. We only store raw data which

contains suspected RFI in the long term. The goal of a RFI record can only be achieved if the RFI

detection algorithm is accurate.

We tested the RFI algorithm by creating simulated data with simulated RFI. The simulated data has a

normal distribution as one expects for a RFI clean environment. We added broadband and

narrowband noise of different power levels. RFI in a power level have a total power equal to the

level number times the standard deviation of the simulated data. We ran the detection algorithm on

this data and recorded the proportion of RFI that was correctly identified. We ran this test for

different window sizes and threshold factors. The window length is the length of the window on

either side of a data point used to estimate sigma using the MAD algorithm. The threshold factor is

the multiple of the estimated sigma that is used to threshold a data point. This allows us to choose

the best values for use on our monitor.

False Positives VS Window Length and Threshold Factor

Figure 51 - Heat map of false positives divided by total number of true RFI values VS window length and thresholds

factor. Values are on a log scale. Lower values are better. A value of 0 means that there were as many false negatives as

there were values corrupted by RFI.

5

7

9

11

13

15

17

19

5 7 9 11 13 15 17 19

W
in

d
o

w
 S

iz
e

Threshold Factor

0-2

-2-0

-4--2

-6--4

90

Figures 50 and 51 show that, in general, the better the algorithm does at detecting RFI, the more

likely it is to falsely classify clean data as RFI. Figure 48 shows the main factor in accurately classifying

true RFI is the threshold value. Using a threshold of up to 13 times sigma will mean you are capturing

most of the RFI. However from Figure 50, any threshold below 8 with most window lengths will

create at least as many false positives and actual RFI contaminated values. These charts show the

best way to maximise the true positive to false positive ratio is to choose a low threshold which is

between 9 and 13 with a window of at least 11.

Percentage of True Positives VS Window Length and Threshold Factor

Figure 52 - Percentage of true positives VS window sizes and thresholds. Higher values are better.

Percentage of True Negatives VS Window Length and Threshold Factor

Figure 53 - Percentage of RFI clean values which are classified as clear of RFI. Higher values are better.

5

7

9

11

13

15

17

19

5 7 9 11 13 15 17 19

W
in

d
o

w
 S

iz
e

Threshold Factor

80-100

60-80

40-60

20-40

0-20

91

Figure 52 shows that the amount of false positives is low for most configurations above a threshold

of seven sigma. Any threshold larger than nine sigma is an adequate choice to prevent too many

false positives. This doesn’t affect the earlier finding that the best range of values is a threshold

between 9 and 13 and a window of at least 11.

As we only archive raw power spectrum data which is contaminated with RFI, it is better to have

false positives than lose data because of false negatives. We decided to use a threshold of 6 sigma to

ensure that we can accurately recreate the environment with archived data. To test how well our

archival system could recreate the RF environment after raw data was deleted we compared the one

week of raw data with its corresponding archived data. We calculated the mean and standard

deviation of each channel in the hour from the raw data. We then used a 6 sigma threshold to create

a RFI mask of the raw data. We then calculated the percentage of the raw data that differed by more

than 6 standard deviations from the archived data. This test showed that only 0.04% of the archived

data was not within 6 standard deviations. This proves our archival process can effectively reproduce

the RF environment while discarding most of the raw data by storing only data that are likely RFI.

5.4 Visualisation and Web Page

The goal of the web page and visualisations was to provide easy access to the data. It is difficult to

test ease of use quantitatively so we tested our visualisations with a user survey. The survey was

completed by 15 users who represent astronomers, engineers and RFI management. All of the users

tested are employees at SKA-SA or academics with SKA funding. As the users are experts, their

opinion is valuable.

Our survey tested the ease of data access as rated by the user and timed how long users took to

perform common tasks. Users were asked to rate their experience on a 5 point scale. We asked

users to explore the web page and provide comments how useful they found the RFI monitor. We

tested the usability of the line chart and waterfall plot as these were the visualisations created as

part of this thesis. We also tested the usability of the web page itself.

The first 6 Questions established who the users were. We asked users to provide information on

their position, their level of education, internet connection, etc. These questions were voluntary so

users could remain anonymous, however all respondents chose to provide these details.

Of the survey respondents twelve were employees of SKA-SA and three were post-doctoral or

masters students on SKA grants. Of the respondents four were astronomers, four were post-doctoral

researchers/students and seven were engineers. Two of the engineers were involved in RFI

92

management. Of the users two thirds used Chrome and 1 third used a Firefox. All users were on the

Internal SKA-SA network, so their network connection was 1 Gbps.

5.4.1 Line Chart

This section includes the results for the Current Spectrum and Graph Channel views. Both views used

the Line Chart visualisation. The Current Spectrum displays a constantly updating spectrum and the

Graph Channel view was displays a data from one channel over a chosen time range.

5.4.1.1 Current Spectrum

Users were asked to open the Current Spectrum page from the home page. After checking the

visualisation was updating, users paused the updates and used the line chart to discover the value of

a two channels captured at that time. The first channel contains an obvious spike and the second

channel is in the noise and would require zooming. They saved a picture of their view which were

used to independently verify the results they got. Table 19 shows the time taken for each of these

tasks and the amount of users who successfully completed it.

Table 19 - Times it took for users to complete the example tasks as well as the percentage of users who correctly

completed the task.

Task Mean Time Accuracy

Find power level of channel with obvious spike 12s 100%

Find power level of channel in noise 27s 100%

Table 19 shows that users found it easier to find the values of channels with a spike than those

buried in the noise. This is a positive result as channels with spikes are most likely to contain RFI..

The users managed the more complicated task of finding a data point buried in the noise in the

reasonable time of 27. This seems to show that the visualisation and zoom function is easy to use.

This is backed up by the user responses in table 20.

Table 20 - User responses to the usability questions. The answers to each question were ranked on a 5 point scale.

Strongly disagree was given the value 1, no feelings is a 3 and strongly agree given the value 5.

Question Mean

I found the link the Current Spectrum easily on the home page. 4.3

The instructions on the page were helpful. 4.3

The visualisation was easy to use. 4.1

The visualisation was responsive. 4.2

The visualisation was clear and easy to understand. 4.3

93

The users were also asked to provide comments on their experience. Below are some responses to

these open ended comments.

Please comment on any part of the visualisation you found hard to use.

There was one comment in this section which came up in most of the responses. Below is a typical

comment.

“Zooming in and out was a little strange in that it would zoom to the centre of the displayed

spectrum, rather than to the location of the cursor on the figure”

This explains why it took almost 3 times longer for users to find the value hidden in the noise. The

zoom zooms into the centre of the view, requiring panning to find data points. Allowing zooming

onto the cursor cursor should be implemented for the next iteration of the line chart.

Please comment on how you would improve this visualisation.

Some of the improvements that were common in many comments:

1. Zoom into location of cursor.

2. Provide a reset zoom button.

3. Provide a save image button (in addition to the keyboard shortcut).

4. Larger text in general.

From the results above we can see that although the visualisation provides the basic functionality for

users to perform their tasks and they felt positive about the usability of the visualisation, however

there are areas of possible improvement.

5.4.1.2 Graph Channel

Users were asked to open the Graph Channel view. They were then told to select 2 hours of data to

display between 8am and 10am on the 11th of September on the channel with frequency 150MHz.

They were asked to find the values at specific times in this interval in much the same way as the

previous Current Spectra test above. As the visualisation is the same in both cases, we wanted to

test the usability of the forms we use to select data and also the ability to download data. This also

allowed us if users got faster after their first attempt to use the visualization.

94

Table 21 - Average time for users to complete tasks along with accuracy

Task Mean Time Accuracy

Select a date range and frequency 9s 100%

Find power at time with obvious spike 8s 100%

Find power at time buried in noise 20s 100%

Table 21 shows users found it easier to find spikes than data buried in the noise. It seems that the

users have gotten faster in this second set of tasks than they were at the first task. The usability

responses in Table 22 back up the results from the previous test.

Table 22 - The user ratings for different tasks that they had to perform. They show that in general users found the task

easy.

Q17. I found the link the Graph Channel easily. 4.3

Q18. The instructions on the page were helpful. 4.1

Q19. The visualisation was clear and easy to understand. 4.1

Q20. Choosing a time range for data was simple. 4.5

Q21. Choosing a Frequency for data was simple. 4.3

Q22. Downloading data was simple. 4.3

5.4.2 Waterfall Plot

The waterfall plot allows the user to see a range of times and channels along with the RFI which was

detected on each of those channels. For this task users were asked to view 10 minutes of data for all

channels. Users were asked to identify the frequencies affected worst by. Users then had to zoom

into a portion of the data and to analyse the amount of RFI events and which channel was worst

affected by RFI over that portion. Table 23 shows the results of the survey.

Table 23 - The times it took for users to complete their tasks and the accuracy of their results

Task Mean time Accuracy

Which Frequency range is worst affected (over all data) 8s 100%

How many RFI events occurred in this time (includes zooming) 43s 93%

Which frequency had the most RFI events 4s 93%

Table 23 shows users could identify which channels were badly affected by RFI quickly and

accurately. One user who could not perform the tasks after zooming as the visualisation failed to

load the zoomed data. The times show it is easy to visually identify RFI with the waterfall plot,

95

however the zooming takes more time than the visual analysis. This shows that the representation

of the data is appropriate, but more work is required in making the zooming simpler. The usability

questions seem to show that this visualisation is less successful than the line chart.

Table 24 - Responses to the usability questions for the waterfall plot.

Q27. The instructions on the page were helpful. 4.2

Q28. The visualisation was easy to use. 3.3

Q29. The visualisation was responsive. 3.5

Q30. The visualisation was clear and easy to understand. 3.5

Table 24 shows we need to improve the usability of the waterfall plot. Although the users did not

struggle to get the results they required, the user experience was not as positive as the line chart. It

is worrying that the zoom failed to work for one of the users. Suggestions from users on

improvements follow.

Q31 Please comment on any part of the visualisation you found hard to use

The two features users had the most problem with are zooming and the RFI mask. Below are some

representative comments.

 “Zooming in and out was very hard and completely non-intuitive.”

There were other users who agreed. A more intuitive way to zoom needs to be implemented.

Selecting a data range using the red box is either not implemented well or is not an intuitive way to

zoom.

Q32 Please comment on how you would improve this visualisation

The main common improvement here was to provide a home zoom button to allow the users to

reset the zoom.

5.4.3 General Comments

After completing these tasks users were asked to explore the other functionality on the RFI monitor

website at their own discretion and provide comments. These comments are analysed below.

Q33 If you work as an engineer, manager or scientist involved with the KAT7/MeerKAT projects.

Would you use this RFI monitor as part of your operations? If so can you please explain how you

would use this monitor?

96

The responses here were generally positive; they show that there is a need for a RFI monitoring

system on site. The responses show that the RFI monitor we provided is useful for employees of

SKA-SA. Some example comments are shown below.

“It would be useful for telescope operators to have a browser tab showing the waterfall plot to

compare to the waterfall plot for KAT7”

“Yes. As I use data from the KAT7 [beamformer] regularly, I would find this monitor useful for RFI

characterisation of such observations for reference”

“I could use the RFI monitor to help me monitor RFI on site. It would be especially useful to allow me

to corroborate my RFI measurements which I gather independently on site.”

These comments show that although the RFI monitor could use improvement, it does achieve the

goal of providing a RFI monitor that is useful to scientists, engineers and RFI management.

Q34 If you could add extra functionality to the RFI monitor what would you add?

The most common functions requested were:

A description of the RFI monitor, including information such as how the system was calibrated and

where the antenna is situated.

Statistics over weeks and months as well as the hourly statistics.

Integration with telescope system so data can be accessed and collated with telescope data.

These suggestions and some other ideas will be discussed in the future work section 6.1 of this

thesis.

5.5 Case study

In this section we discuss how the RFI monitor was used in an RFI measurement campaign on the

MeerKAT site. The purpose of the campaign was to discover whether the two way radios in the

bakkies on site cause harmonics which interfere with the KAT7 or MeerKAT telescopes. The radios

themselves transmit on a fundamental frequency of 70.4 MHz. There could be a repeated signal on

multiples of 70.4MHz, we call these repeated signals harmonics. The harmonics are less powerful

than the 70.4MHz signal and harmonics further from the fundamental are weaker. If harmonics are

detectable by the RFI monitor, they could interfere with KAT7 and MeerKAT.

97

The test was conducted by the Head of the RFI mitigation team at SKA-SA. He went on site and

keyed the radio multiple times in the beam of the RFI monitor antenna. He used the RFI monitor’s

graph channel view to look for harmonics at the time of the tests. Harmonics were detectable up to

the 11th harmonic, at which stage the harmonics were out of the monitor’s band. You can see some

example plots captured by Simon in Figure 53.

This proved that the RFI monitor was useful for on-site measurements; it also showed that the

monitor improves the efficiency of these types of tests. Without the RFI monitor Simon would have

had to set up his own antenna and spectrum analyser, co-ordinate keying the radio and capturing

data, upload the data from the spectrum analyser and then finally search the data. He would have

had to use a CSV file to created his own graphs with excel. With the RFI monitor in place, Simon just

had to key the radio and remember the time he did so. He could then use the online visualiser to

search for the harmonics.

The result of these tests was that further controlled tests were needed in a reverberation chamber,

so that all confounding factors could be removed. It was also decided on the strength of these

results to purchase and install a filter for the radio on one of the bakkies to test if it would remove

the harmonics of the radio.

98

Figure 54 – Example plots captured in search of the two way radio harmonics : a) The fundamental signal at 70.4 MHz

and b) the 10th harmonic clearly visible at 704.4 MHz

99

6 Conclusions

In this thesis the effects of RFI on observations made with radio telescopes have been presented.

Different methods for mitigating RFI were described, ranging from legislation to post observation RFI

excision. We examined how RFI is handled at the MeerKAT: the site had been protected by

legislation and RFI on the site has been well characterised. We found that RFI management is a

continuous process which needs to be informed by accurate and current information about the RF

environment. RFI monitoring is performed at many radio telescopes and has proven to be an

effective way of limiting RFI. These systems have been used to find RFI culprits and also to provide

astronomers with an accurate picture of how badly their observations are affected by RFI. This led us

to conclude that a continuous RFI monitoring system was necessary to maintain the clean RFI

environment that the MeerKAT site was chosen for.

This thesis focussed on the process of providing a RFI monitoring system for the SKA-SA organisation

on the MeerKAT site. The RFI monitor was created with three goals in mind:

 Provide automatic RFI detection

 Provide a continuous record of the RF environment

 Provide access to this data

 The monitor was designed with 3 distinct types of users; astronomers who use the telescope;

engineers who build the telescope and RFI managers who must limit RFI on site.

The main limitation we had to deal with was the bandwidth across which we needed to monitor.

Unfortunately it was not possible at the beginning of this project to monitor the bands over which

the KAT7 and MeerKAT telescopes observe. As such our RFI monitor could only be a prototype

system, showing that the techniques used work in principle. In any case the prototype still proved

valuable for some RFI related tasks. The techniques presented in this thesis can be extended to a

system which covers the bandwidth of the instruments themselves. In fact such a system is already

in development and is using much of the work done in this thesis.

The project was successful in that the outlined goals were met, within the limitations. The RATTY

system was successfully upgraded into an autonomous RFI monitoring and detection system. The

data was proven to be accurate. All of the data captured is run through a RFI detection which can

reliably and automatically detect RFI in the environment. These detected RFI events are stored

indefinitely, giving a long term record of RFI on site. This allows the RFI management team to see

how different campaigns affect the RFI levels on site over time periods of months to years.

100

The second goal of providing a continuous high definition record of the RF environment was

achieved by combining the high resolution RFI event archive with the hourly averages. Due to

storage constraints, it was not possible to store all data at a high resolution. After a period of 1-2

months we delete the raw data and only keep the RFI events and hourly statistics. Although this

does not allow storing a continuous long term record in high resolution, we showed that it does

allow us to recreate the RF environment as if we had stored all of the data. Although there is some

difference between the high resolution and recreated data, the difference is small enough that it can

be attributed mainly to natural noise inherent in capturing radio waves with receivers such as the

RATTY and is therefore not a substantial loss in terms of a record of RFI.

The third goal of providing access to the data collected by the RFI monitor was achieved by creating

a website through which users could access the data, allowing them to download any data they were

interested in over the web. JavaScript visualisations which allowed the user to explore the data on

the web page were developed. These visualisations needed to be developed as there were no

existing JavaScript libraries that could handle the amount of data we needed to display. This website

and its visualisations have already been used to facilitate with RFI campaigns on site.

The greatest proof of the success of the RFI monitor is that it has been used by RFI managers

already. It has been useful in exploring known RFI such as two way radios. It has also been used to

alert RFI managers of high levels of intermittent RFI around the KAT7 dishes. This RFI may only have

been discovered months later if it were not for the RFI monitor. This is strong evidence that the RFI

monitor provides a valuable tool for RFI management.

6.1 Further work
Although the RFI monitor has proven to be useful in RFI management already, there are aspects of

the monitor that could be improved upon. The next iteration of the RFI monitor will use a new

receiver called the RATTY2 based on the old RATTY system. This new system however will cover the

frequency from 100MHz to 2.6 GHz. This means it will be able to monitor over the frequencies that

KAT7, MeerKAT and eventually the SKA observe on. This system is currently in development and we

will be using the software and knowledge gained from this prototype to ensure it is a successful

monitoring system.

 As discussed in the validation portion of this thesis, the retrieval speed of hourly statistics was far

too long. For the new RFI monitor we will be saving our hourly data in hdf5 files, rather than in the

MYSQL database as in the case of the prototype. This should significantly reduce the retrieval time of

archived data.

101

Some other features we are planning on adding are an omni-directional antenna which will allow the

monitor to capture RFI from all over the site, rather than the approximately 60 degrees possible with

the current antenna. We will also be upgrading the server to hold at least double the disk space so

that we can store far more raw data. Eventually we would like to add the RFI monitor to the

MeerKAT observations and archive. This way each observation could have an accompanying RFI

report from the monitor at the time, and over the frequencies of the observation.

There are plans to provide a daily, weekly and monthly RFI report which can be mailed to RFI

managers and other interested users. We would also like to include some RFI classification, so that

the report can say not only how much RFI there was, but what some of the likely culprits may be.

This will hopefully help RFI managers narrow down the potential emitters they will need to measure

to find RFI sources in future.

102

7 References

ASA. 2013, "How to become an astronomer," http://asa.astronomy.org.au/become.html [7

June 2013]

Astrobaki. 2013, "Radiometer Equation Applied to Telescopes," wiki,

https://casper.berkeley.edu/astrobaki/index.php/Radiometer_Equation_Applied_to_Tele

scopes [14 June 2013]

Baan, W. 2011, "RFI mitigation in radio astronomy," In General Assembly and Scientific

Symposium, 2011 XXXth URSI, pp. 1, 2, 13-20

Bolli, P., Gaudiomonte, F., & Messina, F. 2010 "The RFI monitoring systems for the

Medicina and the Sardinia Radio Telescopes," In Proceedings of Science; RFI

Mitigation Workshop, pp. 1–6, March 29-31, Groningen

Boonstra, A. J. 2001, "Radio frequency monitoring for radio astronomy," In IUCAF RFI-

Mitigation Workshop, Bonn, March 28 - 30

Boonstra, A. J. 2005, "Radio frequency interference mitigation in radio astronomy," Ph.D

thesis, Delft University of Technology

Bremer, M. 1995, "Conversion of source velocity/redshift to sky frequency," web page,

http://iram.fr/IRAMFR/ARN/may95/node4.html [7 June 2013]

Burke, B. 2010, An introduction to radio astronomy, 3
rd

 Ed, Cambridge Iniversity Press,

Cambridge

CASPER. 2013, "ROACH" https://casper.berkeley.edu/wiki/ROACH, [4 February 2014]

Chaisson, E., & McMillan, S. 2005, Astronomy today. 5
th

 Ed, Addison-Wesley

Department of Science & Technology. 2007, “Astronomy Geographic Advantage Act”

National Gazettes, No 37397

Dewdney, P., Hall, P., & Schilizzi, R.. 2009, "The square kilometre array," In Proceedings of

the IEEE, vol. 97, no. 8, pp. 1482-1496,

Diepenbeek, C. Van. 2010, "Passive Spectrum Use and Upcoming Changes in the Spectrum

Environment," In Proceedings of Science; RFI Mitigation Workshop, pp. 1–7, March

29-31, Groningen

Driel, W. van, Gergely, T., Liszt, H., & Ohishi, M. 2011, "Expert Panel on Radio Quiet Zone

and RFI Regulation," In Expert and SDPO Reports and Supporting Material - RFI,

SKA, Manchester

Ekers, R. D., & Bell, J. F. 1999, "Radio frequency interference," In Proceedings of IAU

Symposium 199; The Universe at Low Radio Frequencies, pp. 498-505, 30 Nov - 4 Dec,

Pune

103

Fridman, P. A. 2010, "Statistically Stable Estimates of Varience in Radioastronomical

Observations as Tools for RFI Mitigation," In The Astronomical Journal, vol. 135, no. 5,

pp. 1810–1824

Fridman, P. A., & Baan, W. A. 2001, "RFI mitigation methods in radio astronomy," In

Astronomy & Astrophysics, Vol. 378, no. 1, pp. 327–344

Garcia-Molina, H., Ullman, J. D., & Widom, J. 2008, Database Systems: The Complete Book

2
nd

 Ed,. Prentice Hall, New Jersey

Gillani, S. 2010, "RF Interference Monitoring for the Onsala Space Observatory," M.Sc.

thesis, Chalmers University of Technology

GMRT. 2008, "Introducing GMRT,"

http://gmrt.ncra.tifr.res.in/gmrt_hpage/GMRT/intro_gmrt.html [10 May 2012]

Guner, B., Johnson, J. T., & Niamsuwan, N. 2007, "Time and Frequency Blanking for Radio-

Frequency Interference Mitigation in Microwave Radiometry," IEEE Transactions on

Geoscience and Remote Sensing, vol. 45 no. 11, pp. 3672–3679

HDF Group. n.d -a , "HDF5 Tutorial: Learning the Basics HDF5 File Organization,"

http://www.hdfgroup.org/HDF5/Tutor/fileorg.html [13 March 2013]

HDF Group. n.d. -b, "Overview of Parallel HDF5 Design,"

http://www.hdfgroup.org/HDF5/Tutor/poverview.html [13 March 2013]

HDF Group. 2011, "What is HDF5?" http://www.hdfgroup.org/HDF5/whatishdf5.html [13

March 2013]

ITU-RA. 2005, “Protection criteria used for radio astronomical measurements,”

recommendation, 769-2, Geneva

Joardar, S. 2005, "RFI monitoring system of GMRT and radio interference analysis on

various radio-astronomy bands," In Proceedings of the XXVIIIth URSI General

Assembly, New Dehli

Kraus, D. K. 1986, “Radio Astronomy,” 2
nd

 Ed, Cygnus-Quasar Books

Kempner, J. n.d, "Cosmology calculator," http://www.kempner.net/cosmic.php [17 November

2014]

Kristol, D. M. n.d, "HTTP What is HTTP" http://www.silicon-

press.com/briefs/brief.http/brief.PDF, [18 March 2013]

Manners, P. 2007, "Measuring the RFI environment of the South African SKA site," M.Sc.

thesis, Rhodes University

Miller, D. F. 1998, "Basics of Radio Astronomy for the Goldstone-Apple Valley Radio

Telescope," http://www2.jpl.nasa.gov/radioastronomy/radioastronomy_all.PDF [19

November 2014]

104

National Astronomy and Ionosphere Center. n.d, "The Observatory,"

http://www.naic.edu/general/index.php?option=com_content&view=article&id=149&It

emid=631 [10 May 2012]

Netcraft. 2014, "January 2014 Web Server Survey,"

http://news.netcraft.com/archives/2014/01/03/january-2014-web-server-survey.html [30

January 2014]

Numpy Developers. 2013, "Numpy," http://www.Numpy.org/# [5 February 2014]

Offringa, A. 2012, "Algorithms for radio interference detection and removal," Ph.D thesis,

University of Groningen

Offringa, A. R., Bruyn, A. G. De, & Biehl, M. 2010, "Post correlation radio frequency

interference classification methods," Monthly Notices of the Royal Astronomical Society,

vol. 167, no. 1, pp. 155–167

PAPER. n.d, "PAPER," http://eor.berkeley.edu/ [17 Jan 2015]

Parsons, A., Werthimer, D., & Backer, D. 2009, "Digital Instrumentation for the Radio

Astronomy Community," Astro2010: The Astronomy and Astrophysics Decadal Survey,

Technology Development Papers, no. 21

Perillat, P. n.d , "Hilltop RFI monitorying system,"

http://www.naic.edu/~phil/rfi/hilltop/hilltop.html#History_ [10 May 2012]

Porko, J.-P. G. 2011, "Radio frequency interference in radio astronomy," M.Sc thesis, Aalto

University

Python Software Foundation. 2012, "PythonSpeed,"

https://wiki.python.org/moin/PythonSpeed [5 February 2014]

Quick, D. 2011, "China building world’s biggest radio telescope,"

http://www.gizmag.com/five-hundred-meter-aperture-spherical-radio-telescope/18930/

[17 July 2012]

Redmonk. 2014 , "The RedMonk Programming Language Rankings: January 2014,"

http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/ [04 February 2014]

SKA. 2015, "SKA Project," https://www.skatelescope.org/project/ [19 Novermber 2015]

SKA SA. 2006a , "Analysis of the Radio Frequency Environment Transmitter Database and

Propagation Studies," In Proposal to site the Square Kilometre Array, SKA SA, Cape

Town

SKA SA. 2006b, "Analysis of the Radio Frequency Report," In Proposal to site the Square

Kilometre Array, SKA SA, Cape Town

SKA SA. 2011, "South africa’s meerkat array,"

http://www.ska.ac.za/download/fact_sheet_meerkat_2011.PDF [17 July 2012]

105

Tennyson, J. 2010, Astronomical Spectroscopy: An Introduction to the Atomic and Molecular

Physics of Astronomical Spectra, 2
nd

 Ed, World Scientific Publishing Company,

Singapore

Thompson, A. 1999, "Fundamentals of radio interferometry," In Synthesis Imaging in Radio

Astronomy II, vol. 180, pp. 11-36

Vennapoosa, C. 2012, "The Evolutionary Prototyping Model,"

http://www.exforsys.com/career-center/project-management-life-cycle/the-evolutionary-

prototyping-model.html [10 June 2013]

Webber, J. 2011, "Box2D as a Measure of Runtime Performance,"

http://blog.j15r.com/blog/2011/12/15/Box2D_as_a_Measure_of_Runtime_Performance

[29 January 2014]

World Wide Web Consortium. n.d -a , "HTML & CSS,"

http://www.w3.org/standards/webdesign/htmlcss [29 January 2014]

World Wide Web Consortium. n.d. -b, "JavaScript Web APIs," web page,

http://www.w3.org/standards/webdesign/script [29 January 2014]

World Wide Web Foundation. 2012, "History of the Web,"

https://www.webfoundation.org/vision/history-of-the-web/, [29 January 2014]

Zoller, J. N. 2011, "Satellite Regulations,"

http://www.itu.int/net/newsroom/wrc/2012/features/satellite_regulations.aspx [18

November 2014]

106

Appendix A : Code

A.1 Roach_handle.py

#!/usr/bin/python

import pylab,h5py,time, corr, numpy, struct, sys, logging, os, cam, cal

bram_out_prefix = 'store'

class roach_handle:

 def __init__(self, init = False):

 try:

 print 'Connecting to ROACH...'

 self.r = cam.spec()

 if (init):

 self.rfi_init() #initiate rfi prog on fpga

 self.last_cnt = self.getUnpackedData(self.r.fpga.read_uint('acc_cnt'))[2]

 if self.r.spectrum_bits != 64:

 print 'ERR: Sorry, this is only for 64 bit systems.'

 exit()

 #Access configuration of RATTY

 self.acc_time, self.n_accs = self.r.acc_time_get() #Get time for each accumulation

and number of accumulations

 self.freqs = self.r.freqs

 self.fft_shift = self.r.fft_shift_get()

 self.fft_scale = self.r.fft_scale

 self.rf_gain = self.r.rf_status_get()[1]

 self.bandwidth = self.r.bandwidth

 self.n_chans = self.r.n_chans

 self.bandshape = cal.bandshape(self.freqs)

 print 'Scaling back by %i accumulations.'%self.n_accs

 self.last_cnt = self.r.fpga.read_uint('acc_cnt')

 self.af=None

 self.units='dBm'

 except Exception as e:

 print 'Runtime error: ',e

 raise e

 exit()

 def getSpectrum(self,n_acc):

 spectrum = []

 acc_cnt = []

107

 adc_bad = []

 timestamp = []

 adc_overrange = []

 fft_overrange = []

 adc_shutdown = []

 adc_level = []

 input_level = []

 adc_temp = []

 ambient_temp = []

 while n_acc: #While we still need to grab next spectra

 spectra, time, self.last_cnt, stat = self.getUnpackedData(self.last_cnt)

 spectrum.append(spectra)

 acc_cnt.append(self.last_cnt)

 timestamp.append(time)

 adc_bad.append(stat['adc_bad'])

 adc_overrange.append(stat['adc_overrange'])

 fft_overrange.append(stat['fft_overrange'])

 adc_shutdown.append(stat['adc_bad'])

 adc_level.append(stat['adc_level'])

 input_level.append(stat['input_level'])

 adc_temp.append(stat['adc_temp'])

 ambient_temp.append(stat['ambient_temp'])

 n_acc = n_acc - 1

 freqs = numpy.arange(self.n_chans)*float(self.bandwidth)/self.n_chans #channel center

freqs in Hz

 bandshape = cal.bandshape(freqs)

 ret = {'spectrum':spectrum, 'acc_cnt':acc_cnt, 'timestamp':timestamp,

'adc_overrange':adc_overrange, 'fft_overrange':fft_overrange, 'adc_shutdown':adc_shutdown,

'adc_level':adc_level, 'input_level':input_level, 'adc_temp':adc_temp,

'ambient_temp':ambient_temp, 'bandshape':bandshape, 'adc_bad': adc_bad}

 if (self.r.antenna_bandpass != 'none'):

 af=cal.af_from_gain(freqs,cal.ant_gains(self.r.antenna_bandpass,freqs)) #antenna

factor

 ret['antenna_factor'] = af

 return ret

 def getAttributes (self):

 ret = dict()

 ret['n_chans'] = self.r.n_chans

 ret['n_accs'] = self.r.acc_time_get()[1]

 ret['bitstream'] = self.r.bitstream

 ret['bandwidth'] = self.r.bandwidth

 ret['adc_type'] = self.r.adc_type

 ret['spectrum_bits'] = self.r.spectrum_bits

108

 ret['fft_shift'] = self.r.fft_shift_get()

 ret['rf_gain'] = self.r.rf_status_get()[1]

 ret['antenna_calfile'] = self.r.antenna_bandpass

 return ret

 def getUnpackedData(self,last_cnt):

 """Gets data from ROACH board and returns the spectra, the state of the roach at the

last timestamp"""

 while self.r.fpga.read_uint('acc_cnt') == last_cnt: #Wait untill the next accumulation

has been performed

 time.sleep(0.1)

 #print "cnt = " + str(self.r.fpga.read_uint('acc_cnt'))

 spectrum = numpy.zeros(self.r.n_chans) #Get spectra

 for i in range(self.r.n_par_streams):

 spectrum[i::self.r.n_par_streams] =

numpy.fromstring(self.r.fpga.read('%s%i'%(bram_out_prefix,i),self.r.n_chans/self.r.n_par_st

reams*8),dtype=numpy.uint64).byteswap()

 stat = self.r.status_get()

 ampls = self.r.adc_amplitudes_get()

 stat['adc_level'] = ampls['adc_dbm']

 stat['input_level'] = ampls['input_dbm']

 stat['adc_temp'] = self.r.adc_temp_get()

 stat['ambient_temp'] = self.r.ambient_temp_get()

 last_cnt = self.r.fpga.read_uint('acc_cnt')

 timestamp = time.time()

 #print '[%i] %s: input level: %5.2f dBm (ADC %5.2f

dBm).'%(last_cnt,time.ctime(timestamp),stat['input_level'],stat['adc_level']),

 if stat['adc_bad']: print 'ADC selfprotect due to overrange!',

 elif stat['adc_overrange']: print 'ADC is clipping!',

 elif stat['fft_overrange']: print 'FFT is overflowing!',

 #else: print str(last_cnt) + 'all ok.',

 #print ''

 return spectrum, timestamp, last_cnt, stat

 def rfi_init (self):

 try:

 #r = rfi_sys.rfi_sys(mode=args[0]).

 print 'Connecting to ROACH...',

 self.r.logger.setLevel(logging.DEBUG)

 print 'done.'

 fpga_prog = True #Set to default value in rfi_init I got from Jason

 fft_shift = -1 #Set to default value in rfi_init I got from Jason

 acc_period = 1 #Set to default value in rfi_init I got from Jason (1 second)

 print '------------------------'

109

 print 'Programming FPGA...',

 sys.stdout.flush()

 if fpga_prog:

 self.r.fpga.progdev(self.r.bitstream)

 print 'done'

 else:

 print 'Skipped.'

 print 'Checking clocks...',

 sys.stdout.flush()

 if fpga_prog:

 est_clk_rate=self.r.clk_check()

 print 'ok, %i MHz.'%est_clk_rate

 else:

 print 'Skipped.'

 print 'Auto-calibrating ADC...',

 sys.stdout.flush()

 self.r.adc_selfcal()

 print 'done'

 print 'Attempting automatic RF gain adjustment...'

 max_n_tries=10

 n_tries=0

 tolerance=1

 rf_gain=self.r.rf_gain_range[0]

 self.r.rf_gain_set(rf_gain)

 time.sleep(0.1)

 self.r.ctrl_set(mrst='pulse',cnt_rst='pulse',clr_status='pulse',flasher_en=True)

 rf_level=self.r.adc_amplitudes_get()['adc_dbm']

 if self.r.status_get()['adc_bad'] or self.r.status_get()['adc_overrange']:

 raise RuntimeError('Your input levels are too high!')

 while (rf_level < self.r.desired_rf_level-tolerance or

rf_level>self.r.desired_rf_level+tolerance) and n_tries < max_n_tries:

 rf_level=self.r.adc_amplitudes_get()['adc_dbm']

 difference = self.r.desired_rf_level - rf_level

 rf_gain=self.r.rf_status_get()[1] + difference

 print '\t Gain was %3.1fdB, resulting in an ADC input level of %5.2fdB. Trying

gain of %4.2fdB...'%(self.r.rf_status_get()[1],rf_level,rf_gain)

 if rf_gain < self.r.rf_gain_range[0]:

 print '\tWARNING: Gain at minimum, %4.2fdB.'%self.r.rf_gain_range[0],

 self.r.logger.warn('Gain at minimum, %4.2fdB.'%self.r.rf_gain_range[0])

 self.r.rf_gain_set(self.r.rf_gain_range[0])

 break

 elif rf_gain > self.r.rf_gain_range[1]:

 print '\t WARNING: Gain at maximum, %4.2fdB.'%self.r.rf_gain_range[1],

 self.r.logger.warn('Gain at maximum, %4.2fdB.'%self.r.rf_gain_range[1])

 self.r.rf_gain_set(self.r.rf_gain_range[1])

 break

110

 self.r.rf_gain_set(rf_gain)

 time.sleep(0.1)

 n_tries += 1

 if n_tries >= max_n_tries: print 'Failed.'

 else: print 'done!'

 print 'Setting FFT shift... ',

 sys.stdout.flush()

 self.r.fft_shift_set(fft_shift)

 print 'set to 0x%x.'%self.r.fft_shift_get()

 print 'Configuring accumulation period to %2.2f seconds...'%acc_period,

 sys.stdout.flush()

 self.r.acc_time_set(acc_period)

 print 'done'

 print 'Resetting counters...',

 sys.stdout.flush()

 self.r.ctrl_set(mrst='pulse',cnt_rst='pulse',clr_status='pulse',flasher_en=False)

 print 'done'

 print 'Current status:',

 sys.stdout.flush()

 stat=self.r.status_get()

 if stat['adc_bad']: print 'ADC selfprotect due to overrange!',

 elif stat['adc_overrange']: print 'ADC is clipping!',

 elif stat['fft_overrange']: print 'FFT is overflowing!',

 else: print 'all ok',

 print ''

 except KeyboardInterrupt:

 exit_clean()

 except Exception as e:

 print e

 exit_fail()

 def exit_clean(self):

 try:

 self.r.fpga.stop()

 except:

 pass

 exit()

 def exit_fail(self):

 print 'FAILURE DETECTED. Log entries:\n',

 try:

 self.r.lh.printMessages()

 self.r.fpga.stop()

 except Exception as e:

 print e

111

 pass

 raise e

 exit()

if __name__ == '__main__':

 test = roach_handle()

 data = test.getSpectrum(5)

 for i in range(len(data['acc_cnt'])):

 print '\n---------------%i------------------'%i

 print data['spectrum'][i]

 print data['acc_cnt'][i]

 print data['timestamp'][i]

 print data['adc_overrange'][i]

 print data['adc_level'][i]

 print data['input_level'][i]

 print data['adc_temp'][i]

 print data['ambient_temp'][i]

 test.exit_clean()

112

A. 2 cam.py

#!/usr/bin/env python

'''

You need to have KATCP and CORR installed. Get them from

http://pypi.python.org/pypi/katcp and

http://casper.berkeley.edu/svn/trunk/projects/packetized_correlator/corr-0.4.0/

Hard-coded for 32bit unsigned numbers.

\nAuthor: Jason Manley, Feb 2011.

'''

import corr,time,numpy,struct,sys,logging,cal,iniparse, os

front_led_layout=['adc_clip','adc_shutdown','fft_overflow','quantiser_overflow','new_accumu

lation','sync','NA','NA']

#roach='192.168.64.112' Edit by Chris

#mode_params={'hr': {'bitstream':'r_spec_1ghz_16k_r106_2011_Feb_24_1810.bof',

mode_params={

#'hr': {'bitstream':'r_spec_1ghz_16k_iadc_r106_2011_Mar_10_1724.bof',

'hr': {'bitstream':'r_spec_1ghz_16k_iadc_r107_2011_Mar_14_0850.bof',

'n_chans':16384,

'n_par_streams':4,

'bandwidth':898000000,

'desired_rf_level':-25,

'adc_type':'iadc',

'spectrum_bits':64,

'fft_shift':0b001111111111100},

'hr_900': {'bitstream':'r_spec_1ghz_16k_iadc_r107_2011_Mar_14_0850.bof',

'n_chans':16384,

'n_par_streams':4,

'bandwidth':900000000,

'adc_type':'iadc',

'desired_rf_level':-25,

'spectrum_bits':64,

'fft_shift':16383},

#'hr_kadc': {'bitstream':'r_spec_1ghz_16k_kadc_r108_2011_Jul_26_1810.bof',

'hr_kadc': {'bitstream':'r_spec_1ghz_16k_kadc_r108_2011_Nov_09_1541.bof',

'n_chans':16384,

'n_par_streams':4,

'bandwidth':800000000,

'adc_type':'katadc',

'desired_rf_level':-25,

'spectrum_bits':64,

'fft_shift':16383},

#'lr': {'bitstream':'r_spec_1ghz_1k_r108lr_2011_Feb_28_1051.bof',

'lr': {'bitstream':'r_spec_1ghz_1k_iadc_r108lr_2011_Feb_28_1655.bof',

'n_chans':1024,

113

'desired_rf_level':-25,

'n_par_streams':4,

'adc_type':'iadc',

'spectrum_bits':32,

'bandwidth':900000000,

'fft_shift':1023},

}

#katcp_port=7147 Edit by Chris

class spec:

 def __init__(self, log_handler=None, log_level=logging.INFO):

 #-------------------------------------Code By Chris--

 self.config_file = cal.cal_files("system_parameters")

 try:

 self.sys_config = iniparse.INIConfig(open(self.config_file, 'rb')) #load config file

 except IOError as e:

 print "Error opening the config file : ",

 print e

 exit()

 roach = self.sys_config['connection']['roach_ip'].strip() #load Roach IP

 katcp_port = int(self.sys_config['connection']['katcp_port']) #load Roach port

 #----------------------------------End Code By Chris---

 if log_handler == None: log_handler=corr.log_handlers.DebugLogHandler(100)

 self.lh = log_handler

 self.logger = logging.getLogger('RFIsys')

self.fpga=corr.katcp_wrapper.FpgaClient(roach,katcp_port,timeout=10,logger=self.logger)

 self.logger.setLevel(log_level)

 self.logger.addHandler(self.lh)

 time.sleep(1)

 try:

 self.fpga.ping()

 self.logger.info('KATCP connection ok.')

 except Exception as e:

 self.logger.error('KATCP connection failure. Connection to ROACH failed.')

 print e

 print('KATCP connection failure.')

 raise RuntimeError("Connection to FPGA board failed.")

 #--------------------------------Edited by Chris---

 #self.mode = self.sys_config['digital_system_parameters']['mode'].strip()

 self.n_chans = int(self.sys_config['digital_system_parameters']['n_chans'])

 self.bandwidth = int(self.sys_config['digital_system_parameters']['bandwidth'])

 self.n_par_streams = int(self.sys_config['digital_system_parameters']['n_par_streams'])

 self.bitstream = self.sys_config['digital_system_parameters']['bitstream']

 self.fft_shift = int(self.sys_config['digital_system_parameters']['fft_shift'])

 self.adc_type = self.sys_config['digital_system_parameters']['adc_type']

 self.desired_rf_level =

int(self.sys_config['digital_system_parameters']['desired_rf_level'])

 self.spectrum_bits = int(self.sys_config['digital_system_parameters']['spectrum_bits'])

 self.antenna_bandpass = self.sys_config['analogue_frontend']['antenna_bandpass']

114

 if self.adc_type== 'katadc':

 self.fpga_clk=self.bandwidth/4

 self.sample_clk=self.bandwidth*2

 self.rf_gain_range=(-11.5,20)

 elif self.adc_type== 'iadc':

 self.fpga_clk=self.bandwidth/4

 self.sample_clk=self.bandwidth*2

 self.rf_gain_range=(-31.5,0)

 self.chan_width=numpy.float(self.bandwidth)/self.n_chans

 self.freqs=numpy.arange(self.n_chans)*float(self.bandwidth)/self.n_chans #channel

center freqs in Hz

 #-----------------------------End Edited By Chris ---

 def initialise(self,rf_gain=-10,acc_time=1,fft_shift=0xffffffff):

 """Initialises the system to defaults."""

 self.fpga.progdev(self.bitstream)

 self.fft_shift_set(fft_shift)

 self.rf_gain_set(rf_gain)

 self.acc_time_set(acc_time)

 self.ctrl_set(flasher_en=False,cnt_rst='pulse',clr_status='pulse')

 #self.ctrl_set(flasher_en=True,cnt_rst='pulse',clr_status='pulse')

 def clk_check(self):

 """Performs a clock check and returns an estimate of the FPGA's clock frequency."""

 est_rate=round(self.fpga.est_brd_clk())

 if est_rate>(self.fpga_clk/1e6 +1) or est_rate<(self.fpga_clk/1e6 -1):

 self.logger.error('FPGA clock rate is %i MHz where we expect it to be %i

MHz.'%(est_rate,self.fpga_clk/1e6))

 raise RuntimeError('FPGA clock rate is %i MHz where we expect it to be %i

MHz.'%(est_rate,self.fpga_clk/1e6))

 return est_rate

 def adc_selfcal(self):

 if self.adc_type=='iadc':

corr.iadc.configure(self.fpga,0,mode='inter_I',cal='new',clk_speed=self.bandwidth/1000000)

 elif self.adc_type=='katadc':

 corr.katadc.set_interleaved(self.fpga,0,'I')

 time.sleep(0.1)

 corr.katadc.cal_now(self.fpga,0)

 def fft_shift_set(self,fft_shift_schedule=-1):

 """Sets the FFT shift schedule (divide-by-two) on each FFT stage.

 Input is an integer representing a binary bitmask for shifting.

 If not specified as a parameter to this function (or a negative value is supplied),

program the default level."""

 import cal

 if fft_shift_schedule<0: fft_shift_schedule=self.fft_shift

115

 self.fpga.write_int('fft_shift',fft_shift_schedule)

 self.fft_shift=fft_shift_schedule

 self.fft_scale=2**(cal.bitcnt(fft_shift_schedule))

 self.logger.info("Set FFT shift to %8x (scaling down by

%i)."%(fft_shift_schedule,self.fft_scale))

 def fft_shift_get(self):

 """Fetches the current FFT shifting schedule from the hardware."""

 self.fft_shift=self.fpga.read_uint('fft_shift')

 self.fft_scale=2**(cal.bitcnt(self.fft_shift))

 return self.fft_shift

return self.fft_scale

 def ctrl_get(self):

 """Reads and decodes the values from the control register."""

 value = self.fpga.read_uint('control')

 return {'mrst':bool(value&(1<<0)),

 'cnt_rst':bool(value&(1<<1)),

 'clr_status':bool(value&(1<<3)),

 'adc_protect_disable':bool(value&(1<<13)),

 'flasher_en':bool(value&(1<<12)),

 'raw':value,

 }

 def ctrl_set(self,**kwargs):

 """Sets bits of all the Fengine control registers. Keeps any previous state.

 \nPossible boolean kwargs:

 \n\t adc_protect_disable

 \n\t flasher_en

 \n\t clr_status

 \n\t mrst

 \n\t cnt_rst"""

 key_bit_lookup={

 'adc_protect_disable': 13,

 'flasher_en': 12,

 'clr_status': 3,

 'cnt_rst': 1,

 'mrst': 0,

 }

 value = self.ctrl_get()['raw']

 run_cnt=0

 run_cnt_target=1

 while run_cnt < run_cnt_target:

 for key in kwargs:

 if (kwargs[key] == 'toggle') and (run_cnt==0):

 value = value ^ (1<<(key_bit_lookup[key]))

 elif (kwargs[key] == 'pulse'):

 run_cnt_target = 3

 if run_cnt == 0: value = value & ~(1<<(key_bit_lookup[key]))

116

 elif run_cnt == 1: value = value | (1<<(key_bit_lookup[key]))

 elif run_cnt == 2: value = value & ~(1<<(key_bit_lookup[key]))

 elif kwargs[key] == True:

 value = value | (1<<(key_bit_lookup[key]))

 elif kwargs[key] == False:

 value = value & ~(1<<(key_bit_lookup[key]))

 else:

 raise RuntimeError("Sorry, you must specify True, False, 'toggle' or 'pulse' for

%s."%key)

 self.fpga.write_int('control', value)

 run_cnt = run_cnt +1

 def rf_gain_set(self,gain=None):

 """Enables the RF switch and configures the RF attenuators on KATADC boards. \n

 \t KATADC's valid range is -11.5 to 20dB. \n"""

 self.rf_gain=gain

 if self.adc_type == 'katadc':

 #RF switch is in MSb.

 if gain > 20 or gain < -11.5:

 raise RuntimeError("Invalid gain setting of %i. Valid range for KATADC is -

11.5 to +20dB.")

 self.fpga.write_int('adc_ctrl0',(1<<31)+int((20-gain)*2))

 elif self.adc_type == 'iadc':

 if gain > 0 or gain < -31.5:

 raise RuntimeError("Invalid gain setting of %i. Valid range for RFI frontend is -

31.5 to 0dB.")

 self.fpga.write_int('adc_ctrl0',(1<<31)+int((0-gain)*2))

 #print 'Set RF gain register to %x'%int((0-gain)*2)

 else: raise RuntimeError("Sorry, your ADC type is not supported.")

 def rf_status_get(self):

 """Grabs the current value of the RF attenuators and RF switch state. returns

(enabled,gain in dB)."""

 if self.adc_type == 'katadc':

 value = self.fpga.read_uint('adc_ctrl0')

 self.rf_gain=20.0-(value&0x3f)*0.5

 return (bool(value&(1<<31)),self.rf_gain)

 elif self.adc_type == 'iadc':

 value = self.fpga.read_uint('adc_ctrl0')

 self.rf_gain=0.0-(value&0x3f)*0.5

 return (bool(value&(1<<31)),self.rf_gain)

 else: raise RuntimeError("Sorry, your ADC type is not supported.")

 def adc_amplitudes_get(self):

 """Gets the ADC RMS amplitudes."""

 adc_levels_acc_len=65536

 if self.adc_type == 'katadc':

 adc_bits=8

 elif self.adc_type == 'iadc':

 adc_bits=8

117

 rv = {}

 rv['adc_raw']=self.fpga.read_uint('adc_sum_sq0')

 rv['adc_rms_raw']=numpy.sqrt(rv['adc_raw']/float(adc_levels_acc_len))

 rv['adc_rms_mv']=rv['adc_rms_raw']*cal.get_adc_cnt_mv_scale_factor()

 rv['adc_dbm']=cal.v_to_dbm(rv['adc_rms_mv']/1000.)

rv['input_rms_mv']=rv['adc_rms_raw']*cal.get_adc_cnt_mv_scale_factor(self.rf_status_get()[

1])

 rv['input_dbm']=cal.v_to_dbm(rv['input_rms_mv']/1000.)

 return rv

 def status_get(self):

 """Reads and decodes the status register. Resets any error flags after reading."""

 rv={}

 value = self.fpga.read_uint('status')

 self.ctrl_set(clr_status='pulse')

 return {

 'adc_bad':bool(value&(1<<4)),

 'adc_overrange':bool(value&(1<<2)),

 'fft_overrange':bool(value&(1<<1))

 }

 def acc_time_set(self,acc_time=1):

 """Set the accumulation length in seconds"""

 self.n_accs = int(acc_time * float(self.bandwidth)/self.n_chans)

 self.logger.info("Setting accumulation time to %2.2f seconds (%i

accumulations)."%(acc_time,self.n_accs))

 self.fpga.write_int('acc_len',self.n_accs)

 self.ctrl_set(mrst='pulse')

 def acc_time_get(self):

 """Set the accumulation length in seconds"""

 self.n_accs = self.fpga.read_uint('acc_len')

 self.acc_time=self.n_accs*self.n_chans/float(self.bandwidth)

 self.logger.info("Accumulation time is %2.2f seconds (%i

accumulations)."%(self.acc_time,self.n_accs))

 return self.acc_time,self.n_accs

 def get_adc_snapshot(self,trig_level=-1):

 if trig_level>0:

 self.fpga.write_int('trig_level',trig_level)

 circ_capture=True

 else:

 self.fpga.write_int('trig_level',0)

 circ_capture=False

 return

numpy.fromstring(self.fpga.snapshot_get('snap_adc',man_valid=True,man_trig=True,circular

_capture=circ_capture,wait_period=-1)['data'],dtype=numpy.int8)

118

 def adc_temp_get(self):

 if self.adc_type== 'katadc':

 return corr.katadc.get_adc_temp(self.fpga,0)

 else:

 return -1

 def ambient_temp_get(self):

 if self.adc_type== 'katadc':

 return corr.katadc.get_ambient_temp(self.fpga,0)

 else:

 return -1

def ByteToHex(byteStr):

 """

 Convert a byte string to it's hex string representation e.g. for output.

 """

 # Uses list comprehension which is a fractionally faster implementation than

 # the alternative, more readable, implementation below

 #

 # hex = []

 # for aChar in byteStr:

 # hex.append("%02X " % ord(aChar))

 #

 # return ''.join(hex).strip()

 return ''.join(["%02X " % ord(x) for x in byteStr]).strip()

119

A.3 Cal.py
-*- coding: utf-8 -*-

import numpy,scipy,scipy.interpolate, iniparse

#smoothing functions from http://www.swharden.com/blog/2008-11-17-linear-data-

smoothing-in-python/

c=299792458. #speed of light in m/s

#cal_file_path = "/etc/rfi_sys/cal_files/"; #For when you have everything working and ready

to install with distutils

cal_file_path = "ratty/config_files/cal_files/"; #For development

def smoothList(list,strippedXs=False,degree=10):

 if strippedXs==True: return Xs[0:-(len(list)-(len(list)-degree+1))]

 smoothed=[0]*(len(list)-degree+1)

 for i in range(len(smoothed)):

 smoothed[i]=sum(list[i:i+degree])/float(degree)

 return smoothed

def smoothListTriangle(list,strippedXs=False,degree=5):

 weight=[]

 window=degree*2-1

 smoothed=[0.0]*(len(list)-window)

 for x in range(1,2*degree):weight.append(degree-abs(degree-x))

 w=numpy.array(weight)

 for i in range(len(smoothed)):

 smoothed[i]=sum(numpy.array(list[i:i+window])*w)/float(sum(w))

 return smoothed

def smoothListGaussian(list,strippedXs=False,degree=5):

 window=degree*2-1

 weight=numpy.array([1.0]*window)

 weightGauss=[]

 for i in range(window):

 i=i-degree+1

 frac=i/float(window)

 gauss=1/(numpy.exp((4*(frac))**2))

 weightGauss.append(gauss)

 weight=numpy.array(weightGauss)*weight

 smoothed=[0.0]*(len(list)-window)

 for i in range(len(smoothed)):

 smoothed[i]=sum(numpy.array(list[i:i+window])*weight)/sum(weight)

 return smoothed

def dmw_per_sq_m_to_dbuv(dbmw):

 # from http://www.ahsystems.com/notes/RFconversions.php: dBmW/m2 = dBmV/m - 115.8

 return dbmw + 115.8

def dbuv_to_dmw_per_sq_m(dbuv):

120

 # from http://www.ahsystems.com/notes/RFconversions.php: dBmW/m2 = dBmV/m - 115.8

 return dbuv - 115.8

def dbm_to_dbuv(dbm):

 return dbm+106.98

def dbuv_to_dbm(dbuv):

 return dbm-106.98

def v_to_dbuv(v):

 return 20*numpy.log10(v*1e6)

def dbuv_to_v(dbuv):

 return (10**(dbuv/20.))/1e6

def dbm_to_v(dbm):

 return numpy.sqrt(10**(dbm/10.)/1000*50)

def v_to_dbm(v):

 return 10*numpy.log10(v*v/50.*1000)

def bitcnt(val):

 '''Counts the number of set bits in the binary value.'''

 ret_val=0

 shift_val=val

 while shift_val>=1:

 if shift_val&1: ret_val +=1

 shift_val = shift_val>>1

 return ret_val

def polyfit(freqs,gains,degree=9):

 """Just calls numpy.polyfit. Mostly here as a reminder."""

 return numpy.polyfit(freqs,gain,deg=degree)

def af_from_gain(freqs,gains):

 """Calculate the antenna factor (in dB/m) from a list of frequencies (in Hz) and gains

(in dBi).

 There are a number of assumptions made for this to be valid:

 1) Far-field only (plane wave excitation).

 2) 50ohm system.

 3) antenna is polarisation matched.

 4) effects of impedance mismatch are included."""

 #From Howard's email:

 #The antenna factors are derived from gain by taking 9.73/(lambda(sqrt(Gain)) - note

the gain here is the non-dB gain. It is worth noting that in dB’s the conversion is 19.8 –

20log10(lambda) – 10 log(Gain)

 return 19.8 - 20*numpy.log10(c/freqs) - gains

def gain_from_af(freqs,afs):

 """Calculate the gain (in dBi) from the Antenna Factor (in dB/m)."""

121

 return 19.8 - 20*numpy.log10(c/freqs) - afs

def getDictFromCSV(filename):

 import csv

 f = open(filename)

 f.readline()

 reader = csv.reader(f, delimiter=',')

 mydict = dict()

 for row in reader:

 mydict[float(row[0])] = float(row[1])

 return mydict

class cal:

 def __init__(self, config_file = 'default'):

 self.config = conf.rattyconf(config_file)

 def __init__(self, n_chans, bandwidth, n_par_streams, bitstream, fft_shfit, adc_type,

desired_rf_level, spectrum_bits, antenna_bandpass, atten_gain, system_bandpass, fe_gain,

acc_period):

 self.n_chans = n_chans

 self.bandwidth = bandwidth

 self.n_par_streams = n_par_streams

 self.bitstream = bitstream

 self.fft_shift = fft_shift

 self.adc_type = adc_type

 self.desired_rf_level = desired_rf_level

 self.spectrum_bits = spectrum_bits

 self.antenna_bandpass = antenna_bandpass

 self.atten_gain = atten_gain

 self.freqs = numpy.arange(self.n_chans)*float(self.bandwidth)/self.n_chans

 self.system_bandpass = system_bandpass

 self.fe_gain = fe_gain

 self.acc_period = acc_period

 self.n_accs = int(self.acc_period * float(self.bandwidth)/self.n_chans)

 def inter_adc_details(self, data):

 print 'DC offset 0: %f'%numpy.mean(data[0::2])

 print 'DC offset 1: %f'%numpy.mean(data[1::2])

 print 'Max 0: %f'%numpy.max(data[0::2])

 print 'Max 1: %f'%numpy.max(data[1::2])

 #print 'Phase difference estimate:

%f'%numpy.acos(2*numpy.mean(data[0::2]*data[1::2]))

 def plot_bandshape(freqs):

 import pylab

 pylab.plot(bandshape(freqs))

 pylab.title('Bandpass calibration profile')

122

 pylab.xlabel('Frequency (Hz)')

 pylab.ylabel('Relative response (dB)')

 def plot_atten_gain_map():

 import pylab

 inputs=atten_gain_map.keys()

 inputs.sort()

 pylab.plot(inputs,[atten_gain_map[k] for k in inputs])

 pylab.title('RF attenuator mapping')

 pylab.xlabel('Requested value (dB)')

 pylab.ylabel('Actual value (dB)')

 def get_gains_from_csv(filename):

 freqs=[]

 gains=[]

 more=True

 fp=open(filename,'r')

 import csv

 fc=csv.DictReader(fp)

 while(more):

 try:

 raw_line=fc.next()

 freqs.append(numpy.float(raw_line['freq_hz']))

 gains.append(numpy.float(raw_line['gain_db']))

 except:

 more=False

 break

 return freqs,gains

 def get_interpolated_gains(fileName):

 """Retrieves antenna gain mapping from /etc/rfi_sys/cal_files/ant.csv file and

interpolates data to return values at 'freqs'."""

 cal_freqs,cal_gains=get_gains_from_csv(cal_files(fileName + '.csv'))

 inter_freqs=scipy.interpolate.interp1d(cal_freqs,cal_gains,kind='linear')

 return inter_freqs(self.config['freqs'])

 def plot_ant_gain():

 """Plots the antenna gain as read from a CSV file specified as "ant"."""

 import pylab

 pylab.plot(self.config['freqs']/1e6,self.ant_gains())

 pylab.title('Antenna gain %s'%self.config['antenna_bandpass_file'])

 pylab.xlabel('Frequency (MHz)')

 pylab.ylabel('Relative response (dBi)')

 def plot_ant_factor():

 """Plots the antenna factor over the given frequencies as calculated from the specified

antenna CSV file."""

 import pylab

 pylab.plot(self.freqs/1e6,af_from_gain(self.freqs,ant_gains()))

123

 pylab.title('Antenna factor as a function of frequency

(%s)'%self.config['antenna_bandpass_file'])

 pylab.xlabel('Frequency (MHz)')

 pylab.ylabel('Antenna factor (dBuV/m)')

 def get_adc_cnt_mv_scale_factor(atten_gain=None): #TODO FIX THIS!!

 """Calculate and return a scale factor for calibrating a raw ADC count to millivolts.

Optional atten_gain in dB to map to input levels."""

 if atten_gain==None:

 return 3.93

 else:

 return 3.93/(10**((atten_gain_map[atten_gain]+self.config['fe_gain'])/20.))

 def freq_to_chan(frequency):

 """Returns the channel number where a given frequency is to be found. Frequency is in

Hz."""

 if frequency<0:

 frequency=self.config['bandwidth']+frequency

 #print 'you want',frequency

 if frequency>self.config['bandwidth']: raise RuntimeError("that frequency is too

high.")

 return

round(float(frequency)/self.config['bandwidth']*self.config['n_chans'])%self.config['n_chans'

]

 def
get_calibrated_spectrum_from_raw_snapshot(adcdata,atten,bandwidth,ant_factor=None,band

shape=None,n_chans=512):

 """Will correct for RF frontend attenuator gains, bandshape and optionally antenna

response. Returns dBm unless antenna is specified, in which case returns dBuV/m."""

 #TODO: TEST THIS

 n_accs=len(adcdata)/self.config['n_chans']/2

freqs=numpy.arange(self.config['n_chans'])*float(self.config['bandwidth'])/self.config['n_cha

ns'] #channel center freqs in Hz. #linspace(0,float(bandwidth),n_chans) returns incorrect

numbers

 window=numpy.hamming(self.config['n_chans']*2)

 spectrum=numpy.zeros(self.config['n_chans'])

 adc_data_v=get_adc_cnt_mv_scale_factor(atten_gain=atten)*adcdata/1000. #factors-in

atten_gain_map and fe_gain

 for acc in range(n_accs):

 spectrum +=

numpy.abs((numpy.fft.rfft(adc_data_v[self.config['n_chans']*2*acc:self.config['n_chans']*2*

(acc+1)]*window)[0:self.config['n_chans']])**2)

 #print

(numpy.fft.rfft(adc_data_dbm[n_chans*2*acc:n_chans*2*(acc+1)]*window)[0:n_chans])

 spectrum = 10*numpy.log10(spectrum/n_accs/self.config['n_chans']) #now in dBV

 spectrum -= 13.034

 if bandshape != None:

 spectrum -= bandshape

124

 if ant_factor != None:

 spectrum = dbm_to_dbuv(spectrum)

 spectrum += ant_factor

 return freqs,spectrum

 def get_calibrated_spectrum(data, desired_rf_gain):

 '''Returns a calibrated spectrum from a raw hardware spectral dump.

 Units are dBm unless an antenna is specified in which case units are dBuV/m.\n

 Performs bandpass correction, fft_scaling adjustment, overall gain compensation,

backs out number of accumulations, RF frontend gain etc.\n

 '''

 ant_factor = af_from_gain(self.config['freqs'], self.atten_gain_map)

 #SQRT?

 data_return=numpy.array(data)

 data_return /= float(self.config['n_accs'])

 data_return *= bitcnt(self.config['fft_shift'])

 #data_return /= self.chan_width

 data_return = 10*numpy.log10(data_return)

 data_return -= self.atten_gain_map[desired_rf_gain]

 data_return -= self.config['fe_gain']

 data_return -= 120. #overall system/algorithm gain

 if bandshape != None:

 data_return -= self.bandshape

 if ant_factor !=None:

 data_return = dbm_to_dbuv(data_return)

 data_return += ant_factor

 return data_return

 def cal_files(filename):

 import os

 return "%s%s"%(cal_file_path, filename)

125

A. 4 rfi_monitor.py

import ratty1

import rfDB

from multiprocessing import Process, Pipe, Queue, Lock, Event

from multiprocessing import Pool

import sys

import archive_rfi_spectra as arch

import rfi_event as rfie

import time

import os

import h5py

import numpy as np

import current_spectra as cs

numLoops = 10

def threadInsert (queue):

 db = rfDB.dbControl.dbControl("localhost", "root", "meerkat", "rfimonitor")

 current = cs.current_spectra()

 count = numLoops

 last_cnt = 0

 last_day = -1;

 data = queue.get()

 localtime = time.localtime(data[1])

 fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation

 path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1],

"%02i"%localtime[2],'') #Filepath year/month/day of the observation

 location = "%s%s"%(path,fileName)

 if not os.path.exists(path):

 os.makedirs(path)

 f = h5py.File(location, 'w')

 f.create_dataset('spectra', (3600, 14200),chunks = (4, 14200), dtype = type(data[0][0]),

compression='gzip', compression_opts=4)

 last_hour = localtime[3]

 last_timestamp = data[1]

 hourstart, hourend = rfDB.dbControl.get_hour(data[1])

 count = 0

 while True:

 if (last_hour != localtime[3]): #If new hour

 #Save file

 f.flush()

 f.close()

 #Event to synchronise archive and rfi detection

 archive_added_event = Event()

 #Archive last hour

 p3 = Process(target=threadArchive, args = (last_timestamp,archive_added_event))

 p3.start()

126

 #Detect RFI and archive

 p4 = Process(target=threadRFIDetection, args =

(last_timestamp,archive_added_event))

 p4.start()

 #Make sure at least 25% of harddrive is free

 db.maintain_space()

 #Create new file for next hour

 fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation

 path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1],

"%02i"%localtime[2],'') #Filepath year/month/day of the observation

 location = "%s%s"%(path,fileName)

 if not os.path.exists(path):

 os.makedirs(path)

 f = h5py.File(location, mode='w')

 f.create_dataset('spectra', (3600, 14200),chunks = (4, 14200), dtype =

type(data[0][0]), compression='gzip', compression_opts=4)

 #reset time keeping variables to current hour

 last_hour = localtime[3]

 last_timestamp = data[1]

 current.deleteOld(last_timestamp)

 # print "inserting to current"

 current.insertSpectrum(data[0],data[1])

 # print "inserting to rfimonitor"

 db.insertDump (data[0], data[1], data[3], 1, f)

 # print "Done Inserting'"

 data = queue.get()

 #print "Timestamp = %i"%data[1]

 localtime = time.localtime(data[1])

 db.closeDB()

 current.close()

 #f.close()

def threadArchive (timestamp, archive_added_event):

 print "In archive thread"

 timeT = time.time()

 rf_archive = arch.archive_rfi_spectra()

 #rf_archive.connect()

 print "Connected to DB, Start processing"

 rf_archive.archive_last_hour(timestamp, False)

 rf_archive.exit()

 archive_added_event.set()

 print "exiting rf archival, took %i seconds"%(time.time()-timeT)

def threadRFIDetection(timestamp, archive_added_event):

 print "In RFIDetection"

 timeT = time.time()

 num_events, len_events = rfie.rfi_detection(timestamp)

127

 print "Completed RFIDetection, took %i seconds"%(time.time() - timeT)

 archive_added_event.wait()

 time.sleep(6)

 print "entering insert to archive"

 rfie.insert_to_archive(timestamp, num_events, len_events)

 print "Added RFI data to archive"

def threadGetSpectrum (queue):

 rat = ratty1.cam.spec()

 rat.connect()

 rat.initialise()

 count = numLoops

 while True:

 spectrum, timestamp, last_cnt, stat = rat.getUnpackedData()

 queue.put((rat.cal.get_calibrated_spectrum(spectrum,

rat.rf_status_get()[1])[rat.cal.freq_to_chan(rat.cal.config['ignore_low_freq']):rat.cal.freq_to_c

han(rat.cal.config['ignore_high_freq'])], timestamp, last_cnt, stat))

 count -= 1

def run():

 print "start"

 queue = Queue()

 try:

 p = Process(target=threadGetSpectrum, args=(queue,))

 p2 = Process(target=threadInsert, args=(queue,))

 p.start()

 p2.start()

 print "p1 and p2 started"

 p.join()

 p2.join()

 except SystemExit, e:

 print "exiting"

 sys.exit(0)

if __name__ == "__main__":

 run()

128

dBControl.py

import MySQLdb as mdb

import sys

import h5py

import os

import time

import numpy

import math

import pickle

import datetime

def get_hour(timestamp):

 new_hour = [0,0,0,0,0,0,0,0,0]

 new_hour[0:4] = datetime.datetime.fromtimestamp(timestamp).timetuple()[0:4]

 start_timestamp = time.mktime(new_hour)

 end_timestamp = time.mktime((datetime.datetime.fromtimestamp(start_timestamp) +

datetime.timedelta(hours=1)).timetuple())

 end_timestamp = start_timestamp+3600 # 1 hour in the future

 return start_timestamp, end_timestamp

def array_to_csv_file (data,headings, file_name):

 import csv

 print headings

 print data[0:5]

 out = numpy.vstack ((headings, data))

 f = open(file_name, 'w+')

 writer = csv.writer(f, delimiter = ',')

 for row in out:

 writer.writerow(row)

 writer

 f.close()

129

A.5 dbControl.py

class dbControl:

 def test (self):

 print "In test"

 def __init__(self, host, userName, password, database):

 self.con = mdb.connect(host, userName, password, database)

 self.cur = self.con.cursor()

 self.cur.execute ("SET bulk_insert_buffer_size= 1024 * 1024 * 256")

 def closeDB (self):

 self.con.close()

 def get_hour(self, timestamp):

 new_hour = [0,0,0,0,0,0,0,0,0]

 new_hour[0:4] = datetime.datetime.fromtimestamp(timestamp).timetuple()[0:4]

 start_timestamp = time.mktime(new_hour)

 end_timestamp = time.mktime((datetime.datetime.fromtimestamp(start_timestamp) +

datetime.timedelta(hours=1)).timetuple())

 end_timestamp = start_timestamp+3600 # 1 hour in the future

 return start_timestamp, end_timestamp

 def getDumpAve (self, startTime = 0, endTime = time.time(), lowFrequency = 0,

highFrequency = 16384):

 """Returns the average power for each 1 hour dump"""

 data = self.cur.execute("SELECT spectrum.id, AVG(ave) FROM spectrum_averages

JOIN spectrum ON spectrum.id = dump_id WHERE startTime > %s AND endTime < %s

AND frequency_bin > %s AND frequency_bin < %s GROUP BY dump_id ORDER BY

dump_id",(startTime, endTime, lowFrequency, highFrequency))

 print self.cur.fetchall()

 def getFreqAve (self, startTime = 0, endTime = time.time(), lowFrequency = 0,

highFrequency = 16384):

 """Returns the average power for each frequency over all dumps in the db"""

 data = self.cur.execute("SELECT frequency_bin, AVG(ave) FROM spectrum_averages

JOIN spectrum ON spectrum.id = dump_id WHERE startTime > %s AND endTime < %s

AND frequency_bin > %s AND frequency_bin < %s GROUP BY frequency_bin ORDER

BY frequency_bin",(startTime, endTime, lowFrequency, highFrequency))

 print self.cur.fetchmany(20)

 def getFreqDumpAve (self, startTime = 0, endTime = time.time(), lowFrequency = 0,

highFrequency = 16384):

 data = self.cur.execute("SELECT spectrum.id, frequency_bin, AVG(ave) FROM

spectrum_averages JOIN spectrum ON spectrum.id = dump_id WHERE startTime > %s

AND endTime < %s AND frequency_bin > %s AND frequency_bin < %s GROUP BY

spectrum.id, frequency_bin ORDER BY spectrum.id, frequency_bin",(startTime, endTime,

lowFrequency, highFrequency))

130

 print self.cur.fetchmany(20)

 def insertDumpFromFile (self, fileName):

 rootFilePath = "/home/chris/dumps"

 f = h5py.File(fileName)

 data = {}

 for key in list(f):

 data[key] = list(f[key])

 attr = {}

 for key in list(f['/'].attrs):

 attr[key] = f['/'].attrs[key]

 self.insertDump(attr, data)

 def insertDumpSaveFile (self, attr, data):

 meta = self.calcMetaData(data)

 startTime = data['timestamp'][0]

 endTime = data['timestamp'][meta['n_accs'] - 1]

 localstart = time.localtime(startTime)

 path = os.path.join(self.rootFilePath, str(localstart[0]), "%02i"%localstart[1], '')

 fileName = "%02i_%02i_%02i.h5"%(localstart[2], localstart[3], localstart[4])

 self.cur.execute("INSERT INTO spectra (fileLocation, starttime, endtime, location,

direction, n_accs, n_adc_overrange, n_fft_overrange) VALUES (%s, %s, %s,

GeomFromText(\'POINT(%s %s)\'), GeomFromText(\'POINT(%s %s)\'), %s, %s,

%s)",("%s%s"%(path, fileName), startTime, endTime, 0, 0, 0, 0, meta['n_accs'],

meta['n_adc_overrange'], meta['n_fft_overrange']))

 dump_id = self.cur.lastrowid

 values = [(dump_id, f, meta['fAves'][f], meta['fMins'][f], meta['fMaxs'][f],

meta['fStdDevs'][f]) for f in range(attr['n_chans'])]

 self.cur.executemany("INSERT INTO frequency_metadata (dump_id, frequency_bin,

ave, min, max, stdDev) VALUES (%s, %s, %s, %s, %s, %s)",(values))

 values = [(dump_id, t, meta['tAves'][t], meta['tMins'][t], meta['tMaxs'][t],

meta['tStdDevs'][t]) for t in range(meta['n_accs'])]

 self.cur.executemany("INSERT INTO timestep_metadata (dump_id, time_step, ave,

min, max, stdDev) VALUES (%s, %s, %s, %s, %s, %s)",(values))

 if not os.path.exists(path):

 os.makedirs(path)

 #Create new file and save data to file

 f = h5py.File("%s%s"%(path, fileName), mode="w")

 ds = f.create_dataset('spectra', (len(data['spectra']), len(data['spectra'][0])), chunks = (4,

16384), dtype = type(data['spectra'][0][0]), compression ='gzip', compression_opts = 4)

131

 for key in data: #Put data in file

 if (key == 'spectra'):

 ds = f.create_dataset('spectra', (len(data['spectra']), len(data['spectra'][0])), chunks =

(4, 16384), dtype = type(data['spectra'][0][0]), compression ='gzip', compression_opts = 4)

 ds[:] = data['spectra']

 else:

 f[key] = data[key]

 for key in attr: #put attributes in file

 f['/'].attrs[key] = attr[key]

 f.flush()

 f.close()

 #Commit changes to database

 self.con.commit()

 def insertSystem(self, attr):

 values = (attr['n_chans'], attr['bitstream'], attr['bandwidth'], attr['fft_shift'],

attr['adc_type'],\

 attr['spectrum_bits'], attr['rf_gain'], 0, 0, 0.0)

 self.cur.execute("INSERT INTO system (n_chans, bitstream, bandwidth, fft_shift,

adc_type, spectrum_bits,\

 rf_gain, location, direction) VALUES (%s, %s, %s, %s, %s, %s, %s,

GeomFromText(\'POINT(%s %s)\'), %s)", values)

 system_id = self.cur.lastrowid

 self.con.commit()

 return system_id

 def insertDump (self, spectrum, timestamp, data, system_id, f):

 meta = self.calcMetaData(spectrum)

 #serialSpectrum = pickle.dumps(spectrum)

 localtime = time.localtime(timestamp)

 fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation in the

month

 path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1],

"%02i"%localtime[2],'') #Filepath is the year followed by the month year/month/

 location = "%s%s"%(path,fileName)

 # print "adc_overrange = %s for timestamp %s"%(str(data['adc_overrange']),

str(timestamp))

 values = (system_id, timestamp, location, meta['ave'], meta['min'], meta['max'], \

 meta['stdDev'], data['adc_overrange'], data['fft_overrange'], data['adc_level'],

data['ambient_temp'], data['adc_temp'])

132

 self.cur.execute("INSERT INTO spectra (system_id, timestamp, fileLocation,

ave_power_dBuVm, min, max, stdDev \

 , adc_overrange, fft_overrange, adc_level, ambient_temp, adc_temp) VALUES (%s,

%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)", values)

 index = localtime[4] * 60 + localtime[5]

 #print 'index = %i'%index

 f['spectra'][index] = spectrum

 ave_id = self.cur.lastrowid

 f.flush()

 self.con.commit()

 return ave_id

 def insertAves (self, system_id, startTime, aveOver, num_freqs):

 self.cur.execute ("SELECT AVG(ave_power_dBuVm), MIN(min), MAX(max),

SUM(adc_overrange), SUM(fft_overrange),\

 MIN(timestamp), MAX(timestamp) FROM spectra WHERE timestamp >= %s AND

timestamp < %s", (startTime, startTime + aveOver))

 result = self.cur.fetchone()

 self.cur.execute ("SELECT stdDev FROM spectra WHERE timestamp >= %s AND

timestamp < %s", (startTime, startTime + aveOver))

 stdDevs = self.cur.fetchall()

 stdDev = 0.0

 for val in stdDevs:

 stdDev = stdDev + val[0] ** 2 * num_freqs

 stdDev /= (aveOver * num_freqs)

 values = (system_id, result[5], result[6], result[0], result[1], result[2], stdDev, result[3],

result[4])

 self.cur.execute("INSERT INTO test_ave_metadata (system_id, startTime, endTime,

ave_power_dBuVm, min, \

 max, stdDev, n_adc_overrange, n_fft_overrange) VALUES (%s, %s, %s, %s, %s,

%s, %s, %s, %s)", values)

 spec_ave_id = self.cur.lastrowid

 self.cur.execute("SELECT spectrum FROM spectra WHERE timestamp >= %s AND

timestamp < %s", (startTime, startTime + aveOver))

 spec = self.cur.fetchall()

 self.cur.execute("SELECT adc_overrange, fft_overrange FROM spectra WHERE

timestamp >= %s AND timestamp < %s", (startTime, startTime + aveOver))

 overrange = self.cur.fetchall()

 data = []

 for bin in spec:

 data.append (pickle.loads(bin[0]))

133

 values = (self.calcFreqMeta(data, overrange, system_id, spec_ave_id))

 self.cur.executemany("INSERT INTO test_frequency_ave_metadata (system_id, ave_id,

frequency, ave, min, \

 max, stdDev, spectral_occupency_3sigma, spectral_occupency_6sigma) VALUES

(%s, %s, %s, %s, %s, %s, %s, %s, %s)", values)

 self.con.commit()

 def calcFreqMeta(self, data, overrange, system_id, spec_ave_id):

 ret=[]

 for j in range(len(data[0])): #for each frequency channel

 freq = []

 ave = 0.0

 mini = data[0][j]

 maxi = data[0][j]

 stdDev = 0.0

 overrangecount = 0

 for i in range (len(data)): #Calculate median, max and min for each frequency

channel

 if(not overrange[i][0] and not overrange[i][1]): #only if the overrange bits are

not true

 ave = ave + data[i][j]

 if mini > data[i][j]:

 mini = data[i][j]

 if maxi < data[i][j]:

 maxi = data[i][j]

 else:

 overrangecount = overrangecount + 1 #If the overrange bit was set, record this

 ave /= len(data) - overrangecount

 for i in range (len(data)): #calculate the standard deviation

 if(not overrange[i][0] and not overrange[i][1]):

 stdDev += (ave - data[i][j])**2

 stdDev = (stdDev / (len(data)-overrangecount))**0.5

 #calculate the spectral occupency

 sigma3 = ave + 3 * stdDev

 sigma6 = ave + 6 * stdDev

 sigma3Count = 0

 sigma6Count = 0

 for i in range (len(data)): #for each time step

 if(not overrange[i][0] and not overrange[i][1]):

 if (data[i][j] > sigma6):

 sigma3Count+=1

 sigma6Count+=1

 elif (data[i][j] > sigma3):

 sigma3Count+=1

134

 sigma3Occ = sigma3Count / (len(data) - overrangecount)

 sigma6Occ = sigma6Count / (len(data) - overrangecount)

 freq.append(system_id)

 freq.append(spec_ave_id)

 freq.append(j * 0.054931640625)

 freq.append(ave)

 freq.append(mini)

 freq.append(maxi)

 freq.append(stdDev)

 freq.append(sigma3Occ)

 freq.append(sigma6Occ)

 ret.append(freq)

 return ret

 def calcMetaData(self, data):

 ret = {}

 ave = 0.0

 mini = data[0]

 maxi = data[0]

 stdDev = 0.0

 length = len(data)

 for val in data:

 ave += val

 if mini > val:

 mini = val

 if maxi < val:

 maxi = val

 ave /= length

 for val in data:

 stdDev += (ave - val)**2

 stdDev = (stdDev / length)**0.5

 ret['ave'] = ave

 ret['min'] = mini

 ret['max'] = maxi

 ret['stdDev'] = stdDev

 return ret

 def getCurrentSpectrum(self):

 self.cur.execute("SELECT MAX(id) FROM spectra")

 result = self.cur.fetchone()[0]

 return self.getSpectrum(result)

135

 def getAllSpectraToCSV(self, fileName):

 import csv

 self.cur.execute("SELECT spectrum, timestamp from spectra")

 result = self.cur.fetchone()

 headings = [str(50 + i * 0.054931640625) + "Mhz" for i in range (16384)]

 headings.insert(0,"Timestamp")

 writer = csv.writer(open(fileName, 'wb'))

 writer.writerow(headings)

 while result is not None:

 t = time.localtime(result[1])

 spec = pickle.loads(result[0])

 data = ['%02i:%02i:%02i on %02i/%02i/%04i'%(t[3], t[4], t[5], t[2], t[1], t[0])]

 data.extend(spec)

 writer.writerow(data)

 result = self.cur.fetchone()

 def calcAveMetaData(self, data):

 """Calculate the means, mins, maxs and standard deviations of each row and column of

data."""

 ret = {}

 aves = []

 mins = []

 maxs = []

 stdDevs = []

 n_adc_overrange = 0;

 n_fft_overrange = 0;

 ignoreLast = True

 xLen = len(data['spectra'])

 yLen = len(data['spectra'][0])

 #Check if last row contains actual data

 for i in range (yLen):

 if (data['spectra'][xLen - 1][i] != 0.0):

 ignoreLast = False

 if (ignoreLast):

 xLen -= 1

 #calculate along x axis

 for t in range (xLen):

 if (not data['adc_shutdown'][t]):

 mini = data['spectra'][t][0]

 maxi = mini

 ave = 0.0

 for f in range (yLen):

136

 ave += data['spectra'][t][f]

 if (data['spectra'][t][f] < mini):

 mini = data['spectra'][t][f]

 if (data['spectra'][t][f] > maxi):

 maxi = data['spectra'][t][f]

 ave /= yLen

 aves.append(ave)

 mins.append(mini)

 maxs.append(maxi)

 else:

 if (data['adc_overrange'][t]):

 n_adc_overrange += 1

 if (data['fft_overrange'][t]):

 n_fft_overrange += 1

 for t in range (xLen):

 if (not data['adc_shutdown'][t]):

 stdDev = 0.0

 for f in range (yLen):

 stdDev += (aves[t] - data['spectra'][t][f]) ** 2

 stdDev = math.sqrt(stdDev / yLen)

 stdDevs.append(stdDev)

 ret['tAves'] = aves

 ret['tMins'] = mins

 ret['tMaxs'] = maxs

 ret['tStdDevs'] = stdDevs

 aves = []

 mins = []

 maxs = []

 stdDevs = []

 #calculate along y axis

 for f in range (yLen):

 mini = data['spectra'][0][f]

 maxi = mini

 ave = 0.0

 for t in range (xLen):

 if (not data['adc_shutdown'][t]):

 ave += data['spectra'][t][f]

 if (data['spectra'][t][f] < mini):

 mini = data['spectra'][t][f]

 if (data['spectra'][t][f] > maxi):

 maxi = data['spectra'][t][f]

 ave /= (yLen - n_adc_overrange - n_fft_overrange)

 aves.append(ave)

 mins.append(mini)

 maxs.append(maxi)

 for f in range (yLen):

 stdDev = 0.0

137

 for t in range (xLen):

 if (not data['adc_shutdown'][t]):

 stdDev += (aves[t] - data['spectra'][t][f]) ** 2

 stdDev = math.sqrt(stdDev / yLen)

 stdDevs.append(stdDev)

 ret['fAves'] = aves

 ret['fMins'] = mins

 ret['fMaxs'] = maxs

 ret['fStdDevs'] = stdDevs

 ret['n_adc_overrange'] = n_adc_overrange

 ret['n_fft_overrange'] = n_fft_overrange

 ret['n_accs'] = xLen

 return ret

 def get_std_dev(self, startTime, channel):

 self.cur.execute("SELECT datum.value from datum inner join spectra on

datum.spectra_id = spectra.id where timestamp = %s and type = %s and element_id = %s",

(startTime, 'std', channel))

 result = self.cur.fetchone()[0]

 return result

 def get_archive (self, startTime, endTime, type):

 self.cur.execute("SELECT datum.value from datum inner join spectra on

datum.spectra_id = spectra.id where timestamp >= %s and timestamp < %s and type = %s",

(startTime, endTime, type))

 result = numpy.reshape(numpy.array(self.cur.fetchall()), (14200))

 return result

 def rfi_archive_get_period (self, startTime, endTime, type, frequency):

 import ratty1

 rat = ratty1.cam.spec()

 channel = rat.cal.freq_to_chan(frequency)

 self.cur.execute ("SELECT id FROM element WHERE channel = %s", (channel))

 elId = self.cur.fetchone()[0]

 print "elID"

 print elId

 self.cur.execute ("SELECT id FROM spectra WHERE timestamp >= %s and timestamp

<= %s", (startTime, endTime))

 spectraIDs = numpy.array(self.cur.fetchall())[:,0]

 maxID = numpy.max(spectraIDs)

 minID = numpy.min(spectraIDs)

 print minID

 print maxID

 self.cur.execute ("SELECT datum.value FROM datum FORCE INDEX (spectra_id)

WHERE datum.element_id = %s AND spectra_id >= %s AND spectra_id <= %s AND type

= %s",

138

 (elId, minID, maxID, type))

 result = numpy.array(self.cur.fetchall())

 return result

 def frequency_to_channel(self, frequency):

 import ratty1

 rat = ratty1.cam.spec()

 print "converting %fMHz and %f MHz to channel %i and %i"%(frequency *

1000000, rat.cal.config['ignore_low_freq'], rat.cal.freq_to_chan(frequency),

rat.cal.freq_to_chan(rat.cal.config['ignore_low_freq']))

 return rat.cal.freq_to_chan(frequency * 1000000) -

rat.cal.freq_to_chan(rat.cal.config['ignore_low_freq'])

 #enter unix timestamps for startTime and endTime, enter a particular channel number if

you would like only 1 channel, enter a tuple channelRange = (lowchannel, highchannel)

 #if you would like a range of channels

 def rfi_monitor_get_range(self, startTime, endTime, channel = -1, channelRange =

(0,14200)):

 self.cur.execute ("SELECT DISTINCT fileLocation FROM spectra WHERE timestamp

>= %s AND timestamp < %s", (startTime, endTime))

 res = self.cur.fetchall()

 startTuple = datetime.datetime.fromtimestamp(startTime)

 endTuple = datetime.datetime.fromtimestamp(endTime)

 print startTuple

 print endTuple

 now = datetime.datetime.now()

 lastHour = datetime.datetime(now.year,now.month,now.day,now.hour)

 nHours = None

 nHours = (endTuple.day - startTuple.day) * 24 + endTuple.hour - startTuple.hour

 print "startTuple"

 print startTuple

 files = [False for i in range (nHours)]

 fileName = "%02i.h5"%(startTuple.hour) #Filename is the hour of the observation

 path = os.path.join('/home/chris/rfi_data', str(startTuple.year),

"%02i"%startTuple.month, "%02i"%startTuple.day,'') #Filepath year/month/day of the

observation

 location = "%s%s"%(path,fileName)

 ret = None

 nSecs = startTuple.minute*60 + startTuple.second

139

 nSpectra = (nHours) * 3600 - nSecs + endTuple.minute*60 + endTuple.second

 if (channel != -1): #only want one channel

 ret = numpy.zeros((nSpectra,), dtype=numpy.float64)

 else:

 ret = numpy.zeros((nSpectra,channelRange[1] - channelRange[0]),

dtype=numpy.float64)

 if os.path.isfile(location):

 files[0] = True

 try:

 f = h5py.File(location, 'r')

 print f['spectra'].shape

 if (channel != -1):

 ret[0:3600 - nSecs] = f['spectra'][nSecs:3600,channel]

 else:

 ret[0:3600 - nSecs] = f['spectra'][nSecs:3600,channelRange[0]:channelRange[1]]

 nSecs = 3600 - nSecs

 except IOError as e:

 print e

 currentTime = startTuple + datetime.timedelta(hours=1)

 current = 0

 print "endtuple = %s, lastHour = %s"%(str(endTuple),str(lastHour))

 print "endTuple > lastHour?"

 print (endTuple > lastHour)

 if endTuple > lastHour:

 current = 1

 for i in range(nHours - 1):

 fileName = "%02i.h5"%(currentTime.hour) #Filename is the hour of the observation

 path = os.path.join('/home/chris/rfi_data', str(currentTime.year),

"%02i"%currentTime.month, "%02i"%currentTime.day,'') #Filepath year/month/day of the

observation

 location = "%s%s"%(path,fileName)

 print location

 print nSecs

 try:

 f = h5py.File(location, 'r')

 if (channel != -1):

 print "f['spectra'].shape"

 print f['spectra'].shape

 ret[nSecs:nSecs + 3600] = f['spectra'][:,channel]

 else:

 ret[nSecs:nSecs + 3600] = f['spectra'][:,channelRange[0]:channelRange[1]]

 nSecs += 3600

 except IOError as e:

140

 print e

 print location

 nSecs += 3600

 currentTime = currentTime + datetime.timedelta(hours=1)

 print "nSPectra = %s"%nSpectra

 print "nSecs = %s"%nSecs

 if current == 1:

 print "IN current"

 import rfDB.current_spectra as current_spectra

 curr = current_spectra.current_spectra();

 print ("Getting %i mintues and %i seconds = %i seconds"%(endTuple.minute,

endTuple.second, endTuple.minute * endTuple.second))

 spectra, times = curr.getRange(endTuple.minute * 60 + endTuple.second)

 print spectra.shape

 if (channel != -1):

 ret[nSecs - 1:] = spectra[:,channel]

 else:

 ret[nSecs:] = spectra[:]

 nSecs += spectra.size

 curr.close()

 #Interpolate zeroes

 z = numpy.where(ret==0.0)[0]

 nz = numpy.where (ret!=0.0)[0]

 ret[ret==0.0]=numpy.interp(z,nz,ret[nz])

 z = numpy.where(ret > (100))[0]

 nz = numpy.where(ret < (100))[0]

 print z[0:5]

 print nz[0:5]

 ret[ret > 10 ** 20]=numpy.interp(z,nz,ret[nz])

 print "check"

 print "nSPectra = %s"%nSpectra

 print "nSecs = %s"%nSecs

 print ret.shape

 print "max = %f"%numpy.max(ret)

 return ret

 def replace_overrange_with_int (self, data, over_pos, rep_int):

 ret = numpy.array(data)

 ret[over_pos] = rep_int

 return ret

141

 def get_last_ave_timestamp(self):

 self.cur.execute("SELECT MAX(timestamp) from spectra")

 result = self.cur.fetchone()

 return result[0]

 def get_ave_archive (self, type):

 self.cur.execute("SELECT element.frequency, AVG(datum.value) FROM datum

INNER JOIN element ON datum.element_id = element.id WHERE type = %s GROUP BY

element.frequency ", (type))

 result = numpy.array(self.cur.fetchall()[:])[:,1]

 print result.shape

 return result

 def archive_get_val_at_time(self, time, typ):

 print "IN THE METHOD"

 starttime = self.get_last_ave_timestamp()

 print starttime

 self.cur.execute("SELECT id FROM spectra WHERE timestamp = %s",(starttime))

 result = self.cur.fetchone()

 self.cur.execute("SELECT datum.value, element.frequency FROM datum, element

WHERE spectra_id = %s AND type = %s AND element.id = datum.element_id GROUP BY

element.channel", (result[0], typ))

 result = numpy.array(self.cur.fetchall())

 result[:,1] = result[:,1]/1000000

 result[:,1] = numpy.around(result[:,1], decimals = 2)

 return result

 def archive_get_frequency_list(self):

 import ratty1

 rat = ratty1.cam.spec()

 low_frequency = rat.cal.config['ignore_low_freq']

 high_frequency = rat.cal.config['ignore_high_freq']

 print low_frequency

 print high_frequency

 self.cur.execute ("SELECT element.frequency FROM element WHERE

element.frequency > %s AND element.frequency < %s",(low_frequency, high_frequency))

 result = numpy.array(self.cur.fetchall(), dtype=numpy.float32)

 result[:,0] = result[:,0]/1000000

 result[:,0] = numpy.around(result[:,0], decimals = 2)

 return result [:,0]

 def rfimonitor_get_adc_overrange(self, starttime, endtime):

 self.cur.execute("SELECT timestamp FROM spectra WHERE timestamp >= %s AND

timestamp < %s AND adc_overrange = 1",(starttime, endtime))

 result = self.cur.fetchall()

 return result

 def rfimonitor_get_fft_overrange(self, starttime, endtime):

 self.cur.execute("SELECT timestamp FROM spectra WHERE timestamp >= %s AND

timestamp < %s AND fft_overrange = 1",(starttime, endtime))

142

 result = self.cur.fetchall()

 print "FFT OVERRANGES"

 print len(result)

 return result

 def rfi_monitor_get_adc_overrange_pos (self, starttime, endtime):

 self.cur.execute("SELECT timestamp FROM spectra WHERE timestamp >= %s AND

timestamp < %s AND adc_overrange = 1",(starttime, endtime))

 result = self.cur.fetchall()

 ret = [int(t[0] - starttime) for t in result]

 return ret

 def rfi_monitor_get_oldest_timestamp(self):

 self.cur.execute("SELECT min(timestamp) FROM spectra")

 result=self.cur.fetchone()

 return result[0]

 #--

 def toCompressed (self):

 self.cur.execute ("SELECT MIN(id) from spectra")

 result = self.cur.fetchone()

 mini = result[0];

 print "min = %i"%mini

 last = mini + 800000;

 for i in range(mini + 4000, last, 4000):

 self.cur.execute("INSERT spectraCompressed SELECT * FROM spectra WHERE id

< %s", i)

 self.cur.execute("DELETE FROM spectra WHERE id < %s", i)

 self.con.commit()

 print "deleted up to %i"%i

 def testAves(self, startTime, aveOver):

 self.cur.execute ("SELECT spectrum from spectra where timestamp >= %s and

timestamp < %s", (startTime, startTime + aveOver));

 result = self.cur.fetchall()

 ave = pickle.loads(result[0][0])

 spectrum = pickle.loads(result[0][0])

 print ave[67]

 for i in range(1,len(result)):

 spectrum = pickle.loads(result[i][0])

 for j in range(len(spectrum)):

 if (j == 67):

 print "ave%i = %f + %f = %f"%(i, ave[j], spectrum[j], ave[j] + spectrum[j])

 ave[j] = ave[j] + spectrum[j]

143

 for j in range(len(spectrum)):

 if j == 67:

 print "ave%i = %f / %i"%(j, ave[j], len(result))

 ave[j] = ave[j] / len(result)

 print "equals %f"%ave[67]

 spectrum = ave

 self.cur.execute("SELECT max(ave_id) from test_frequency_ave_metadata")

 lastave = self.cur.fetchone()[0]

 print "lastave is %i"%lastave

 self.cur.execute("SELECT ave from test_frequency_ave_metadata where ave_id = %s

ORDER BY frequency", lastave)

 result = self.cur.fetchall();

 good = True;

 print "not equal %f"%result[67][0]

 print (len(spectrum))

 print (len(result))

 print (len(result[0]))

 for i in range (len(spectrum)):

 if float(ave[i]) != float(result[i][0]):

 good = False;

 #print "spectrum%i is %f, ave%i is %f"%(i,float(ave[i]),i, float(result[i][0]))

 print good

 """Delete all spectra in rfimonitor db with timestamp <= timestamp"""

 def delete_spectra (self, timestamp):

 self.cur.execute("SELECT timestamp FROM rfimonitor.spectra WHERE timestamp <=

%s ORDER BY timestamp",timestamp)

 res = self.cur.fetchall()

 location = "nothing"

 # print res[0:20]

 times = self.remove_duplicates(res)

 # print times

 for t in times:

 try:

 localtime = time.localtime(t)

 fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation in

the month

 path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1],

"%02i"%localtime[2],'') #Filepath is the year followed by the month year/month/

 location = "%s%s"%(path,fileName)

 #d = datetime.datetime()

144

 # print "timestamp = %i"%t

 remove =

time.mktime((localtime[0],localtime[1],localtime[2],localtime[3]+1,0,0,0,0,0))

 # print "remove = %i"%remove

 # print "diff = %i"%(remove - t)

 self.cur.execute("DELETE FROM rfimonitor.spectra where timestamp < %s",

remove)

 os.remove(location)

 print "deleted %s"%location

 if localtime[3] == 0:

 os.rmdir(path)

 if localtime[2] == 0:

 os.rmdir(os.path.join('/home/chris/rfi_data', str(localtime[0]),

"%02i"%localtime[1],""))

 except OSError:

 print "couldn't delete file %s"%location

 pass

 self.con.commit()

 def getSpectrum(self, timestamp):

 spectra = numpy.zeros(shape=(14200))

 try:

 localtime = time.localtime(timestamp)

 fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation in the

month

 path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1],

"%02i"%localtime[2],'') #Filepath is the year followed by the month year/month/

 location = "%s%s"%(path,fileName)

 hour_start =

time.mktime((localtime[0],localtime[1],localtime[2],localtime[3],0,0,0,0,0))

 f = h5py.File(location, mode='r')

 spectra = f['spectra'][timestamp - hour_start]

 except OSError:

 print "couldn't open file %s"%location

 pass

 return spectra

 def remove_duplicates(self, timestamps):

 ret = [timestamps[0][0]]

 for t in timestamps:

 if t[0] - ret[-1] >= 3600:

 ret.append(t[0])

 return ret

 def maintain_space(self):

 while self.check_space() < 0.05:

 print "Freeing space"

 self.cur.execute("select min(timestamp) from spectra")

 res = self.cur.fetchone()

145

 self.delete_spectra(res[0])

 def check_space (self):

 """Return percent of the harddrive is free"""

 s = os.statvfs("/")

 space = float(s.f_bavail)/s.f_blocks

 print "%f of harddrive free"

 return float(s.f_bavail)/s.f_blocks

A.6 rfi_event.py

import numpy as np

import time

from PIL import Image

import mahotas

import pickle

import MySQLdb

import archive_conf as cnf

import h5py

def threshold (data, devs, means, startTime):

 sT = time.time()

 lx = len(data)

 ly = len(data[0])

 rfi_mask = np.array([[False for i in range(ly)] for j in range(lx)])

 rfi_events = [{} for i in range(ly)]

 rfi_stats = [{'n_rfi_detections':0,'startTimes':[], 'endTimes':[]} for i in range(ly)]

 rfi_start = []

 rfi_end = []

 rfi_chan = []

 temp = 0;

 temp2 = 0;

 print "data"

 print data

 for t in range(1,lx):

 tS = time.time()

 #rfi_stats[i]['n_rfi_detections'] = 0

 #rfi_stats[i]['startTimes'] = [0]

 #rfi_stats[i]['duration'] = [0]

 for c in range (ly):

 if (data[t][c] > (means[c][0] + 3 * devs[c][0])):

 rfi_stats[c]['n_rfi_detections'] += 1

 if (not rfi_mask[t-1][c]):

146

 rfi_stats[c]['startTimes'].append(startTime + t)

 rfi_chan.append(c)

 rfi_mask[t][c] = True;

 elif (rfi_mask[t-1][c]):

 rfi_stats[c]['endTimes'].append(startTime + t)

 rfi_start.append(rfi_stats[c]['startTimes'])

 rfi_end.append(rfi_stats[c]['endTimes'])

 im = Image.new("1", (len(rfi_mask),len(rfi_mask[0])), 1)

 print ("img height = %i\nimg width = %i"%(len(rfi_mask), len(rfi_mask[0])))

 print ("length of bitmask = %i"%len(rfi_mask.flatten()))

 im.putdata(rfi_mask.flatten())

 im.save("/home/chris/rfi_monitor/database/src/RFI_mask.gif")

 tS = time.time()

 events = extractEvents(rfi_mask, data, startTime, "threshold_")

 print "event extraction took %i seconds"%(time.time() - tS)

 for key in events[0].keys():

 print "%s = "%key + str(events[0][key])

 print "%i events extracted"%len(events)

 tS = time.time()

 stats = []

 for i in range(len(events)):

 stats.append (calc_statistics(events[i]))

 print "event stats took %i seconds"%(time.time() - tS)

 print "timestamp = %i"%startTime

 print "stats[0] :"

 print stats[0]

 eT = time.time()

 print "Took %i seconds"%(eT - sT)

 return rfi_stats

def extractEvents (mask, data, startTime, file):

 structuring = np.array([[1,1,1],[1,1,1],[1,1,1]]) #Connectivity structure

 timet = time.time()

 labeled, nr = mahotas.label(mask, Bc = structuring)

 print "labeling took %i"%(time.time() - timet)

mahotas.imsave("/home/chris/Dropbox/rfi_monitor/database/src/testIm/%smask.tif"%file,ma

sk)

147

mahotas.imsave("/home/chris/Dropbox/rfi_monitor/database/src/testIm/%slabeled.tif"%file,l

abeled)

 events = [{} for i in range (nr)]

 for i in range (nr):

 indices = np.where(labeled == (i+1))

 minT = indices[0].min()

 maxT = indices[0].max() + 1

 minC = indices[1].min()

 maxC = indices[1].max() + 1

 events[i]['startTime'] = startTime + minT

 events[i]['endTime'] = startTime + maxT

 events[i]['lowChannel'] = minC

 events[i]['highChannel'] = maxC

 events[i]['data'] = data[minT:maxT,minC:maxC]

 events[i]['mask'] = mask[minT:maxT,minC:maxC]

 print "number of events = %i"%nr

 return events

def insert_event (rfi_event):

 db_connect = MySQLdb.connect(host=cnf.host, port=cnf.port, user=cnf.user,

passwd=cnf.passwd, db="rfi_event_archive")

 c_rfi = db_connect.cursor()

 c_rfi.execute("INSERT INTO rfi_event (system_id, startTime, endTime, low_chan,

high_chan, spectra, mask) \

 VALUES (%s,%s,%s,%s,%s,%s,%s)", (1, rfi_event['startTime'],

rfi_event['endTime'], rfi_event["lowChannel"], rfi_event["highChannel"], \

 pickle.dumps(rfi_event["data"]), pickle.dumps(rfi_event["mask"])))

 db_connect.commit()

 c_rfi.close()

def insert_to_archive(timestamp, num_events, len_events):

 import datetime

 db_connect = MySQLdb.connect(host=cnf.host, port=cnf.port, user=cnf.user,

passwd=cnf.passwd, db="rfi_archive")

 c_rfi = db_connect.cursor()

 print "timestamp = "

 print timestamp

 new_hour = [0,0,0,0,0,0,0,0,0]

 new_hour[0:4] = datetime.datetime.fromtimestamp(timestamp).timetuple()[0:4]

 timestamp = time.mktime(new_hour)

148

 c_rfi.execute('SELECT id FROM rfi_archive.spectra WHERE system_id=%d AND

timestamp=%d' % (1, timestamp))

 spectra_id = c_rfi.fetchone()[0]

 print "result = "

 print spectra_id

 c_rfi.execute('SELECT n_chans,bandwidth FROM rfi_archive.system WHERE id=%d;'

% (1))

 [n_chans, bandwidth_hz] = c_rfi.fetchone()

 # Only process the calibrated data between the lower and upper frequency limits

 low_channel = cnf.freq2chan(cnf.IGNORE_LOW_FREQ, bandwidth_hz, n_chans)

 high_channel = cnf.freq2chan(cnf.IGNORE_HIGH_FREQ, bandwidth_hz, n_chans)

 print "low_channel = %i high_channel = %i"%(low_channel, high_channel)

 c_rfi.execute('SELECT id FROM rfi_archive.element WHERE channel >= %s AND

channel < %s ORDER BY channel',(low_channel,high_channel))

 element_ids = c_rfi.fetchall()

 print len(element_ids)

 print len(num_events)

 print len (len_events)

 insert_num_events = [(num_events[i], spectra_id, element_ids[i][0],'num_events') for i in

range (len(element_ids))]

 insert_len_events = [(len_events[i], spectra_id, element_ids[i][0],'num_events') for i in

range (len(element_ids))]

 c_rfi.executemany('INSERT INTO rfi_archive.datum(value,spectra_id,element_id,type)

VALUES (%s,%s,%s,%s)',insert_num_events)

 c_rfi.executemany('INSERT INTO rfi_archive.datum(value,spectra_id,element_id,type)

VALUES (%s,%s,%s,%s)',insert_len_events)

 db_connect.commit()

 c_rfi.close()

def getEvents(data, mask, startTime):

 num_events, len_events = mahotas_check(mask)

 structuring = np.array([[1,1,1],[1,1,1],[1,1,1]]) #Connectivity structure

 label, n_events = mahotas.label(mask, Bc = structuring)

 print "n_events = %s"%n_events

 indices = np.nonzero(label)

 rfi_groups = label[indices]

 index = np.argsort(rfi_groups)

 sorted_groups = rfi_groups[index]

 sorted_index = np.searchsorted(sorted_groups, np.arange(1,n_events+1))

 rfi_event_indices = []

 rfi_event_indices.append(np.split(indices[0][index], sorted_index))

 rfi_event_indices.append(np.split(indices[1][index], sorted_index))

149

 events = np.empty(n_events,

dtype={'names':['startTime','endTime','lowChannel','highChannel','data','mask'],\

 'formats':['i4','i4','i4','i4', 'object', 'object']})

 # print"rfi_event_indices"

 # print rfi_event_indices

 for i in range(n_events):

 # print "i = %i"%i

 # print rfi_event_indices[0][i]

 events[i]['startTime'] = startTime + np.min(rfi_event_indices[0][i+1])

 events[i]['endTime'] = startTime + np.max(rfi_event_indices[0][i+1]) + 1

 events[i]['lowChannel'] = np.min(rfi_event_indices[1][i+1])

 events[i]['highChannel'] = np.max(rfi_event_indices[1][i+1]) + 1

 # print "data[%i:%i,%i:%i]"%(events[i]['startTime']-startTime,events[i]['endTime']-

startTime,events[i]['lowChannel'],events[i]['highChannel'])

 # print "type(numpy.asscalar(events[i]['startTime'])) = "

 # print numpy.asscalar(events[i]['startTime'])

 sT = int(np.asscalar(events[i]['startTime']-startTime))

 eT = int(np.asscalar(events[i]['endTime']-startTime))

 lC = int(np.asscalar(events[i]['lowChannel']))

 hC = int(np.asscalar(events[i]['highChannel']))

 # print data[events[i]['startTime']-startTime:events[i]['endTime']-

startTime,events[i]['lowChannel']:events[i]['highChannel']]

 events[i]['data'] = data[sT:eT,lC:hC]

 events[i]['mask'] = mask[sT:eT,lC:hC]

 return events, num_events, len_events

 index_array = [np.arange(sorted_index[i], sorted_index[i+1]) for i in

np.arange(len(sorted_index)-1)]

 event_indices = np.array([(indices[0][index][index_array[i]],

indices[1][index][index_array[i]]) for i in np.arange(len(index_array))])

 events =

[data[np.min(event_indices[i][0]):np.max(event_indices[i][0])+1,np.min(event_indices[i][1]):

np.max(event_indices[i][1])+1] for i in np.arange(len(event_indices))]

def get_rfi(data,sigma=4):

 """ Get the rfi for the middle of the window

 Data is assumed to be a 2D array

 and sigma is the standard deviation that is used"""

 mid = data.shape[0]//2+1 # mid point of window

 med = np.median(data[:,:])

 # print "med = "

 # print med

 mad = np.median(np.abs(data[:] - med),axis=0)

150

 # print "mad = "

 # print mad

 mad_limit = sigma/1.4826 # see relation to standard deviation

 return (data[mid] > mad_limit*mad + med) + (data[mid] < -mad_limit*mad + med)

def median_filter (data, window=10, sigma = 4):

 rfi = np.zeros(data.shape)

 for t in range(window,data.shape[0]-window) : rfi[t,:] = get_rfi(data[t-

window:t+window+1])

 return rfi

def count_rfi_events (mask):

 diff = numpy.diff(mask, axis = 0)

 count = numpy.sum (diff, axis = 0)

 n_events = numpy.floor((count+1)/2)

 print "len(n_events) = %i"%len(n_events)

 check = numpy.where(n_events==0)

 n_events[check] = numpy.logical_or(n_events[check],mask[:,check][0])

 return n_events

def mahotas_check(mask):

 structure = np.array([1,1,1])

 num_events = np.zeros(len(mask[0]))

 len_events = np.zeros(len(mask[0]))

 for i in range(len(mask[0])):

 label, num_events[i] = mahotas.label(mask[:,i], Bc=structure)

 len_events[i] = np.count_nonzero(label)

 return num_events, len_events

def equalarr (arr1, arr2):

 for i in range(len(arr1)):

 if (arr1[i] != arr2[i]):

 print "arr1[%i] = %f != %f = arr2[%i]"%(i,arr1[i],arr2[i],i)

def calc_statistics (rfi_event, stats):

 func_list = ['min', 'max', 'median', 'mean', 'std']

 masked = np.ma.array(rfi_event['data'], mask = np.logical_not(rfi_event['mask']))

 for func in func_list:

 stats[func] = getattr(np, func)(masked, axis=0)

 #one_perc = int(numpy.round(len(masked)/100))

def rfi_detection (timestamp, window = 10):

 t = time.localtime(timestamp)

 filestr1 = "/home/chris/rfi_data/%i/%02i/%02i/%02i.h5"%(t[0],t[1],t[2],t[3] - 1)

 filestr2 = "/home/chris/rfi_data/%i/%02i/%02i/%02i.h5"%(t[0],t[1],t[2],t[3])

151

 print "filestr1 = %s"%filestr1

 print "filestr2 = %s"%filestr2

 file1 = h5py.File(filestr1, 'r')

 file2 = h5py.File(filestr2, 'r')

 print file1

 print file1.items()

 data1 = file1['spectra']

 data2 = file2['spectra']

 data = np.concatenate((data1[(-window*2): -1],data2), axis=0)

 print "len(data1) = %i, len(data2) = %i, len(data) = %i"%(len(data1), len(data2),

len(data))

 mask = median_filter(data, window = window)

 events, num_events, len_events = getEvents(data, mask, timestamp - 2*window)

 # stats = np.empty(len(events), dtype={'names':['min', 'max', 'median', 'mean', 'std'],\

 # 'formats':['f8','f8','f8','f8','f8']})

 for i in range (len(events)):

 # calc_statistics(events[i], stats[i])

 insert_event(events[i])

 file1.close()

 file2.close()

 return num_events, len_events

152

Appendix B: RFI measurements

 Table of frequencies and settings for mode 2 measurements required by SKA

Frequency Band
MHz

RBW
kHz

ms

Time
s

Radio Astronomy Usage

150-153 1 100 300 Continuum

153-322 3 10 564

322-329 3 1000 2334 Deuterium (DI)

329-406 30 10 26

406-410 30 10000 1334 Continuum

410-608 30 10 66

608-614 30 10000 2000 Continuum

614-1000 30 10 129

1000-1370 30 300 3700 Continuum

1370-1427 30 1000 1900 Hydrogen (HI), SETI

1427-1606 30 100 597 SETI

1606-1723 30 1000 3900 Hydroxyl (OH), SETI

1723-2655 30 10 311

2655-2700 100 1000 450 Continuum

2700-3300 100 10 60

3300-3400 100 1000 1000 Methyladyne (CH)

3400-4800 100 10 140

4800-5000 100 1000 2000 Formaldehyde (H2CO)

5000-6600 300 10 54

6600-6700 300 1000 334 Methanol (CH3OH)

6700-8600 300 10 64

8600-8700 300 1000 334 Helium (3He+)

8700-12100 300 10 114

12100-12200 300 1000 334 Methanol (CH3OH)

12200-14400 300 10 127

14400-14500 300 1000 334 Formaldehyde (H2CO)

14500-18300 300 10 127

18300-18400 300 1000 334 Cyclopropenylidene (C3H2)

18400-22000 300 10 120

Total 6.4 Hours

