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Abstract 
South Africa is currently building MeerKAT, a 64 dish radio telescope array, as a pre-cursor for the 

proposed Square Kilometre Array (SKA). Both telescopes will be located at a remote site in the Karoo 

with a low level of Radio Frequency Interference (RFI). It is important to maintain a low level of RFI 

to ensure that MeerKAT has an unobstructed view of the universe across its bandwidth. The only 

way to effectively manage the environment is with a record of RFI around the telescope. 

The RFI management team on the MeerKAT site has multiple tools for monitoring RFI. There is a 7 

dish radio telescope array called KAT7 which is used for bi-weekly RFI scans on the horizon. The team 

has two RFI trailers which provide a mobile spectrum and transient measurement system. They also 

have commercial handheld spectrum analysers. Most of these tools are only used sporadically 

during RFI measurement campaigns. None of the tools provided a continuous record of the 

environment and none of them perform automatic RFI detection. 

Here we design and implement an automatic, continuous RFI monitoring solution for MeerKAT. The 

monitor consists of an auxiliary antenna on site which continuously captures and stores radio 

spectra. The statistics of the spectra describe the radio frequency environment and identify potential 

RFI sources. All of the stored RFI data is accessible over the web. Users can view the data using 

interactive visualisations or download the raw data. The monitor thus provides a continuous record 

of the RF environment, automatically detects RFI and makes this information easily accessible. 

This RFI monitor functioned successfully for over a year with minimal human intervention. The 

monitor assisted RFI management on site during RFI campaigns. The data has proved to be accurate, 

the RFI detection algorithm shown to be effective and the web visualisations have been tested by 

MeerKAT engineers and astronomers and proven to be useful. The monitor represents a clear 

improvement over previous monitoring solutions used by MeerKAT and is an effective site 

management tool. 
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1 Introduction 

In 2012 South Africa and Australia were chosen to host the Square Kilometre Array (SKA) radio 

telescope. The telescope, an array of many antennas, will be the largest and most sensitive radio 

telescope ever built. It is planned to be built over the coming decade. The National Research 

Foundation (NRF) has created a business unit called Square Kilometre Array South Africa (SKA SA) to 

construct a precursor instrument called the MeerKAT telescope on the South African site of the 

planned SKA telescope. Helping to ensure a clear view of the sky for the MeerKAT and SKA 

telescopes is the motivation for this thesis. 

The telescopes observe radio waves emitted by astronomical objects. Man-made sources of radio 

waves can interfere with observations. We call this radio frequency interference (RFI). The main 

sources of RFI are modern telecommunications and satellites, although all electronics produce some 

RFI. In order to avoid RFI, these telescopes are situated in a remote area of the Karoo. The relative 

radio quietness of this site is a major reason why South Africa was awarded a large part of the SKA 

telescope. Maintaining this radio quietness is an important part of the SKA project. If the area 

around the telescope becomes too noisy, some science goals of the telescope will become more 

difficult or even impossible. 

Over the years radio telescopes have become more sensitive while the use of radio for 

communication and of electronics in general have become ubiquitous. As such RFI has become 

increasingly problematic for radio astronomy. Many strategies to protect radio telescopes from RFI 

have been developed. These approaches are grouped under the term RFI mitigation. They include 

laws preventing the use of certain electronics around telescopes, monitoring RFI, avoiding RFI during 

observations, detecting RFI in observations, removing corrupted data automatically from 

observations. This thesis focuses on providing a RFI monitoring system for the MeerKAT site. 

1.1 Motivation 

RFI monitoring makes other aspects of RFI mitigation easier. It simplifies location and removal of RFI 

sources, making legislative protection of radio telescopes enforceable. Avoiding RFI is only possible if 

it is well characterised, especially in terms of direction and frequency. Finally, good knowledge of the 

properties of RFI on site can help in the process of RFI detection and removal from collected data. 

At the beginning of this thesis, the SKA SA team had many tools which allowed measuring RFI on the 

MeerKAT site. These included a 7 dish radio telescope called the KAT7 telescope, commercial hand 



 

2 
 

held spectrometers and special built transient RFI measurement systems. However the team did not 

have an automatic, continuous RFI monitoring system. This meant that some RFI was not measured 

as it occurred outside of the times those tools were used. It also meant that there was no standard, 

easy way to monitor RFI in conjunction with an observation. 

Although it was technically feasible to fulfil most RFI monitoring with the tools the team already had, 

setting up on site RFI monitoring systems involved significant use of man hours. There was no 

dedicated RFI monitoring team to perform these tasks or to analyse the data. Adequately monitoring 

RFI with existing tools would be an inefficient use of the SKA SA’s available technical skills. There was 

a clear need for a system which could continuously monitor the environment and automatically 

detect RFI. This thesis describes the development of such an RFI monitoring system. 

1.2 Aims 

The main aim of this thesis was to provide an automatic RFI monitoring system for the MeerKAT site. 

This RFI monitor had to fulfil three criteria: to provide a continuous record of the Radio Frequency 

(RF) environment, automatic RFI detection using this data and effective access to the collected data. 

Consequently a record of the RFs on site allows site administrators and engineers to understand how 

new equipment on site affects the radio quietness of the site. Automatic RFI detection allows RFI 

management to know when unusual sources of RFI are present. Providing effective access makes it 

possible for this information to be quickly digested and acted upon by astronomers, engineers and 

site management. 

1.3 Approach 

The approach used in this thesis was to build iterative prototypes, each prototype adding new 

features to the monitor. This approach was chosen so that the features of the RFI monitor could be 

tested by stakeholders before the final monitor was finished. The main benefit was the continued 

support of stakeholders who had the opportunity to point out problems early on. Having basic 

functionality from early in the thesis also allowed for the most basic functionality to be well tested 

over long periods of time. This provided insights into issues that were not obvious initially and 

allowed the design to be shaped by actual use of the RFI monitor. 

1.4 Contribution 

The RFI monitor created in the completion of this thesis provided the SKA SA team with a 

continuous, automatic RFI monitoring system. This provides a new tool for managing RFI. It has been 

used multiple times in testing the effect of equipment on site, corroborating tests performed with 

other systems and in revealing RFI before other available RFI monitoring could have. 
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The RFI monitor was always intended to be a prototype system. Due to hardware restraints, it could 

not cover the bands of the MeerKAT telescope. Since the completion of the final prototype, a new, 

upgraded monitoring system has been developed using the software and experience developed in 

this thesis. The new monitoring system, which covers the whole MeerKAT band, has recently been 

installed on site. 

In the interests of clarity, I state here the parts of the monitor which I did not develop. The Real Time 

Transient analYser (RATTY), described in section 2.5.3 was developed by Jason Manley. The Median 

Absolute Distance Thresholding algorithm (section 2.6.2) was suggested to me by Sean Passmoor, 

however I developed the code. Jason and Sean are both employees of SKA SA. The Javascript bar 

chart visualisation (section 4.3.1.1) is developed by a company called amCharts. All other work is my 

own. 

1.5 Thesis Overview 

The structure of this thesis is as follows.  

Chapter 2 contains the background necessary to understand the motivation and technology in this 

thesis. Sections 2.1 and 2.2 cover some basic ideas in Astronomy, Radio Astronomy and Radio 

Telescopes. Section 2.3 covers Radio Frequency interference and 2.4 covers the different ways in 

which RFI can be mitigated. Section 2.5 focuses on RFI monitoring at the MeerKAT site. Section 2.6 

covers RFI detection. Finally 2.7 Covers the technology we used in providing our RFI monitor. 

Chapter 3 covers the Design process of the RFI monitor. This includes specifying the goals, defining 

the users and their requirements and discussing the limitations of our equipment. We state the 

design approach and the design decisions for the different prototypes that were developed, 

including the initial data capture, archival, RFI detection and visualisation prototypes. 

Chapter 4 covers the implementation of the RFI monitor. This chapter follows the development of 

each of the four prototypes. Rather than describing the databases developed for each prototype, a 

section is dedicated to all the databases for each prototype. The final part of this chapter shows how 

each prototype fulfilled the goals and user requirements defined in the design chapter. 

Chapter 5 contains the validation and testing. This covers the reliability of the measurements, the 

efficiency of the database storage and retrieval, the accuracy of the RFI detection algorithms and the 

user test of the visualisations and web site which provide access to data. This is followed by out 

Conclusions and further work in Chapter 6. 
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2 Background 

2.1 Astronomy 

Objects in the universe radiate electromagnetic waves/particles. These waves/particles, travelling at 

the speed of light, are the only evidence we have that the universe is populated with countless stars, 

galaxies, planets and other astronomical objects. Observational astronomy is the study of 

electromagnetic emission from objects in space using instruments called telescopes. Astronomy 

includes some of the most interesting problems in modern science, such as searching for earth-like 

planets, searching for extra-terrestrial life, and learning about the structure of planets, stars, 

galaxies, the early universe and how they evolve over time (Burke, 2010). Astronomy is also used as 

a way of investigating fundamental forces such as the theories of relativity and particle physics 

(Chaisson & McMillan, 2005). 

Observing the skies has been something of an obsession for human beings for millennia. Before 

there was any kind of professional astronomer, people were observing the sky and learning about 

how the stars and planets moved and how this related to the Earth. Ancient people built 

observatories that could be used to tell important times in the year from the positions of celestial 

bodies. Observation was performed purely through human eyes which was the cutting edge of 

astronomy up until the beginning of the scientific revolution. One of the last great astronomers who 

performed all of his observations by the power of his eyes was Tycho Brahe. His observations of 

Mars were instrumental in formulating and supporting Kepler’s laws of planetary motion which were 

the precursor for Newton’s laws of gravity. 

That these fundamental physical concepts could be explored using nothing more than the naked eye 

and what seems like rudimentary equipment is impressive. However the astronomy we perform 

today is far removed from charting the location of astronomical objects which was the essential 

practice of observatories in the past. There are two things which allowed astronomers to move past 

these ancient practices.  

The first was the application of lenses to studying the sky. In the early 17th century when the first 

telescopes were pointed at the sky they revealed many objects which had never before been visible. 

From those times one of the main goals of astronomers has been to build ever larger telescopes in 

the hopes that the more sensitive telescopes will allow us to better see and understand 

astronomical objects. However good these telescopes were, they did not allow astronomers to delve 

into the nature of the objects they studied. All they could do is find the position and relative 

brightness of these objects to ever higher levels of accuracy. 
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The next revolution in astronomy was the understanding that the relative strength of the 

frequencies emitted by celestial could help us understand the nature of those celestial objects. By 

studying the frequencies emitted by an object you can deduce the chemical composition, 

temperature, density, mass, distance and relative motion of that object. The study of splitting up 

light into its constituent frequencies is called spectroscopy. 

The form of electromagnetic radiation humans are most familiar with is visible light, however 

astronomical objects typically radiate over a range of wavelengths which are invisible to the naked 

eye in addition to visible light. For the rest of this thesis we shall use the term light to mean all 

electromagnetic radiation, regardless of whether it is visible to the human eye. Accelerating electric 

charges produce light which can travel through the vacuum of space for millennia. The dual nature 

of light means that its behaviour can be described as both a wave and as a particle (called a photon). 

These particles/waves transmit energy that is collected by telescopes to create an image or 

spectrum of astronomical objects (Chaisson & McMillan, 2005). We provide a graphical 

representation of the electric and magnetic fields that constitute a light wave in Figure 1. 

 

 

Figure 1 - Electromagnetic waves are formed by vibrations of electric and magnetic fields. The vibrations in these fields 

are perpendicular to each other and the direction of the wave’s propagation. The figure depicts the magnetic field in 

blue, the electric field in red and the direction of propagation as moving towards the right. 

Figure source: http://missionscience.nasa.gov/images/ems/emsAnatomy_mainContent_EMwave.png 

Not all light is equal; we talk about light being a spectrum. Some light is very energetic and can be 

harmful to us; other light is very low powered and can be safely used for communications 

technologies like radio-waves. We use 3 related terms to describe where on the spectrum a 

particular photon of light belongs. These terms are wavelength, frequency and energy. Figure 2 is a 

graphic representation of the spectrum and these related ideas. The figure shows that the 

wavelengths of light span from the order of hundreds of metres, to incredibly small in the order of 

nanometres or less. 
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We can imagine that a photon is a packet of electromagnetic energy with       where   is 

Planck’s constant   is frequency (Chaisson & McMillan, 2005); it travels through space until it hits 

our telescope’s receiver. For radio telescopes the electromagnetic energy is converted into electrical 

energy which we can digitise and analyse. We describe photons using the standard unit of the 

electron volt (  ). Frequency is inversely proportional to wavelength. This means that a large 

wavelength of light will be transmitted by low energy photons with a low frequency (Chaisson & 

McMillan, 2005). 

Observational astronomers spend their careers collecting and analysing photons which have been 

emitted by astronomical objects. Some photons reach Earth many billions of years after they were 

first emitted. The energy in light emissions at a receiver will be inversely proportional to the distance 

that emission has travelled from its source. This is called the inverse square law and it is for this 

reason that distant astronomical objects are incredibly faint and need very sensitive telescopes in 

order to be observed. 

 

Figure 2 – The electromagnetic spectrum. The figure above shows the wavelengths, frequencies and energy 

electromagnetic waves across the spectrum. The wavelengths are compared to objects of a similar size. 

Figure source: http://www.scienceinschool.org/repository/images/issue20em2_l.jpg 

Although the distance that light has travelled should not affect the frequency of that light, there is a 

way in which the wavelength that we observe is different from the wavelength that was emitted by 

the source. These changes are similar to the Doppler Effect we see in sound waves. The relative 

velocity of the source to the observer changes the frequency of the light observed. Objects emitting 

light at the same frequency will be observed to emit at different frequencies if their motion relative 



 

7 
 

to the observer is different. Objects moving away from the observer will appear to emit at longer 

wavelengths and objects moving towards the observer will appear to emit at shorter wavelengths. In 

astronomy we call these situations red shift (moving away, longer wavelengths) and blue shift 

(moving towards, shorter wavelengths) (Chaisson & McMillan, 2005). The collective term for both is 

called the Doppler shift. 

Studying the spectrum of emission and absorption of astronomical objects allows us to categorise 

them and understand them. These emissions are separated into two distinct types for our purposes. 

Firstly, there are continuum emissions which are electromagnetic emissions which vary continuously 

with frequency, otherwise known as broadband emissions. The energy from astronomical objects is 

spread across all frequencies. 

One form of continuum emission is blackbody emission. Blackbodies are objects which absorb light 

and emit that energy on all frequencies at the same rate that they receive energy, thereby 

maintaining a constant temperature (Chaisson & McMillan, 2005). The amount of radiation emitted 

on each frequency is dependent on the temperature of the object. In Figure 3 we see example 

emissions for blackbodies at different temperatures. The figure shows that a blackbody will have a 

peak frequency on which most energy is emitted. Warmer objects have more energy and emit more 

energy on higher energy (shorter) wavelengths, they will also have a higher peak frequency. Stars 

and plasma are examples of objects which can be approximated as blackbodies (Miller, 1998). 

 

Figure 3 - Brightness of electromagnetic radiation at different wavelengths for blackbody objects at various 

temperatures. Astronomers can use the peak frequency of an object to deduce the temperature of that object. 

Figure source: http://astronomyonline.org/Science/RadioAstronomy.asp 
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The second type of emission that spectral astronomy categorises is spectral line emission. Spectral 

lines are a result of discrete changes in the energy states of atoms/molecules. They can be divided 

into two forms, absorption and emission lines. Since atoms/molecules have discrete energy states, 

to change from one energy state to another it needs to either absorb or emit exactly the amount of 

energy that separates two states. Therefore the only photons that can be either emitted or absorbed 

by an atom/molecule are those photons that have the same quantum of energy as the difference 

between two energy states of the atom/molecule (Chaisson & McMillan, 2005). 

This means that all molecules have a distinct spectral signature (Chaisson & McMillan, 2005). In the 

case of emission lines we see radiation which is emitted due to atoms moving from higher energy to 

lower energy states. For absorption lines, a gas is in between a source of continuum emission and 

the observer. When we observe the continuum emission we see discrete gaps where those 

frequencies are being absorbed by the gas. 

 

Figure 4 - Spectral lines of Hydrogen. The bar shows absorption lines and the bottom bar shows emission lines 

Figure source: http://jtgnew.sjrdesign.net/images/spectra_hydrogen.jpg 

For any given element or element/molecule the frequencies of absorption and emission lines are 

identical. The set of spectral lines of every element/molecule in the laboratory creates a unique 

signature similar to Figure 4. By understanding the spectral lines of molecules on Earth, we can infer 

the elements that make up astronomical objects and the interstellar medium based on the spectral 

lines in their emission. We can also learn about the temperature, pressure, relative motion and 

magnetic properties of objects based on the structure of their spectral lines (Tennyson, 2010), as all 

of these properties cause observable effects on spectral lines. 

2.2 Radio Astronomy 

Radio astronomy is the study of astronomical objects and phenomena which are observable in the 

radio part of the electromagnetic spectrum. Radio waves are low energy, low frequency and long 

wavelength electromagnetic waves. There are good reasons to observe in the radio spectrum. The 

first is that some astronomical objects emit most radiation in the radio part of the spectrum, if we 
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did not observe radio waves we would not know about these objects. Some examples of objects 

which are observable in different parts of the spectrum are provided in Table 1. One can see that 

there are some objects, like interstellar gas, which are only commonly studied using radio. 

Another reason is that wavelengths of light are absorbed by the Earth’s atmosphere before reaching 

the ground. This means that the only way to observe those wavelengths is by placing a telescope 

outside of the Earth’s atmosphere. However a large part of the radio spectrum can pass through the 

atmosphere (Miller, 1998). This “radio window” allows us to build large radio telescopes on Earth 

which can be orders of magnitude larger than anything that could be launched into space. 

For the last 50 years astronomers have measured radio waves with instruments called radio 

telescopes, which are generally composed of a receiver and a dish to focus radio waves from an area 

onto that receiver. The larger the dish, the more radio waves that it can catch and focus on the 

receiver which means the telescope can detect weaker signals. The scale of these radio telescopes 

has been increasing since their inception in the 1950s (Burke, 2010; Chaisson & McMillan, 2005; 

Dewdney, Hall, & Schilizzi, 2009; National Astronomy and Ionosphere Center, n.d.). This growth in 

the size of telescopes culminated with the world’s largest single dish telescope in Arecibo which has 

a diameter of 305m (National Astronomy and Ionosphere Center, n.d.). Arecibo is soon to be 

replaced as the largest single dish telescope by the planned Five-hundred-meter Aperture Spherical 

radio Telescope (FAST) being constructed in Guizhou Province in southern China (Quick, 2011). 

Astronomers would like to have more sensitive telescopes than Arecibo or FAST, however these 

monolithic dishes are only possible in areas where there is already a suitable natural depression in 

mountainous regions and the cost of building them is prohibitive. Fortunately it is possible to 

combine the response of many small dishes into one signal with the resulting signal having the 

sensitivity and resolution of a single dish higher than any of the composite dishes (Thompson, 1999). 

All these dishes and the computer which combines their signals are collectively called an 

interferometer. These arrays of dishes have their own kind of engineering problems, mostly these 

issues are related to the infrastructure of the array and the computation required in combining 

multiple feeds. However this technology has allowed astronomers to continue building more 

sensitive steerable telescopes than would be possible with single dish telescopes (Dewdney et al., 

2009; Thompson, 1999). 

The reason that a larger dish telescope can detect weaker objects in the sky is because it collects 

more photons from that object. The power of the received signal is the amount of energy received 

per second. If a larger dish collects more photons from a source, the observed power of that source 
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will be higher for the larger telescope. This creates a problem, how can we objectively compare the 

brightness of objects observed by different telescopes which have different collecting areas? For 

point sources the solution is to divide the power of the signal by the collecting area of the telescope. 

This gives us the flux of the object. 

       
      

      
  

      
     

    
  

There is one further issue which should be considered before we can easily compare observations of 

from different telescopes. That is the bandwidth over which the observation is performed. A 

observation will typically only measure a portion of the frequencies emitted by a source. Any energy 

emitted by the source which is not captured will make the source seem to have a lower flux. To 

remove this bias, astronomers refer to the flux density of a source. This is the flux per unit 

frequency. 

             
    

         
 

The units of flux density are watts per unit area per unit frequency ( 
 

    
.). Using these units most 

radio sources have very low values of flux density, typically on the order of      , for this reason 

radio astronomers created a unit called the Jansky (  ). The Jansky is equal to       
 

    
 . Radio 

sources will typically have flux densities from a few milli Janskys to a for thousand Janskys. 

There are plans to build a new interferometer called the Square Kilometre Array (SKA) by 2024 (SKA 

SA, 2006b). SKA will consist of thousands of dishes and will be the largest and most sensitive radio 

telescope ever built. The telescope will contain 3 different types of antennas and be split between 

South Africa and Australia. South Africa will host the mid frequency arrays while Australia will host 

the low frequency aperture array (SKA, 2015). The location of the SKA high has yet to be decided. 

This telescope is so ambitious that it is not possible for it to be built with current technology and as a 

result there are a number of precursor projects which are being built to test its design principles and 

develop the technologies which will make SKA possible. 
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Table 1 - List of subsets of the spectrum and their common applications (Chaisson & McMillan, 2005) 

Type of Electromagnetic wave Common applications 

Radio Radar studies of planets 

Planetary magnetic fields 

Interstellar gas clouds and molecules 

Galactic structure 

Galactic nuclei and active galaxies 

Cosmic background radiation 

Infrared Star formation 

Centre of milky way galaxy 

Active galaxies 

Large-scale structure of the universe 

Visible Planets 

Stars and stellar evolution 

Normal and active galaxies 

Large-scale structure of the universe 

Ultraviolet Interstellar medium 

Hot stars 

X-ray Stellar atmospheres 

Neuron stars and black holes 

Active galactic nuclei 

Hot gas in galaxy clusters 

Gamma-ray Neutron stars 

Active galactic nuclei 

 

One of these precursors is the MeerKAT interferometer being built in the Karoo region of South 

Africa which will also be the core site for the African part of the SKA (SKA, 2015). MeerKAT is planned 

to be operational by 2017 and will have 64 dishes (SKA SA, 2011). The volume of data created by 

these interferometers will be incredibly large, with MeerKAT producing 100s Gb/s and SKA 

producing Pb/s (Dewdney et al., 2009; SKA SA, 2011). 

The South African portion of the SKA telescope is planned to be built on the same site as the 

MeerKAT telescope. The MeerKAT dishes will eventually be incorporated into the SKA telescope. 

Figure 5 shows the location that these instruments will be built in South Africa. To date there are 
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already two operational radio telescopes on the site. There is the KAT7 instrument, which is a 7 dish 

precursor to the MeerKAT telescope and the Precision Array for Probing the Epoch of Reionization 

(PAPER) instrument, a telescope run by the University of California in Berkeley (PAPER, n.d.). 

 

Figure 5 - The red circle shows the location of the MeerKAT array. The closest town, Carnarvon is shown as a red pin. 

Carnarvan is approximately 73km in a straight line from the core of the MeerKAT array 

Figure Source: Google Earth 

2.2.1 Radio Telescopes 

A radio telescope is a large dish which reflects waves onto a receiver. Figure 6 shows how the dish 

reflects light so that it focuses on a receiver which converts the electromagnetic signal into a radio 

frequency (RF) voltage signal. This voltage is sampled by an Analogue to Digital Converter (ADC). 

The ADC is a device which quantises continuous analogue signals, the ADC would be placed in 

between the receiver/amplifier and the computer system. The voltage of the signal is converted into 

a number of discrete voltage levels determined by the ADC resolution (the number of bits in the ADC 

output). In the case of an 8 bit ADC the power is converted into one of 256 power levels. The input 

values can be of any power; however the output will always have a defined range which does not 

cover all possible analogue values. There are therefore some signals which will be too powerful or 

too weak to be quantised, in this case we say the ADC over-ranges. The ADC samples the analogue 

signal at discrete intervals in time and the number of samples collected per second is called the 

ADC’s sampling rate. Figure 6 is a simple diagram which shows how these different components 
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work together to direct a radio signal from an astronomical source to a computer which can be used 

to analyse the signal. 

In radio astronomy the goal is to measure the RF power signal of an astronomical radio source. The 

signals of astronomical sources are stochastic in nature. This means the signal is a random variable 

with a defined probability function. The PDF of the emitted signal from most astronomical sources 

are normally distributed. The challenge is to be able to tell if a signal is a bona fide astronomical 

signal or if the signal is just noise. All astronomical signals are embedded in the cosmic background 

noise, which is unavoidable. The receiver itself also introduces noise to the signal. Both types of 

noise have a normal distribution (Fridman, 2010). 

 

Figure 6 - Diagram of a typical radio telescope. The main reflector collects light from an astronomical source. The radio 

waves are reflected towards the subreflector which again reflects the radio waves to the feed horn. The feed horn 

converts the radio waves into an electric signal which can be amplified and digitised using an ADC. It is then fed into a 

computer to be processed, analysed and stored. 

Figure source: http://pixgood.com/radio-telescope-diagram.html 

The aim of the engineers building MeerKAT is to create an instrument which allows astronomers to 

distinguish weak astronomical signals from the noise of the receiver. The factors that affect the 

noise of the receiver can be described with the radiometer equation. 
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In this equation    is the uncertainty of the receiver detected power,      is the effective noise 

temperature of the detected power,   is the bandwidth over which we receive and t is the amount 

of time the signal is integrated over (Kraus, 1986). A receiver with a low uncertainty will provide the 

clearest view of an astronomical signal. 

By lowering the uncertainty of the receiver detected power we increase the Signal to Noise Ratio 

(SNR). SNR is defined as the ratio of the power of the desired astronomical signal over the power of 

background noise. It can be quoted in decibels (dB) using the formula and is calculated using the 

formula               
       

      
 . From the radiometer equation we see we can lower 

uncertainty by lowering     . One way of lowering      is by cooling the physical receiver to very low 

temperatures, for instance the receiver of the MeerKAT dishes is cooled by helium to an operating 

temperature of around 13 degrees Kelvin. 

Another way to increase the SNR of the signal is to accumulate the signal (Miller, 1998). 

Accumulation is the process of adding multiple contiguous samples of a signal, this accumulation 

time is represented by   in the radiometer equation. When the signal is accumulated, the random 

noise rises by the square of the accumulated time while a signal present in all samples will rise 

linearly with the accumulated time. Therefore the uncertainty of the received signal will fall as the 

square root of the accumulation time. Accumulation has the added benefit of reducing the amount 

of data that needs to be handled by the signal chain. Accumulation is called integration in the case 

we are dealing with a continuous analogue signal, rather than a digital signal with discrete values. 

As we said earlier, another way to increase the sensitivity or SNR of a telescope is to combine the 

input of separate dishes. The signal from each of the dishes must be combined in a sensible way so 

that signals that are common to all dishes become more powerful and signals which are not 

common for each dish (i.e. the internal noise of the separate receivers) are diminished. We call 

signals which are common to two dishes coherent signals. This process of combining the signals from 

multiple dishes is called correlating the signals. 

Correlation is performed by a computer or cluster of computers called a correlator. The function of a 

correlator is that it correlates the signals from all possible pairs of dishes in the array. We call each 

pair of dishes in an interferometer a baseline. Correlation means multiplying each pair of values 

from each baseline together, which will tend to increase the coherent signals and diminish the effect 

of noise signals. It is important to ensure that the signals from different dishes are delayed before 

being correlated. Figure 7 shows how the angle of the dishes affects the time each dish will sample 

the same signal. The angle a dish observes at will affect the time that dish samples a wavefront. 
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Dishes which sample earlier must be delayed in order to preserve the phase of the signal. As 

correlation is performed on each baseline, the computational complexity of correlation rises as the 

square of the number of dishes in the interferometer. 

 

Figure 7 - A diagram showing the geometric delay    between two dishes in an interferometer. We assume the incoming 

signal is a plane. As such, unless the incoming plane is perpendicular to the dishes in the array, the signal will arrive at 

each dish at different times. 

Figure source: http://www.aanda.org/articles/aa/full/2008/40/aa8117-07/aa8117-07.html 

All of the combined signals of the interferometer create something called a synthesised beam. This 

represents the directions which the interferometer is sensitive to. The shape of the beam can be 

changed by applying weights to the signals from the separate baselines and the beam can be 

directed by changing the direction the dishes point at. In Figure 8 you see an example of a 

hypothetical beam of an interferometer. It is made up of a main beam which is the direction which 

we observe objects with. The beam also has less sensitive areas which point away from the main 

beam. These areas are called the side lobes of the beam. It is not possible to differentiate which 

signals come from the main beam and which come from the side-lobes, although the 

interferometers are generally designed to suppress the side-lobes so that they are far less sensitive 

than the main beam. Nonetheless it is possible that powerful signal in a side lobe would obscure a 

weak signal in the main beam. 
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Figure 8 - A hypothetical beam of a radio telescope. The distance of the line from the centre represents the sensitivity of 

the telescope in that direction. You can see the main beam is by far the most sensitive beam. This image is a 2 

dimensional representation or a three dimensional beam. 

Figure source: http://www.ras.ucalgary.ca/radiotel/calibration.html 

An interferometer can be judged on two basic metrics. The first is sensitivity; the larger the 

combined area of the dishes in an interferometer, the more sensitive that telescope is. The second is 

the angular resolution which is related to the size of the main beam. The angular resolution is a 

measure which tells us the smallest angle between two objects at which they can be resolved as 

separate objects. If two objects are closer together than the angular resolution, they will appear as 

one object with the combined power of both objects. That is, they will not be resolved. 

The angular resolution of an interferometer is determined by the length of its longest baseline, i.e. 

the maximum distance between two dishes in the array. This means that a longer baseline provides 

a smaller angular resolution. This allows us to resolve objects that are close to each other on the sky. 

It is important to remember that for a given angular resolution objects which are further from the 

observer also need to be further apart from each other in order to be resolved, as the distance 

needed to satisfy the minimum angle grows with the distance from the observer. Providing long 

baselines is the main reason that the planned SKA telescope will be spread across the continent of 

Africa, as no single country is large enough to contain an interferometer with the angular resolution 

that SKA requires to perform its science goals. 

2.3 Radio Frequency Interference (RFI) 

Radio Frequency Interference (RFI) is any signal captured by a radio telescope which does not come 

from astronomical objects. RFI can be separated into 2 categories; internal and external RFI. Internal 

RFI is interference generated by the telescope system itself. As the telescope is made from 
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electronic devices which emit radio waves, all radio telescopes pick up some radiation which is 

generated by its own internal components. External RFI comprises all interference generated by 

sources on the Earth and its satellites. This RFI may be generated by anything from electric fences to 

lightning to aeroplanes and satellites (Porko, 2011; Ekers & Bell, 1999). 

 

Figure 9 : Example of the effect of RFI. Both images were obtained from the LOFAR test station of exactly the same part 

of the sky at the same time, on separate frequencies. The image on the right is on a frequency which has a strong 

transmitter, the objects which you can see in the RFI free case (left) are totally obscured. 

 Figure source : http://www.ece.vt.edu/swe/RFI2004/18p.PDF 

Radio telescopes suffer from RFI in much the same way that optical telescopes suffer from light 

pollution. As astronomical signals are generally 60 dB below the receiver noise level (Gillani, 2010), 

even relatively weak man-made sources can completely obscure astronomical signals, placing an 

effective limit on sensitivity (Gillani, 2010). Figure 9 shows just how badly a local source can affect an 

observation. The RFI contaminated observation on the right contains artefacts from an RFI source 

which completely obscures the astronomical sources visible in the image on the left. As radio 

telescopes become more sensitive, RFI becomes a bigger problem. For example, a telescope as 

sensitive as SKA could pick up the signal made by a cell phone tower from hundreds of kilometres 

away (SKA SA, 2006b). 

In recent times the radio spectrum has been widely used as a communication medium and we 

expect that both the spectrum use and power of wireless technologies will continue to increase. 

Some forms of interference can be avoided; however the use of telecommunications and GPS 

satellites creates interference all over the globe. As a result it has become increasingly difficult to 

avoid interference by building telescopes in radio quiet areas. As such it is inevitable that some 

observations will be corrupted by RFI and it is now essential that radio telescopes have some form of 

automated RFI monitoring and flagging or excision (Fridman & Baan, 2001; Offringa, Bruyn, & Biehl, 

2010; Ekers & Bell, 1999). 
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Figure 10 : The allocated uses of the radio spectrum for communication. The spectrum which SKA will observe on is 

shown by the transparent red boxes and the spectrum which MeerKAT will observe on a surrounded by the transparent 

blue boxes. As you can see most parts of the radio spectrum are allocated to some form of communication. 

Figure source: http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.PDF 

2.3.1 RFI Characteristics 

All RFI sources have a combination of the characteristics defined below. 

Broadband – The source emits on a range of frequency channels 

Narrowband – The RFI emits on discrete frequencies, for our purposes a RFI source is narrowband if 

it is received on discrete frequency channels 

Persistent – The RFI source is always emitting 

Intermittent – The RFI source emits intermittently for periods of minutes to hours 

Burst-like – The RFI source emits in short bursts of the order of milliseconds to seconds 

High-powered – The RFI is more powerful than the instrument noise 

Low-powered – The RFI has a similar power to the instrument noise 

Stationary – The RFI source is stationary 

Mobile – The RFI source is moving 

Polarised – The RFI source emits mostly polarised emissions 
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Table 2 - List of RFI sources and their characteristics 

RFI Source Characteristics 

Two way radio Narrowband, Intermittent, High-powered, Mobile, Polarised 

GPS satellites Narrowband, Persistent, High-powered, Stationary, Polarised 

Electric fences Broadband, Burst-like, power dependent on distance, Polarised 

Ethernet cables Broadband, Intermittent, High-powered, not Polarised 

Lightning Broadband, Burst-like, High-powered, not Polarised 

TV Narrowband, Persistent, High-powered, Stationary, Polarised 

 

Table 2 contains a non-exhaustive list of RFI sources; it illustrates the large range of possible RFI that 

can affect observations. As there are so many different types of sources there is no single way to 

eliminate RFI from observations (Ekers & Bell, 1999). There are also some astronomical sources and 

RFI sources which produce signals with similar characteristics, it is important to ensure we do not 

ignore astronomical sources because of this similarity. For this reason minimising the effect of RFI on 

observations is a process which requires multiple and complementary solutions. 

 

Figure 11 - Examples of RFI waveforms in receiver output (power) vs. time; a) b) and c) are impulse-like and  

intermittent; d) persistant, narrow-band. In these plots we are looking at power over the whole bandwidth of the 

reciever 

Figure source: (Friedman & Baan, 2001) 
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Figure 11 shows the waveforms of some representative RFI sources. The first 3 sources are examples 

of intermittent burst like RFI, you can clearly see the RFI bursts in a time series. The third source is 

has a obvious period, in this case the RFI is generated by radar pulses. The 4th source is a continuous 

narrow band signal. One can see that different characteristics of the RFI emission result in different 

features in the captured data. 

2.3.2 Effects of RFI on Science 

RFI can limit the science that is possible with a radio telescope as some parts of the spectrum are 

unusable because of constant interference. For example, in the study of the evolution of galaxies 

over cosmic time; interference over a small band of frequencies can prevent astronomers from 

learning what forms of galaxies existed for certain ranges of time. In order to learn about galaxies 

astronomers look for the tell-tale spectral line of neutral hydrogen which emits at the 21cm 

wavelength or 1420 MHz (Burke, 2010). This spectral line is called the HI line. Astronomers can use 

the HI line to understand how galaxies evolve over cosmic time. If the HI line is obscured by RFI, they 

cannot use it to learn about these ancient galaxies. 

Studying the evolution of galaxies at different periods of cosmic time is possible because of the 

constant speed of light, red-shifting and the expansion of the universe. The universe has been 

expanding since the Big Bang and, as a result all objects in the universe other than our local cluster 

of galaxies are moving away from us. Those objects which are further away are moving away at a 

higher velocity. This means that those objects which are further from us will have a higher red shift 

(their HI line will be shifted to a lower frequency). We can approximate the distance to a galaxy 

based on the red shift of its HI line using Hubble’s Law (Burke, 2010). Also because light travels at a 

constant speed, the light from these distant galaxies must have been travelling for a long time. So HI 

emission from high red shift galaxies left those galaxies when the universe was younger than it is 

today. The higher the red shift of a HI spectral line of a galaxy, the faster that galaxy is moving away 

from us and the younger that galaxy was when it emitted the HI line. 

If the frequencies from 1000MHz to 1010MHz were unusable because of RFI, astronomers would not 

be able to see what kinds of galaxies existed from 9.14 to 9.26 billion years after the big bang, a gap 

of over 100 million years (Bremer, 1995; Kempner, n.d.).This problem is made worse by the fact that 

the HI line is a weak signal and for distant galaxies the signals are even weaker. This means that for 

studies of the most distant galaxies where observations must be accumulated over long periods of 

time, even very low powered and intermittent RFI can corrupt time intensive studies. 

RFI has varying effects on different science goals depending on the type of emission. If the science 

requires observing spectral line emissions then RFI can completely obscure the emission. If a science 
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goal relies on observing continuum emission then it is possible to ignore frequencies of the emission 

which are affected by RFI and use the remaining clean frequencies to achieve your science goal (P A 

Fridman & Baan, 2001). Even if the RFI does not make all required frequencies unusable, it still 

negatively affects the SNR of any observation made over those frequencies. In order to allow our 

new generation of radio telescopes to fulfil the science goals they are being built for we must 

mitigate the effects of RFI. 

Another consideration when dealing with RFI is the type of telescope being used. Different dishes 

have differently shaped beams; the width of the main beam determines how close an RFI source can 

be to the astronomical source without interfering. Other than the main beam, side-lobes can pick up 

signals which come from unexpected directions. Finally, in an interferometer there is a natural 

spatial filter against ground based RFI. As the signal from an interferer will reach dishes at different 

locations at different times, it is possible that the RFI will not be correlated. In this case the process 

of correlation naturally removes RFI. However, for short baselines and persistent RFI it is far more 

likely that RFI will be correlated (Baan, 2011). It is also possible to de-correlate satellite RFI using 

fringe washing as satellites do not have sidereal motion. 

2.4 RFI Mitigation 

There are multiple approaches to preventing RFI from affecting observations. These techniques are 

referred to as RFI mitigation. Each radio telescope facility has a RFI mitigation plan which uses those 

techniques which are both effective and possible for their environment. These mitigation techniques 

range from detection algorithms to physical filter systems to legislative actions (Baan, 2011). As each 

telescope exists in a different physical, legislative and radio frequency environment; there is no 

unique set of mitigation techniques for all radio telescopes (P A Fridman & Baan, 2001). There are 

common techniques which are used in some form by most radio telescopes. 

As a rule it is generally better to perform mitigation as early as possible. The best option is to 

prevent RFI sources from emitting. If this is not possible we would like to prevent RFI from affecting 

observations. The final option is to remove RFI from observations. It is always better to prevent RFI 

as removing RFI from observations necessarily lowers the sensitivity of that observation(Baan, 2011). 

2.4.1 Legislation 

The International Telecommunications Union (ITU) created the ITU regulation RA 769 in 1992 to 

provide guidance on the parts of the spectrum which are useful for radio astronomy (ITU-RA, 2005). 

They provide guidelines on minimum flux densities of RFI sources that will impact radio telescopes of 

a minimum sensitivity. The ITU has allocated some parts of the spectrum exclusively for Radio 
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Astronomy. These parts of the spectrum are called the Radio Astronomy Service (RAS). The RAS 

bands can only be used passively, which means no one is allowed to emit signals on those bands. 

There are only 21 frequency bands which are allocated to passive use. Some of these bands are 

shown in Figure 10, they are shown in bright yellow. They generally protect bands on which 

important science relies on, however there is no provision for the effects of red shifting of 

astronomical objects (Diepenbeek, 2010). From Figure 10 it is clear that most of the spectrum is not 

protected. As spectrum allocation is becoming increasingly valuable economically, it is important 

that the radio astronomy community is involved in regulations drafted both internationally and in 

their own countries. 

Other than general spectrum allocation over the world or country, it is also possible to make special 

Radio Quiet Zones (RQZ) in which large parts of the spectrum are legally protected for passive use. In 

preparation for the SKA telescope, both the Australian and South African governments have 

designated RQZs around the sites of their portions of the SKA (van Driel, Gergely, Liszt, & Ohishi, 

2012). These RQZs introduce legislation which guarantees that emissions of electronics and 

telecommunications must remain low enough that they do not interfere with radio astronomy. 

 

Figure 12- SARAS protection levels for spectral line and continuum observations. If a RFI source is measured at a dish to 
have a higher power than the threshold it violates the AGA 

In South Africa the RQZ called the Karoo Core Central Astronomy Advantage Area (KCAAA) (Driel et 

al., 2012) is under the purview of the Department of Science and Technology. The protected status 
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of this area was signed into law with the Astronomy Geographic Advantage Act (AGA) of 2007 

(Department of Science and Technology, 2007). The area which makes up the KCAAA is shown in 

Figure 12. According to the AGA any transmitter going into this area must first get a license from the 

minister. These transmitters will only get permission if they do not exceed the levels set by the South 

African Radio Astronomy Service (SARAS)  shown in figure 13 (van Driel et al., 2012). All transmitters 

which already exist in the KCAAA must conform to SARAS levels. Failure to comply with the 

regulations can result in a warning, suspension of license, a fine or even jail time (van Driel et al., 

2012). 

These legislative measures ensure that radio astronomers will have some guarantee that the area 

around new and expensive radio telescopes will be protected from the advance of ever more 

powerful telecommunications systems. Unfortunately no national regulation can prevent the 

existence of RFI generated by satellites, however satellite emissions are still governed by the ITU and 

cannot emit in the RAS part of the spectrum(Zoller, 2011). 

2.4.2 Monitoring  

For obvious reasons we build radio telescopes in locations which already have as low a level of RFI in 

the environment as possible. The site of the MeerKAT telescope for example is in one of the least 

densely populated parts of South Africa. It is surrounded by mountains which help block the signals 

of high powered radio communications, such as cell phone towers, TV and radio stations and air 

traffic control towers, whose signals can be picked up hundreds of kilometres from their source (SKA 

SA, 2006b). The site was extensively surveyed to understand the RF environment; however, it is hard 

to tell what will happen to the radio frequency environment as the years to come (Bolli, 

Gaudiomonte, & Messina, 2010). 
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Figure 13 - Map of the South African Radio Quiet Zone around the future SKA sit 

Figure source: http://www.ee.co.za/article/hans-05-how-will-the-ska-affect-people-in-the-astronomy-advantage-area.html 

For example, the site of the Northern Cross radio telescope in Medicina, Italy which had a quiet 

radio environment when the Northern Cross was built in the 1960s. However, over the years the 

growth of the nearby city Bologna, the increasing use of the radio spectrum for telecommunication 

and the proliferation of personal electronic devices have caused the environment to seriously 

deteriorate. With even the internationally recognised RAS part of the spectrum deteriorating, the 

observatory decided to create a team of technicians whose primary responsibility was to monitor RFI 

and report official complaints on emitters interfering with the RAS (Bolli et al., 2010). Their 

dedication has made it possible to preserve the bands utilised by Medicina’s instruments. 

The best way to prevent RFI from corrupting observations is to understand the RFI environment 

around the interferometer. If we know the environment well enough it is easier to find and remove 

sources which fail to meet legislated levels (Bolli et al., 2010). It is easier to avoid RFI sources during 

observations and also to accurately remove that RFI which will inevitably corrupt observations. It 

also allows engineers to discover whether RFI is internally or externally generated by having a record 

of the external RFI (Boonstra, 2005; Gillani, 2010). 

2.4.2.1 RFI Monitoring at Arecibo 

The Arecibo radio telescope is the largest single dish radio telescope in the world (National 

Astronomy and Ionosphere Center, n.d.).  The RFI environment around the dish is monitored by an 
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omni-directional antenna which receives on the 1.7 GHz to 10 GHz range. The system is run 24 hours 

a day under computer control. The monitoring system steps through 19 frequency bands, taking 1 

minute to observe each band (Perillat, n.d.). 

All of the raw data is saved to disk and can only be accessed on site. In Figure 14 one can see the 

type of plots generated automatically from data captured each day. These plots can be accessed 

through the internet. They include mean power for each frequency channel, image plots of the time-

frequency power, the Root Mean Squared (RMS)/mean and PDF documents containing the dynamic 

spectra for all frequencies over the last 8 days. Along with the daily plots there is also a plot of the 

power spectrum for the Industrial Scientific and Medical (ISM) band for every 20 minutes for the last 

month (Perillat, n.d.).  

 

Figure 14 : Examples of the automatically generated plots from the Arecibo RFI monitoring system. The images from left 

to right are mean power, time-frequency power and the rms/mean 

Figure source: http://www.naic.edu/~phil/rfi/hilltop/hilltop.html#History_ 

These plots are the only way to access the data collected by the monitoring system without going to 

the site. It is not possible to generate custom plots of selected frequencies or times and there is no 

way to search the plots except by eye, which means one has to look through a 30 page document in 

the case of some plots (Perillat, n.d.). The monitoring system does not run any kind of RFI detection 

algorithm so all analysis must be performed manually. 

2.4.2.2 RFI Monitoring at the Giant Metrewave Radio Telescope 

The Giant Metrewave Radio Telescope (GMRT) is a radio telescope array consisting of 30 steerable 

dishes each with a diameter of 45 metres. It was built 80km outside a town called Pune because of 

the low levels of RFI in the area (GMRT, 2008). The observatory also has a RFI monitoring system, 

consisting of four antennas each pointing to one of the cardinal points. The system cycles through 

each antenna to gather spectral data and is capable of finding the direction of a RFI source (Joardar, 

2005). 

The system does not operate 24/7 like the monitoring system at Arecibo, it must be initiated using a 

terminal connected to the LAN at the facility. The operator can specify how long to observe for, what 
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frequencies to observe on and where to save the spectral data which are collected. There is software 

which can visualise the collected data in real time or from a completed data file. Screenshots of the 

monitoring software are shown in Figure 15. These screen shots show the time averaged spectral 

power plot, the spectrum of a time sample and the direction of a the most powerful source for a 

selected band/range (Joardar, 2005). This software can be used by operators to determine in real 

time if unusual levels of RFI are present and from which direction that RFI is being emitted. 

 

Figure 15 : Screen shots of the RFI monitoring visualisation system of the GMRT. The image on the left shows the GUI 

used to set up and monitor an ongoing observation. The image on the right shows the online data visualiser and the 

direction finder, the direction finder shows the direction of a source at the frequency selected by the cursor on the 

spectrum visualiser. 

Figure source : (Joardar, S. 2005) 

The monitoring system also provides an offline RFI analysis program which can flag narrowband and 

broadband interference and visualise where this RFI is in the spectrum. Figure 16 shows how the 

offline flagging software can show observers on which frequencies and times RFI was emitted. Figure 

17 shows how this software can provide spectral occupancy plots from saved data. This allows 

observers to find the percentage of time a frequency was contaminated with RFI during an 

observation. 
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Figure 16 : Screenshots from the RFI analysis software of the GMRT. From left to right, the first image shows the whole 

spectrum as observed by the RFI monitoring system. The second image shows the narrowband RFI and the third image 

shows the broadband interference flagged by the analysis software. 

Figure source : (Joardar, S. 2005) 

 

 

 

Figure 17 : Spectral Occupancy plots for narrowband and broadband interference collected by the RFI monitoring system 

of the GMRT and flagged by the analysis software. 

Figure source : (Joardar, S. 2005) 

 

2.4.3 RFI Flagging 

As even the best RFI mitigation methods cannot totally prevent all RFI (Baan, 2011), there must be 

methods which reduce the effect of RFI after observation. One method is to flag those parts of the 

spectrum which have RFI and not use those frequencies/times when RFI was present while analysing 

observations. As this technique involves removing data from analysis it is imperative that the 

flagging process does not erroneously flag real astronomical signals as RFI, otherwise our mitigation 

would become counterproductive (Offringa, 2012). 

The effectiveness of RFI flagging depends on the accuracy of the RFI detection process. In the past 

RFI detection was performed by visual inspection, identification and flagging; however, due to the 

huge increase in the amount of data to be flagged, this is no longer a feasible solution for most 

telescopes (P A Fridman & Baan, 2001). As a result algorithms which can automatically detect RFI 

have been developed. These algorithms detect RFI by looking for characteristics of RFI, but not 

astronomical sources, such as high power levels, non normal signals and non-sidereal motion. As 
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with most of the mitigation techniques mentioned, there is no one detection algorithm which is 

good at detecting all RFI (P A Fridman & Baan, 2001). As such it is important to consider the 

properties of the RFI that must be detected before deciding which detection algorithm to use. 

It is important to realise that when telescope data is flagged as RFI, the information of astronomical 

signals on that channel is lost. There are situations where flagging RFI will completely remove the 

desired astronomical signal from data. In cases where RFI is constant and covers all frequencies on 

which a signal can be observed, we need to use either RFI excision or spatial nulling (Baan, 2011). 

2.4.4 Spatial Nulling and RFI Excision 

Spatial nulling is used in multi-element systems, such as interferometers or dishes with multiple 

feeds; it is possible to form a beam such that the null of that beam are in the direction of a known 

interferer. In this case the RFI from any source in the null will not affect the observation. This can 

only be performed if the location of the RFI source is known and either stationary or follows a known 

path. 

RFI excision is a technique which allows us to remove the effect of RFI from observations and reveal 

the underlying signal (P A Fridman & Baan, 2001). Unlike flagging, this approach allows us to perform 

observations on frequencies with interference. This is done is by determining which part of the 

observed signal is due to RFI and to then subtract that RFI signal from the observations. 

To get an estimate of the RFI signal, we need to have an observing dish which points at the 

astronomical source and a reference dish which observes at the same time but points off the source 

but also contains the RFI. From both of these data streams it is possible to estimate the signal which 

is due to RFI and to subtract that RFI from the observation, revealing the underlying signal. In the 

case of a multi-feed dish, where each feed can point to a different part of the sky, this method can 

be applied using only one dish(P A Fridman & Baan, 2001). 

2.5 RFI Monitoring at MeerKAT 

2.5.1 SKA Site Bid – RFI Measurement Campaign 

As MeerKAT is being built on the proposed site for SKA, the RFI environment was extensively tested 

as part of the SKA site bid. The point of this testing was to find if the site was radio quiet enough to 

host the SKA  (Manners, 2007). This testing involved 12 months of RFI monitoring at the core site in 

the Karoo and at sites in other host countries in Southern Africa. To facilitate this process three 
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mobile measurement systems were developed which allowed for accurate measurements of the 

environment. 

The Mobile Measurement Systems (MMS) were designed according to SKA specifications for RFI 

measurements. They were used to perform high sensitivity, high frequency resolution scans of small 

parts of the spectrum with particular astronomy interest, these were called the Mode 2 

requirements. Lower sensitivity, lower frequency (> 1Hz) resolution scans of larger parts of the 

spectrum were required in Mode 1 requirements, shown in Table 3, which were meant to measure 

the RFI environment over most of SKA’s proposed bandwidth from 0.07GHz to 26.5GHz (Manners, 

2007). 

Table 3 - Mode 1 RFI measurements. The table is divided into the requirements for measurements as required by SKA 

and the settings that the MMS had to be set to meet the requirements. The total time shows how long it took to 

measure all required frequencies (Manners, 2007). 

SKA Requirements Operational Settings 

Frequency Band  

GHz 

RBW 

kHz 

       

ms 

Integration Time 

s 

0.07 – 0.15 3 10 1334 

0.15 – 0.30 3 10 500 

0.30 – 0.80 30 10 167 

0.80 – 0.96 30 10 1000 

0.96 – 1.40 1000 0.002 900 

1.40 – 3.00 30 10 534 

3.00 – 22.00 1000 10 190 

Total   1.3 hours 

 

Table 3 shows the resolution bandwidth (RBW), i.e. the bandwidth of the frequency channels in the 

measured spectrum required by the SKA. The values of       are the integration times each band 

must be measured in order to get the required sensitivity for the measurements. The mode 1 

measurements were far less sensitive and time consuming than those required in the Mode 2 

measurements. To see mode2 measurements refer to appendix. 

In order to characterise the RFI around the core, Mode 1 measurements were performed at all of 

the sites shown in Figure 18. At each site, Mode 1 measurements were made for 3 to 5 antenna 

pointings on 2 polarisations each; this process took 27 hours on average and was performed once 
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for each site. The idea of these measurements was to characterise strong interferers in the parts of 

the spectrum which are not critical for main SKA science and therefore do not need more sensitive 

measurements.  

 

Figure 18 - Locations of the Mode 1 RFI measurements 

Figure source : (SKA SA, 2006b) 

The result of RFI measurements which are shown in Figure 19 show there was virtually no RFI above 

2GHz and although there was significant RFI below 2 GHz, it was contained in the frequency bands 

allocated to terrestrial and satellite services (Manners, 2007). This is good news for the SKA and 

MeerKAT, however we need to remember that these measurements were not continuous, so it is 

unlikely that it characterised intermittent or burst-like interference. Also these measurements only 

tell us about the RFI in 2005. The list of strong emitters found is shown in table 4. The site has 

changed significantly since then with the introduction of the infrastructure required for MeerKAT 

and the on-going construction of MeerKAT, and SKA which will continue until 2024 (SKA SA, 2011). 

Some of the radio, TV and cellular transmitters were within the RQZ at the time of the measurement 

campaign as the RQZ had not yet been signed into law. As those transmitters are above the levels 

required by the RQZ they are going to be replaced by low powered transmitters which will cause less 

interference. As of December 2012 TV transmitters are in the process of being replaced. The mobile 

communication providers are in consultation with the SKA SA. Different solutions which will not 

interfere with MeerKAT, but will allow for mobile communication in the area are being discussed. 

Unfortunately, the satellite emitters are not under the purview of South Africa and the avionics 

systems are critical for the safety of aircraft. Currently there is no alternative and these emitters will 

remain for the foreseeable future. 



 

31 
 

Table 4 - Table of strong emitters and their frequency bands found during the RFI measurement campaign 

Frequencies MHz Source 

90-108 FM Radio 

137-138 Satellite 

240 - 270 Satellite 

250 - 450 Mobile Communications 

170-320 VHF TV 

480 - 830 UHF TV 

900 - 960 GSM 

960 – 1150 Avionics 

1164 - 1600 GNSS satellites 

 

 

Figure 19 - Summary of Mode 2 measurements over the frequency range 150MHz - 22GHz. The top plot shows the 

results for vertical polarisation and the bottom plot shows results for horizontal polarisation.  

Figure source : (Manners, 2007) 

In conjunction with the site measurement campaign a database of transmitters in South Africa was 

also built with the help of communications regulator ICASA and the main telecommunications 

operators. This database was used to estimate the effect of those transmitters using standard 

propagation models. Two independent commercial organisations performed these propagation 
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studies for transmitters up to 200 km from the site and even further for broadcast transmitters(SKA 

SA, 2006a). 

These propagation studies revealed some issues with the RFI environment. Broadcast and other 

radio communication services exceed the thresholds of ITU-R RA 769 even in remote areas (SKA SA, 

2006a). The distribution of radio communication transmitters is not tightly correlated to population 

density as rural transmitters are often high-powered to improve coverage. Local mountains 

(especially to the south) are an effective shield of local transmitters and tropospheric conditions 

significantly affect the propagation of distant transmitters. 

In addition to studying the propagation of known transmitters, a reciprocal propagation study was 

conducted (SKA SA, 2006a). For these studies a hypothetical transmitter is placed at one of the sites 

and run through standard propagation models, the result of this modelling is shown in Figure 20. 

These studies can be used to find an appropriate size for a RQZ. From these studies it was 

determined that even weak, distant transmitters can emit signals that exceed the ITU-R RA 769 

thresholds (SKA SA, 2006a). The implication being that it is impossible to limit broadcast and other 

radio communication signals to ITU-R levels at any site in the world 

 

Figure 20 - Example reciprocal propagation study for a hypothetical 12W GSM transmitter at the core site. The low (blue) 

end of the scale represents a signal flux level of ITU-R RA 769-2 continuum threshold. The circle has a radius of 200km. 

As can be seen this type of transmitter will be above the ITU threshold for over 200km in every direction. Also obvious 

from the plot is how the mountains to the south of the core provide good protection from RFI. 

Figure source : (SKA SA, 2006a) 
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2.5.2 Current RFI monitoring 

The 7 dish interferometer (KAT-7) currently on the MeerKAT site can be used to perform high 

sensitivity RFI surveys when it is not being used for science purposes. The KAT-7 telescope is used for 

2 regular RFI monitoring activities. The first is a 360° scan at 3°, 9° and 15° above the horizon across 

the frequency coverage of KAT-7 which is 1200MHz – 1950MHz. Figure 21 shows an example of the 

plots generated by this scan. The data are captured in 1 second accumulations and with a channel 

resolution of 400 kHz. The data are run through a RFI detection algorithm which flags data which are 

11 sigma above the noise. The scan is run twice a week and is meant to monitor the changes in RFI 

due to the construction of MeerKAT infrastructure. 

 

Figure 21 - Example plot of the bi-weekly RFI survey using the KAT7 dishes. There have been 472 of these RFI scans run 

as of 20/01/2013. 

Figure source : (Passmoor, 2013) 

The second RFI monitoring activity performs a high elevation scan with a higher frequency resolution 

of 6.3 kHz wide channels over the same bandwidth of 1200 kHz-1950 kHz. The purpose of this scan is 

to find narrow band RFI which are hidden in the lower resolution scan. This scan was run because RFI 

was discovered in narrowband science observations. It was found the RFI was caused by the receiver 

component of one of the dishes. Although the internally generated RFI does not show up in 

correlated data, it does raise the noise floor of observations. This scan is run once a month to ensure 

the problem does not reoccur. RFI can also be detected during science observations by examining 
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the science data. The same software which is used in the monthly scans can be run on science 

observations to detect RFI during normal observations. 

The results of these scans are discussed at a monthly RFI working group headed by the RFI manager 

for MeerKAT. The RFI manager co-ordinates many RFI mitigation activities such as using 

spectrometers on site to track down RFI culprits, measuring equipment for potential RFI before it is 

installed on site, measuring the shielding efficiency of different buildings, modelling the path loss of 

signals generated on site and measuring representative signals to see whether they fit propagation 

models. 

As of December 2012 there were many RFI mitigation strategies in action at all times with the goal of 

maintaining the low RFI levels on site, however there was no continuous monitoring system. 

Although the KAT-7 dishes and other RFI campaigns provide useful, high quality information on the 

environment, they provided snapshots of RFI. This means that it is likely that there was some RFI 

which was not monitored as it occurs outside of these snapshot. 

2.5.3 ReAl Time Transient analYser (RATTY) 

The RATTY instrument was originally developed in order to study the emissions of electric fences 

around the MeerKAT site. An example of the RATTY in use is shown in figure 22. The system was 

designed to be portable and consists of an antenna (not shown in the figure), a Reconfigurable Open 

Architecture Computing Hardware (ROACH) board and a PC. The antenna collects the 

electromagnetic radiation, the ROACH board performs the analogue to digital conversion and signal 

processing and the PC is used for control and data storage. The ROACH board is the basic computing 

unit used in the KAT7 correlator; we will discuss the ROACH board in more detail in the technology 

section of this chapter. 

The RATTY can be configured and calibrated to run using many different types of antenna and ADCs. 

It can be set to any number of channels, bandwidth or integration time. The states of physical LEDs 

on the RATTY can be configured to display the status of different control bits in the ROACH registers 

and the IP address of the RATTY device can be updated. 

The system can record either time or frequency domain signals. In the case of time domain signals 

the power of the signal can be saved at the highest time resolution possible with the connected ADC 

which samples at 1.5 GHz. It is possible to capture nanosecond pulses this way, which is exactly the 

kind of pulses one gets from electric fences. In the frequency domain, the RATTY system can perform 

a 32768 bin Fourier Transform on the time domain data, resulting in a power spectrum from 0 MHz 
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to 850 MHz with a channel resolution of 42 kHz. These spectra can be accumulated for a variable 

time to increase the sensitivity of measurements. 

 

Figure 22 - Example of the RATTY system being used in the field 

The RATTY system is currently being upgraded to be used as a more general tool for RFI 

measurements. As the RFI requirements imposed on MeerKAT subsystems and infrastructure are 

extremely stringent the RATTYv2 is being designed to provide measurements which can verify these 

requirements. The RATTYv2 will have bandwidth of 50 – 2600 MHz with a channel resolution of 1 

kHz to 20 kHz. 

2.6 RFI Detection Algorithms 

Measuring the spectrum is the first step in RFI monitoring. After collecting data we must detect RFI 

in that data. It is possible for an expert to visually inspect the data and find RFI, however this is a 

time consuming process. Using signal processing it is possible to perform automatic RFI detection. It 

is important to ensure that our RFI detection algorithms are effective; we do not want to falsely 

claim a spectrum is free of RFI because our detection algorithm is not sensitive enough. We also do 

not want to spuriously classify clean spectra as contaminated with RFI, as this will result in resources 
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being wasted trying to track down RFI culprits which do not exist. This section discusses what types 

of RFI detection algorithms are appropriate for the type of data that the RATTY system collects. 

2.6.1 Data 

Before describing the different RFI detection algorithms, it is important to have an understanding of 

the data. Firstly the data is a quantisation of a continuous signal. In Figure 23, we see that a 

continuous signal can be converted into 1 of 4 digital values using two bits. The figure shows that the 

digital values that we perform analysis on are not exactly the signal which was received by the 

antenna. An Analogue to Digital Converter (ADC) can only sample at a certain rate and we cannot 

see features which occur over a shorter time frame than the sampling rate of the ADC. The ADC 

quantises continuous voltages into discrete voltage levels at discrete intervals. As a result the digital 

value will always be some distance from the actual value; we call this the quantisation error. It is 

possible for the real value to be outside of the range of possible values that can be quantised, in this 

case we do not know how powerful the real signal was at all, simply that it was higher/lower than 

the maximum/minimum value of the ADC. 

 

Figure 23 - The figure on the left shows how the analogue values map to digital values for a 2bit ADC. The figure on the 

right shows an example quantisation of an analogue signal 

Figure source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node66.html 

Although it is possible to perform RFI detection on the voltage data, this only tells us at what time 

RFI was present, not on which frequencies it was present. It is possible to calculate the contribution 

each frequency makes to total power by using a technique called the Fourier transform. As we 

perform our Fourier transform on digital data, the output is a spectrum showing what contribution 

was made by frequency channels across the bandwidth of our receiver. Each channel’s power is the 

combined power of all of the frequencies within that channel’s band of frequencies. 
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Figure 24 shows what the data coming out of a Fourier transform would look like. At each time step 

we can see that some frequencies contribute more power than others. This allows us to see which 

frequencies have the highest power emissions. As many RFI sources emit on specific frequencies, 

this information allows us to narrow down the possible sources of RFI in our captured data. 

 

Figure 24 - Example of data after it is Fourier transformed. For each time step we get the contribution of each frequency 

channel to the total power 

Finally the data is a combination of signals from different sources with different power and 

probability distributions. The received power signal can be represented by the formula 

                                (Fridman & Baan, 2001) 

        is the signal of interest, or in the case of RFI monitoring, the background noise.         is the 

noise introduced by the receiver. Both         and.         have a normal distribution with a mean 

of zero and will generally be low powered.         is the signal/s of RFI, they can have many kinds of 

probability distributions and power levels as there are many different types of RFI. 
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2.6.2 Frequency and Temporal Thresholding 

One characteristic which separates RFI and astronomical signals is that RFI can be orders of 

magnitude more powerful (A. Offringa, 2012). This characteristic makes thresholding techniques 

useful, although other techniques are needed to detect low powered RFI. It is possible to set a 

constant threshold for all channels based on the knowledge of the RF environment; however, there 

are more sophisticated techniques which estimate thresholds based on the neighbourhood around a 

data point. Thresholding techniques are divided into two categories, those which flag in the 

temporal domain and those which flag in the frequency domain. 

Temporal thresholding can be performed in the time domain, before or after the signal is Fourier 

transformed into a power spectrum. In the case that the signal is flagged before being transformed, 

flagging the data means that all frequency data is lost, whereas performing the flagging after a 

Fourier transform allows for only those frequency channels with RFI to be flagged. The choice is a 

trade-off between the extra time and computation required to perform a Fourier transform and to 

perform RFI detection on each resulting channel versus the extra sensitivity you get by not throwing 

away channels with no RFI. Frequency thresholding can only be performed after a Fourier transform. 

The algorithms for thresholding all work the same way in the time or frequency domain. For both 

cases the higher the resolution of the data, the more chance there is that RFI will be detected 

(Guner, Johnson, & Niamsuwan, 2007). Other than a simple global threshold, it is possible to define a 

threshold based on the varience of spectrum or channel. If the distance of a data point is far from 

the median or mean of the data in terms of its standard deviation, that data point is likely not 

normally distributed, in that case the signal         must dominate and the data point can be 

flagged (Guner et al., 2007). 

We will now describe the steps needed in the algorithm. For our purposes we will detect RFI in a 

recorded power signal                                where   varies either in time or 

frequency. We are interested in determining whether the power at       is contaminated by RFI. 

1. Calculate an estimate of the varience in a window of length    centred at the point     , we 

will call this estimate               . From this we can estimate the standard deviation 

                   

2. Calculate an estimate of the mean or median of the window around the point     , we will 

call this estimate                =    
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3. With   a threshold determined by the properties of the environment 

a) If          >     then flag      as RFI 

b) Else if          < -     then flag      as Unknown 

c) Else      is RFI free 

The result of the algorithm will be either (a)      is most likely RFI as it is significantly more powerful 

than the window, (b)      is significantly weaker than the window or (c)     is within the range we 

accept as unlikely to be RFI (P. A. Fridman, 2008). The outcome (b) deserves some more discussion; 

this result is interesting as it means that the power dips significantly from the immediate neighbours. 

In the temporal case this could mean that a long lasting RFI pulse (i.e. at least half the length of the 

window) has stopped emitting. In the frequency direction, this is less likely to be a result of RFI and 

may indicate an absorption line in a spectrum. 

It is important to ensure you have a good estimate of the standard deviation, which is denoted by  . 

In radio data with interference the combined signal is not strictly normal as RFI introduces strong 

outliers. The outliers significantly affect both the mean and standard deviation calculated using 

    
 

 
               

 

 
   

 

   

 

 

   

 

It is important to find robust ways of calculating statistical properties of the data to make 

thresholding as effective as possible(P. A. Fridman, 2008). 

There are two ways we will use evaluate a robust estimates of statistics. The first is the breakdown 

point which describes percentage of the data that can contain outliers before the estimated value 

differs from the actual value. For a mean or varience calculated in the standard way this value is 0 as 

one outlier can alter the estimation. The breakdown point of the median is 0.5 as 50% of the data 

must be outliers before it affects the estimation of the median. The stability of an estimate is 

achieved at the expense of effectiveness, in the absence of outliers the robustly estimated varience 

is larger than that of a standard estimate. This ratio of the true varience over the estimated varience 

is called the LOSS of the robust estimate; the LOSS of an estimator can be in the range         with a 

value of 1 meaning the estimate is in total agreement with the true varience. In deciding a robust 

estimate of the varience it is important to find a robust estimate where the breakdown point and 

LOSS are appropriate (P. A. Fridman, 2008). 
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The median absolute distance (MAD) estimator is a robust estimator. The median of distances from 

the median is calculated from a sample            . The median is found by ordering the data 

such that                 . The median is the value       , or if   is odd we can interpolate 

the median as                      . The varience can then be calculated using 

    
                                

The MAD estimation lowers the varience of the data, the coefficient 1.4383 corrects for this 

underestimation. The breakdown point of the MAD estimator is 0.5 and the LOSS is 0.6 (P. A. 

Fridman, 2008). This means that the MAD estimator will be robust up until more than half of the 

data points are outliers. 

2.7 Technology 

In this section we will discuss the different technologies available to provide RFI monitoring at 

MeerKAT. 

2.7.1 Databases 

Databases are essentially collections of information which are stored over a period of time. As this is 

a problem which must be solved by many different systems, there exist different database 

management systems (DBMS) to provide reliable data storage and recovery. As any RFI monitoring 

system is going to have to store spectral information over long periods of time, it makes sense to use 

a DBMS to store and access this data(Garcia-Molina, Ullman, & Widom, n.d.). 

A DBMS allows users to create a database with a specified logical data structure (schema); it should 

be able to retrieve (query) the data using an appropriate language; allow the storage of large 

amounts of data; allow for the recovery of data in the case of errors or misuse and control who gets 

access to the data (Garcia-Molina et al., n.d.). As DBMSs have been used for 50 years, there are 

many mature and reliable DBMSs to choose from. 

Most DBMSs are relational databases where all data are logically stored in a table. This allows the 

user to work with a high level language to perform logical operations and create relationships on the 

data without knowing the data storage structure. Separating the data structure allows for more 

complicated and more efficient structures to be used while allowing the database to be conceptually 

simple. Relational databases are the de facto standard for databases which must store large 

amounts of data. 
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In order to create, update and access a relational database we use a programming language called a 

structured query language (SQL). SQL is a language which allows for data definition for declaring 

database schemas and for data manipulation. It allows the user to query and modify a database and 

allows users to create relationships between different data fields. It also allows users to perform 

queries based not only on the values of fields, but the relations between them. 

There are a few different options of DBMSs. Some of the most popular options are Oracle, MYSQL, 

PostGreSQL, Microsoft SQL server and IBMs DB2. Of these MYSQL and PostGreSQL are open source 

packages. This means they are free but lack some of the features of the other offerings. 

2.7.2 Highly Definable File Format 

The KAT7 telescope uses the Highly Definable File v5 (HDF5) format to store most of its data and the 

MeerKAT telescope is planned to use the same format. HDF5 is a technology suite which includes a 

portable file format, a software library to efficiently access and manipulate those files with 

interfaces for most common programming languages. It also includes tools for viewing, manipulating 

and analysing that data. The HDF format was developed by the National Centre for Supercomputing 

(HDF Group, 2011). The development has since been taken up by the HDF Group which is 

responsible for the latest version of HDF and its accompanying technologies called HDF5. The HDF5 

data model, file format, API, library, and tools are all open source and can be used free of charge. 

The HDF format allows users to define their own hierarchical data format which can store multiple 

data groups each of which can contain multi-dimensional arrays with associated metadata (HDF 

Group, n.d.-a). The format allows for the creation of HDF5 groups and datasets. A group is a 

structure containing HDF5 objects which could be other groups or datasets; each group also contains 

a set of metadata which describes that group. The contents of a group can be defined by the user. A 

dataset is a multi-dimensional array of data along with metadata. 

HDF5 files have some useful features; they can be compressed with a range of algorithms. This 

compression can be performed on subsets of the file or chunks of a dataset. This allows access to 

parts of the file without having to decompress the entire file. There is also a parallel version of HDF5 

which allows for parallel access to files using standard libraries such as OpenMP and MPI (HDF 

Group, n.d.-b). 
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2.7.3 Web 

For RFI monitoring systems it is important that information about RFI is easy to access and that 

observers can be alerted to potential RFI as quickly as possible. We have seen that at some 

telescopes the RFI monitoring systems use static PDF files or offline data analysis and special 

software packages to provide data to users. These systems either do not provide immediate access 

to RFI data or required access to the RFI monitoring servers. Although these methods have been 

successful, it is possible to provide data quickly to users on client machines far faster. Widely 

disseminating information to computers without using any specialised software other than a web 

browser is exactly what the web was designed to do. As such the web should always be considered 

when information must be shared easily and quickly. 

The World Wide Web is a set of technologies which allows for the sharing of information over the 

internet. It is based on 3 fundamental technologies developed in the 90s (World Wide Web 

Foundation, 2012); these are the HyperText Markup Language (HTML) a language for formatting 

documents; the Uniform Resource Identifier (URI), a unique address for each web page on the web 

and Hypertext Transfer Protocol (HTTP), which allows for retrieving resources across the internet 

using a link on a webpage. Web uses the internet to make access to data around the world simple 

and universal, that is anyone with an internet connection and a web browser has access to all of the 

information on the web. 

In order to provide interoperability of services on the web, an organisation called the World Wide 

Web Consortium (W3C) develops standards for web services, servers and browsers. These standards 

are implemented in many open source and proprietary solutions. The standards ensure that web 

pages and services are interoperable regardless of who implemented them. This set of standards is 

what allows for virtually any kind of computer with a compliant browser to access most web sites 

and services. The easy access to information provided by these technologies is what makes the web 

arguably the most powerful communication medium on Earth. 

Two important standards developed by W3C make designing attractive and functional websites 

simpler are Extended HTML (XHTML) and Cascading Style Sheets (CSS). XHTML provides a language 

for defining the structure of the web site. XHTML includes the ability to publish documents, text and 

images, provide hypertext links which point to other online information and to embed web 

applications directly into a webpage. CSS is a language for describing the presentation of the 

information in HTML; CSS defines the colours, layout and fonts of the page. CSS also allows for the 
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content of the web page to be displayed differently according to the device the page is viewed on 

(World Wide Web Consortium, n.d.-a). 

One of the most powerful technologies available for web development is scripting, mainly 

performed using a language called JavaScript. JavaScript is a programming language which does not 

need to be compiled to be run. The browser will run the code straight from the source file. JavaScript 

allows for the web page to be dynamic; content on the page can be altered and content can be sent 

from the page to a server without resending the HTML or CSS pages. Data can be sent which simply 

update elements already present. The scripts also allow web pages to incorporate data from the 

user’s environment such as location, local time, etc. This added dynamism allows for web pages to 

act as fully fledged applications, much like traditional programs. The caveat being that the web 

browser used must implement all of the required functionality JavaScript used in the application. 

JavaScript is generally slower than native code such as c++ and different browsers will have different 

performance (Webber, 2011; World Wide Web Consortium, n.d.-b). 

HTTP is the protocol used to send information between applications on the web (Kristol, n.d.). The 

HTTP protocol is a request/response protocol, where one application must request information in 

order to get a response containing the information it requires. HTTP is used on top of the normal 

internet protocols, normally the Transmission Control Protocol (TCP). 

Most of the time people deal with the client side of the web, using their PCs or other devices to 

access information which is being served. However to create a website a server of some kind is 

needed. A server can be divided into 2 sections, the hardware and the software. The hardware is 

generally a computer which is connected to the internet. The server software responds to HTTP 

messages sent over the internet by clients who are interested in accessing information on that 

server. 

Servers contain the files required to serve a webpage to clients. These include the HTML, CSS, 

JavaScript files and content, such as images, sounds, videos and documents. These files are stored 

using the basic file system, a database or a content management system. The Server software 

decodes a HTTP request and returns the files needed to render a webpage. There is a large and 

growing number of possible server software available. The most popular of these software in order 

of popularity are Apache, Microsoft and nginx which are used by 42%, 29% and 14% of websites 

respectively (Netcraft, 2014). 
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2.7.4 Reconfigurable Open Architecture Computing Hardware (ROACH) 

The ROACH board is a primary building block of the signal processing chain for many modern radio 

telescopes, including the KAT7 and PAPER telescopes. The ROACH board was developed largely in 

South Africa by MeerKAT engineers as part of the Collaboration for Astronomy Signal Processing and 

Electronics Research (CASPER) (CASPER, 2013; Parsons, Werthimer, & Backer, 2009). The idea behind 

the ROACH board was to facilitate the development of signal processing back ends. Rather than 

developing Application Specific Integrated Circuits (ASIC) and customised networking protocols for 

radio telescopes, the ROACH philosophy is to use commodity products where ever it is 

advantageous. The ROACH board is built using commodity processors and networking. 

Previously the signal processing systems of radio telescopes needed to be custom built due to the 

costs of Digital Signal Processing (DSP) technology. However this approach requires years of 

development and integration in order to create a functioning telescope. As the commercial use of 

DSP technology has increased, advances in commercial DSP technology have made the older 

approach counter-productive (Parsons et al., 2009). By using commodity hardware, all advances in 

the commercial DSP field can be included in telescopes. This allows engineers to focus on the 

construction of scalable, general purpose solutions to radio astronomy DSP problems. New 

telescopes can then use the solutions of older systems scaled appropriately, rather than designing 

new systems (CASPER, 2013). 

The ROACH v1 board is a DSP computing platform designed with these ideas in mind. The main 

processing is performed by a commodity Virtex5 (CASPER, 2013) based Field Programmable Gate 

Array (FPGA). FPGAs are chips which can be programmed after manufacture. Unlike an ASIC which 

has a pre-determined function an FPGA can be re-programmed to adapt to new standards and 

applications. 

It is possible to develop libraries for FPGAs which allow the functionality of algorithm to be 

parameterised and installed on different FPGAs (Parsons et al., 2009). This allows for a DSP algorithm 

to be taken from an old FPGA and redeployed on a newer, faster FPGA, or to scale the algorithm up 

or down depending on the particular application. Upgrading or altering ASICs on the other hand 

requires designing and manufacturing a completely new chip. 

The other major advantage of ROACH boards is that they use commodity networking hardware and 

protocols. This means that it is possible to connect the ROACH to any other commodity hardware 

which has implemented the same network interface/protocol. This allows the ROACH board to be 
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used in heterogeneous computing systems where data is processed by FPGAs, commodity CPUs and 

Graphical Processing Units (GPU). 

2.7.5 Python 

Python is one of the most popular, high level programming languages in use today(Redmonk, 2014). 

It is an interpreted language which, although it generally runs slower than compiled languages like 

c++, it also has a lower development time. It is interoperable with many other languages and runs on 

the major operating systems, with many wrappers for popular languages such as MATLAB, Java, c++ 

and CUDA (Python Software Foundation, 2012), this makes it very useful for interfacing with diverse 

systems. 

Python is slow for large numerical calculations. There are libraries which can mitigate this problem 

for scientific applications. The library used by MeerKAT engineers is Scipy. The most fundamental 

part of Scipy in terms of efficiency is Numpy which implements N-dimensional array manipulation in 

C (Numpy Developers, 2013). When performing Numpy functions on Numpy data types and arrays, 

the processing is generally 3 orders of magnitude faster than normal python code. 

For these reasons Python is the scripting language of choice used by MeerKAT engineers. The ROACH 

board has a Python interface and all of the scripts for the RATTY device are written in Python. Python 

has libraries for manipulating HDF5 files and popular databases, there are also web frameworks 

developed for Python. It can fulfil most of the scripting needs of the engineers at SKA SA. Also as the 

development timeline for the MeerKAT telescope is short and the manpower limited, the quick 

development cycle of Python is useful. 
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3 Design 

In order to provide RFI monitoring for the MeerKAT telescope we designed and implemented a 

system which samples the Radio Frequency (RF) environment, detects Radio Frequency Interference 

(RFI) events and makes this data available for the end users. We call our monitoring solution the “RFI 

monitor” or simply “monitor” for the rest of this thesis. 

In this chapter we state the goals of our RFI monitor in section 2.1. The limitations of the available 

resources are discussed in section 2.2. We describe the users of the monitor and their requirements 

in section 2.3. We provide the reasoning behind our design approach in section 2.4. Finally we state 

our design decisions and show how these decisions were informed by the goals, requirements and 

limitations in section 2.5. 

3.1  High Level Requirements 

The first requirement of the monitor was to provide a continuous high time resolution record of the 

RF environment. The resolution of the data need to be high enough in the time dimension to 

describe short spikes in RF that are caused by transient events, such as lightning strikes and sparks 

which last in the order of 10s of microseconds. As we cannot predict when these events will occur, it 

is necessary to monitor continuously to ensure that no RFI is missed. 

The second requirement of the station was to provide automatic RFI detection. This automatic 

detection allows the system to be an active part of the site management. Rather than simply 

providing continuous data from which the user can find RFI themselves, this allows the user to be 

informed of new RFI as and when it is detected. This also allows users to know when and where the 

most RFI is generated, allowing for RFI to be avoided when using valuable observation time. 

The third requirement of the station was to provide access to the data. This was an obvious but very 

important requirement for the station, since the data are not useful if they are impossible to obtain 

or understand. The requirement was not only to make the data available, but also to provide useful 

visualisations of the data which allows the user to easily work with and understand the RF 

environment. To ensure users cannot corrupt the data they are not allowed access to the original 

raw data files as they could mistakenly alter values or corrupt the formatting. 

3.2 Resources 

Our RFI monitor was implemented using hardware made available by SKA-SA. As our resources were 

finite the hardware placed limitations on our monitor. We had to understand these limitations in 

order to ensure that our goals could be met. We also had access to existing software which provided 

some basic functionality required by the system. In this section all of the hardware available for the 
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system will be described and the limitations the hardware placed on our system will be discussed. 

We will also see what software was available and whether this software could be used as part of the 

monitor. 

Table 5 - Table of the resources provided by SKA SA and a description of each resource 

Resource Description 

ROACH board Standalone FPGA processing board based on Virtex5 FPGA 

KatADC 8 bit ADC 

1.5 GHz max sampling frequency 

Sampled bandwidth 50MHz to 850MHz 

DELL PowerEdge R410 server 2 × Quad-core Intel E5640 @ 2.67GHz 

1TB HDD 

8GB DDR3 RAM 

Rohde & Schwarz HL033 Antenna Frequency range: 80MHz to 2 GHz 

Directional 

Typical radiation pattern shown in figure 26 

Spectrum analyser code FPGA code to calculate a spectrum from time domain power 

values collected by the ADC 

Data collection scripts Python scripts used to control the RATTY system 

 Configure ROACH 

 Start data capture 

 Display spectra 

 Save spectra to hdf5 file 

 Display saved spectra 
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Figure 25 - Diagram of the RATTY system. The antenna is connected to the RATTY via a coaxial cable. The signal goes 
through the analogue chain and is digitised by the ADC. Then the signal is run through a polyphase filterbank, 
accumulated and sent to a connected PC which can store and analyse the data. 

The resources available were essentially all of the components of a RATTY system along with some 

extra hardware which was donated by the SKA-SA group. A more full description of the RATTY system 

can be found in the background chapter. In Table 5 we show each resource along with a short 

description of each resource. 

A diagram for the RATTY system is shown in Figure 25. It shows how the voltage signal from the 

antenna is sent into the analogue chain of the RATTY system, which amplifies the signal, passes it 

through a low pass filter, and a low noise amplifier before it is digitised with the ADC. The ADC is 

connected directly to the ROACH board, the digital signal is processed on the ROACH boards FPGA.  

The FPGA is programmed to run the signal through a 4 tap Finite Impulse Response Filter and a 

32768 sample FFT. It is then accumulated for a configurable amount of time. At this stage we have an 

accumulated spectrum. The spectra are sent to a connected PC over Ethernet where the spectra are 

converted into power spectra and finally saved to an HDF file. 
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Figure 26 - Typical radiation patterns for antenna 
Image src : http://cdn.rohde-

schwarz.com/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/HL033_cat_2015_78-79.pdf 

3.2.1 Limitations 

These resources imposed limitations on our system. The limitations are listed below in order of how 

serious the limitation was to our system. 

Limited bandwidth – The ADC could only capture spectra below 850MHz. This meant that our 

system would only be able to monitor a portion of MeerKAT’s observation bands (SKA SA, 2011). As 

such our monitor was a proof of concept and could not be used for the final monitoring solution until 

an adequate ADC is used. 

Limited storage – An inevitable consequence of continuous monitoring was that the data would 

eventually grow larger than the hard drive. 

Limited memory (RAM) – The data was large. We would not be able to hold all of the data in 

memory, processing should be performed on pieces of data which can fit in memory. 

Limited Processing – We had 8 cores to perform processing; it was unlikely that we would need more 

processing power. 
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3.3  Users 

The RFI monitor has 3 types of users; astronomers, engineers and site management. Each of these 

users gains valuable information from the RFI monitor. This section describes how each of these 

users could use the RFI monitor if it were to accomplish all of the goals stated earlier. 

3.3.1  Astronomers 

Astronomers are the main end users of the telescope. They are generally skilled in mathematics and 

physics. They are typically comfortable working with spectra as raw data as well as standard 

visualisations of spectra. Astronomers are experienced in computers and have some programming 

experience, most are comfortable working with standard programs such as spread sheets, web 

browsers and other common computer applications (Asa, 2013). 

There are a few possible ways that astronomers would use the RFI monitor: 

RFI detection/removal – RFI is likely to contaminate at least some of the bands that an astronomer is 

observing on. The astronomer must identify RFI present during their observations or risk inaccurate 

results (Ekers & Bell, 1999). The astronomer can use the RFI monitor to find when and on which 

channels RFI was detected and whether the power of the signal was high enough to corrupt their 

observations. This information can be used to find and remove RFI from their observations. 

RFI avoidance – When planning their observations astronomers will have access to occupancy charts 

for each hour of the day and each channel captured by the RFI monitor. They can use this 

information to decide whether they should use certain channels or times of day for their 

observations. This is arguably more valuable than RFI detection as the ability to intelligently avoid RFI 

contamination will lead to less corrupted data in observations (Boonstra, 2001). 

3.3.2 Engineers 

The MeerKAT telescope is being built by a group consisting largely of electrical engineers. They 

generally have a very good knowledge of computer systems and programming and most have 

significant knowledge of the spectrum. They should also be comfortable working with raw data as 

well as standard visualisations of spectra. Most are comfortable working with standard computing 

applications and are likely comfortable working with technical applications, using the command line 

and other more advanced uses of computers. 

RFI detection – One of the main goals of the engineers is to ensure that the RFI generated by the 

instrument itself and the surrounding infrastructure is minimal. They will be able to use the RFI 

monitor to check if there was a significant increase in RFI after they installed a particular piece of 

equipment (Boonstra, 2001). 
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RFI record – Engineers need to know the likelihood of strong narrow-band RFI so that they can 

design the signal chain with enough headroom. Otherwise strong RFI could damage the system. If 

they find that there is some RFI in observations and engineers are unsure whether this is internally or 

externally generated, they can check whether the RFI was captured by the monitor. If both MeerKAT 

and the monitor capture the same signal, then that signal cannot be introduced from some internal 

component of the signal pipeline. This will allow them to not waste time looking for possible internal 

RFI which in fact does not exist (Boonstra, 2001). 

3.3.3  Site Management 

Site managers are likely to be technically skilled; a dedicated RFI manager will have intimate 

knowledge of the radio spectrum. However other site managers may not be comfortable working 

with the raw data and would benefit significantly from clear visualisations of spectral data and 

automatically generated lists of RFI events (R. Lord, personal communication, 7 June 2013). 

RF record - The most valuable part of the monitor for site management is likely to be the continuous 

record of the spectrum and RFI events. This will allow the manager to find or be notified when there 

is a significant increase in the amount of RFI being captured. This will allow them to act as soon as a 

new RFI culprit starts emitting signals. It is important to stop RFI culprits as early as possible before 

the use of the device becomes habitual, at which stage it will be significantly harder to stop people 

from using it. 

RFI detection and RFI record - Another valuable use of the monitor is that it can be used to prove to 

a RFI culprit that they are indeed causing an unacceptable amount of RFI. The radio frequencies 

around the site are protected in a radio quiet zone, which makes the use of certain electronics illegal. 

However, without any proof, it will be hard to convince locals that a particular device is in fact 

causing a problem. If it can be demonstrated that a certain type of RFI captured by the monitor only 

occurs when the device is in operation, this will give the RFI manager far more leverage in 

confrontations with RFI culprits. If there were no monitor, it is likely that RFI culprits would be 

noticed later; be harder to find and it would be harder to prove culpability. 

 

3.3.4  User Requirements 

From the description of the users above we distilled some requirements of our RFI monitor. These 

were the data products that the RFI monitor had to make available to satisfy the needs of all users. 

The requirements and the users of each requirement are shown in table 6. 
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Table 6 - Table showing user requirements of the RFI monitor 

Requirement High-level 

requirement 

Description Users 

Automatic RFI 

detection 

Automatic RFI 

Detection 

The monitor must automatically 

detect RFI events 

Astronomers 

Engineers 

Site 

Management 

RFI record Continuous high time 

resolution record of 

the RF environment 

The monitor must maintain a 

record of every detected RFI event 

Astronomers 

Engineers 

Site 

Management 

RF record Continuous high time 

resolution record of 

the RF environment 

The monitor must maintain a long-

term continuous record of the RF 

environment 

Site 

Management 

Access to raw data Access to the data Allow experienced users to perform 

their own analysis 

Astronomers 

Engineers 

Data Visualisations Access to the data Make large data set 

comprehensible 

Allow users with less experience 

with spectra to use data 

Astronomers 

Engineers 

Site 

Management 

Descriptive 

statistics 

Continuous high time 

resolution record of 

the RF environment 

Statistics which add understanding 

to the underlying signal provided 

along with spectral data. 

Astronomers 

Engineers 

Site 

Management 

3.4 Design Approach 
The design approach which we used was evolutionary prototyping. Evolutionary prototyping is an 

iterative process which allows for user input throughout the development process. The basic idea 

with this approach is to provide a basic prototype which can be incorporated into the final system. 

The prototype is presented to the users who provide feedback. The developer then uses this 

feedback to design the next prototype which ideally is built on the previous prototype. This process 

continues until the final prototype fulfils all of the user requirements. The final prototype is the final 
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system, unlike “throw-away” prototypes, where small prototypes are used to test out ideas but 

ultimately are not used as part of the final system (Vennapoosa, 2012). 

The motivation for using evolutionary prototyping for this project was that our monitor should start 

collecting data before the whole system was complete. This was valuable as the longer the record we 

have of the RF environment, the easier it is to see long term changes in RFI. Also, as the whole 

system was supposed to work automatically for very long periods, we needed to test each 

component for a number of months to ensure it could function over those periods. If we used throw-

away prototypes, we would have had to stop testing the functionality of the last prototype each time 

we implemented a new prototype. This was mainly because we only had 1 ROACH board and 

antenna, so we could not simultaneously run two instances of the monitor. 

Table 7 - The 4 prototypes, the functionality they add and which requirements they satisfy 

Prototype Functionality Requirements satisfied 

1 - Data capture Capture spectra from RATTY 

Save spectra in searchable format 

RF record 

2 - Archival Calculate hourly descriptive statistics 

Store statistics in searchable format 

Delete “old” raw data 

Descriptive statistics 

3 - RFI detection Perform RFI detection on raw data 

Extract RFI events 

Calculate descriptive statistics from RFI events 

Store in searchable format 

Automatic RFI detection 

RFI record 

4 - Access Create web site with access to: 

Raw data 

Visualisations 

Access to raw data 

Data visualisations 

 

For our monitor we designed and implemented 4 prototypes to provide and test the functionality of 

data collection, storage and access. Table 7 shows the 4 different prototypes and the requirements 

which they satisfied. The first prototype provided the ability to capture and store raw spectral data. 

The second prototype provided the calculation of descriptive statistics and long term archiving of 

these statistics. The third prototype provided automatic RFI detection and storage. The final 

prototype added the ability to access the data which the first 3 prototypes collect, calculate and 

store. 
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3.5 Design Decisions 
After gathering user requirements it was possible for us to get a high-level idea of what the RFI 

monitor should do. First it had to automatically and continuously gather data from the existing 

RATTY system. After collecting data the monitor should then run an automatic RFI detection on 

collected spectra and calculate a number of descriptive statistics that astronomers and engineers 

use to better understand the spectra. The raw spectral data, RFI detections and descriptive statistics 

are then stored in a searchable format. Finally the monitor had to provide access to these data. 

Figure 27 presents a high-level diagram showing data flow and processing for the RFI monitor. 

 

 

3.5.1  RATTY 

In order to use the RATTY system to measure spectra for our monitor, we first needed to alter the 

existing software to make data collection automatic and continuous. Originally human guidance was 

needed throughout the data capture process. We needed to alter the RATTY so that it could be 

started and run indefinitely with no human intervention. The control scripts for RATTY were written 

in Python. Converting these scripts to perform automatic spectra capture was the first task when 

developing the initial raw data capture prototype. 

3.5.2  RFI Detection 

There are many algorithms which exist to detect RFI in a signal; ranging from very simple 

thresholding to complicated statistical techniques which require intimate knowledge of the RF 

environment. The method chosen to implement was called thresholding based on the varience of 

the signal. The reason we chose this method is that it is simple and effective. The algorithm was 

already being used for the bi-weekly RFI scans and had proven its reliability. We allowed for other 

RFI detection algorithm to be used instead of thresholding if a better algorithm was found by 

defining interfaces on both sides of the RFI detection algorithm. Any algorithm implemented with 

the correct interface would fit easily in the RFI monitor. 

Figure 27- High level data flow of RFI monitor 
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Once RFI has been detected we store the detections in the form of RFI ‘signatures’ which could be 

used to find the cause of RFI. The information that would make up a RFI signature is described 

below. 

Detection time – The time that the RFI signal was detected 

Event length – The duration of the RFI event 

Average power – The average power for each channel that RFI affected 

Max power – The maximum power level for each channel 

Min power – The minimum power level for each channel 

Median power – The median power for each channel 

Low channel – The lowest channel affected by the event 

High channel – The highest channel affected by the event 

We also store the raw data for the time period and channels which are affected by RFI. This will 

allow for users to better understand what the source of the RFI might have been. 

3.5.3  Storage 

Monitoring RFI creates a large amount of data. It is important to store this data in a way which 

maintains the data integrity and can handle both the continuous input from the RATTY system and 

intermittent access from users. The best way to achieve this was to use a database. This is because 

databases are mature technology which has been designed for maintaining large collections of data. 

All of the databases were implemented in MYSQL because it is a mature and reliable product which 

is free and many people have experience using it. It is also the format that the current bi weekly RFI 

scans (See section 2.5.2) are stored. It made sense for all databases to have the same format. 

From our requirements we saw that there are 3 different types of data that users would be 

interested in. The raw spectral data which is provided by RATTY, the descriptive statistics which are 

calculated each hour and the RFI detection data. As most of the incoming data is raw data, it makes 

sense to separate this data into a high-input database which can handle a high amount of 

continuous input. It was important to make this data easy to search and we should store it in a 

database which focuses on efficient access. 

As the process of this design was iterative there were 3 prototypes implemented to test the design 

of data capture and storage. Figure 28 shows what processing is performed by each prototype. Each 

of the three data types are stored in a separate databases; each prototype focuses on providing the 

data that belongs in each database. In order to effectively use our multi-core machine, each 

prototype’s processing is performed by a separate thread. 
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3.5.3.1  Basic prototype 

The idea for the first prototype was to provide a database which could store all the data which is 

captured and calculated each second. The DB had to store at least the raw data and most basic data 

products to ensure that we could store a complete description of the RF environment with a high 

enough resolution to be used for the intended RFI detection. 

This design was meant to hold just the data which describes the RF environment. It did not contain 

any extra information on RFI as there was no RFI detection for the first prototype. The goal with this 

initial implementation was to have a system which could store all of the data at the rate that the 

RATTY system captures. We also wanted to ensure that the database could respond to requests. This 

prototype was meant to be a skeleton on top of which the rest of the monitor could be built. 

We decided to use the Frequency Domain capture of the RATTY. It was the most appropriate for our 

continuous monitoring system. The data rate of the time domain capture is simply too high. The 

trade-off is that more time samples in the particular frequency than is strictly necessary may be 

flagged.  Also, in the event that there is RFI for which we do need to get a high resolution TD scan, 

we can stop monitoring with the FD mode and use the original RATTY software to perform a TD scan. 

The functionality will still exist, it will just not be the standard mode of operation  

3.5.3.2  Archival prototype 

After implementing the above database and running the monitor for 3 months, it became apparent 

that the data rate of the monitor was too high to store high resolution data permanently. In fact it 

took only 3 months to fill the entire 1 TB hard drive on which the database was stored. Seeing as this 

RFI monitor is meant to store many years’ worth of data this was a situation which we had to rectify.  

There were two options to increase the lifetime of the monitor storage, the simple solution was to 

simply increase the amount of storage space. The other option was to reduce the amount of stored 

data. If we chose the second approach we had to ensure that the data stored could describe the 

general RF environment and how it changed over long periods of time and also be able to describe 

RFI events in a high resolution. In both cases we could consider archiving the data on a separate 

storage medium like DVDs for long term storage, although that data would no longer be easily 

accessible. 
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Figure 28 - Diagram of first 3 prototypes and how they communicate. 

We preferred option two, the main reason was that high resolution data was not required to 

describe the average RF environment or how it changes over years. Hourly statistics are more than 

adequate for a long term description of the RF environment. We did still need high resolution data 

to detect and characterise RFI. However, RFI affects only a small fraction of the spectral range 

captured. It was not cost effective to store data where only a small percentage of that data would 
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actually be required. Since we planned on implementing an RFI detection algorithm, we could use 

detection information to intelligently ‘compress’ the data. 

Table 8 - Table showing the expected data rate for each form of data 

Data Data rate 

Raw spectral data 450.00  MB per hour 

Hourly statistics 1.06 MB per hour 

RFI data 11.25 MB per hour 

Total 462.31 MB per hour 

 

We were planning on calculating hourly statistics for each channel which described the RF 

environment and how it changed over long periods of time. This data had to be stored indefinitely to 

fulfil our long term record requirement. If the only high res data we stored indefinitely was those 

parts of the spectrum which were affected by RFI, we would save space while still having a long term 

record of the RF environment and high resolution data on RFI events. If we assumed RFI to be 

present in 5% of high resolution data and we knew that the hourly statistics are 150th of the space 

of the raw data over that hour, then storing only the hourly stats and high resolution RFI spectra we 

could increase the storage time of the RFI monitor from 3 months to 55 months. If we always stored 

at least the last 2 months of high resolution data, we can still increase the lifetime of the RFI monitor 

to 20 months, without adding any extra hard drives. Table 8 shows the expected data rate for each 

of the data types. 

Eventually it would be necessary to either add more hard drives to the monitor or move some of the 

data on the monitor to another location. This was an inevitable outcome of providing a continuous 

record of the RF environment. However extending the lifetime of the monitor in this way made it a 

far more cost-effective solution. 

 

3.5.3.3  RFI archival prototype 

We needed to keep a permanent record of all detected RFI, however because of space concerns we 

chose to delete all raw data after two months of capturing it. In order to keep high resolution data 

on all detected RFI, we had to extract the high resolution data from our initial database and store it 

permanently in an RFI archive before deleting the raw data. This database meant that even if a user 

wanted to access high resolution data on RFI many months after the original data had been removed 
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from our raw database, they would still be able to get high resolution data on the detected RFI 

events. 

3.5.4  Access 

We needed to provide an interface through which users could access and interact with the data. The 

interface had to make it easy to quickly access relevant information. The intention was that the 

interface would provide visualisations that add value to the data products. 

As we wanted to make data access as simple as possible, we decided to provide access using a web 

site. This meant that anyone with a web browser would be able to access our RFI monitor. Another 

reason to use the web was that there are many products available to make the web design and 

implementation process easier. 

3.5.4.1  Web Framework 

As creating web sites has become such a common task there are many frameworks to choose from 

which provide a skeleton of a website as well as the ability to generate web pages based on 

templates and variable data. These frameworks make the process of building and maintaining a 

website easier and generally allow for a standard and clear separation between content, style and 

templates. 

The web framework we used for the web interface was the Pyramid framework. This is a python 

based web framework. The reasons for using Pyramid were that all of the software written for the 

original RATTY system was in python and a lot of the MeerKAT tools were in Python. It seemed 

prudent to use the same programming language for the whole system. Other than being a python 

framework, pyramid was powerful enough to provide all of the functionality we required for our 

interface and had a strong online community with good tutorials. 

3.5.4.2  Visualisations 

As the amount of data produced by the RATTY device was large, it was not possible to quickly 

understand the data by simply looking at the raw values. While many users would have the skills to 

analyse the data, the process of downloading and analysing the data would reduce the ability for the 

information to be acted upon timeously. It is important that the data is provided in a format which 

can be quickly digested. For this reason we decided that the monitor had to include some data 

visualisations to make the information truly accessible. 

We decided to provide two visualisations which are standard tools of radio astronomy and RF 

engineering and also have wide usage in most fields that deal with data analysis. The visualisations 

chosen were a simple line chart and a waterfall plot (you may be more familiar with the term heat 
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map).We decided it should be possible to save the visualisation as an image file and that 

graphs/plots should be interactive. The users should be able to zoom in and pan around the data. 

We also wanted to display the value of any data point which can be selected with the cursor. 

Line Charts 

Figure 29 shows an example of a 1 second spectrum captured using the RATTY software. The 

channels shown span from 0 – 900MHz. This plot was produced using the standard visualisation 

available using HDFView, a standard program to view HDF5 files. We decided to create a javascript 

linechart library which could plot all frequency channels in one spectrum in the web browser. 

For the initial prototype we decided to provide a line chart which updates as new data is captured, 

allowing the user to see the latest spectrum captured. After this we it would be trivial to use the 

same visualisation to plot all hourly stats and also allow individual channels to be plotted over time. 

 

Figure 29 - Example line chart of RATTY spectral data created by HDFView 

Waterfall plots 

Waterfall plots are a classic way to graph frequency, time and signal amplitude. Figure 30 shows an 

example with time and frequency on the axes and amplitude plotted as colour intensity. These plots 

use the same idea as a heat map. These plots would allow our users to view the changes on multiple 

channels and times at once. We decided the user should also have a overlay which shows when and 

on which channels RFI was detected by the system. The users would then be able to look at an entire 
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hours worth of data and have a quick visual cue to how much RFI was present across that spectrum 

over the hour and which channels were worst affected. 

 

Figure 30 - Example waterfall plot generated with using an hour of data from RATTY. The intensity of the colour maps to 

the power of the RF at that time and channel. 

3.5.4.3  Files 

We decided to provide users with the ability to specify a selection of data to download. The data 

would be available in Comma Separated Value (CSV) format. This would allow astronomers to 

download all high resolution data from the database after their observations, so long as they got the 

high resolution data within 2 months of their observation. If data was retrieved after the 2 month 

deadline there would still be high resolution data on all RFI detected by the RFI monitor. Hence 

anyone could use the data to perform their own analysis in the program they are most comfortable. 
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4 Implementation 

In this chapter we discuss the implementation of the RFI monitor. In this process, the RFI monitor 

went through four prototypes. The initial horizontal prototype constructed a basic RFI monitoring 

system. Subsequent prototypes developed the long term archival of data, RFI detection and 

visualisation via the web. Here we describe the implementation of the prototypes which culminated 

in a working RFI monitor on the site of the MeerKAT telescope. In the interests of keeping each 

section focussed on the main goals of each prototype, the final database structures implemented for 

each prototypes 2, 3 and 4 have been described in a separate section 4.5.  All code can be found in 

the appendix. 

4.1 Prototype 1: Basic Operations 

The initial prototype comprised a data collection class based on the original RATTY code, a database 

to store the data and a web page running on a web framework which provides access to the data. 

The database and web framework combined make a classic Model, View, Controller (MVC) pattern. 

The model is all of the data which is contained in the DB, the controller is the web framework 

combined with the RATTY code and the view is the web pages in the framework and the structural 

data contained in the HTML. Figure 31 shows the components of the RFI monitor in the initial 

prototype. 

 

Figure 31 – Components of the initial prototype. Green blocks were complete. Yellow blocks had basic functionality and 

grey blocks had no functionality in the initial prototype. 

4.1.1 Data Collection - RATTY Software Consolidation 

The software is reliant on the RATTY board (discussed in section 2.5.3). The original RATTY software 

contains a script rfi_spectrum.py which initialises the RATTY in FD, sets the calibration for the 

system, sets the integration time of data capture and saves that data to an HDF file. This code was 

encapsulated in a class which allows integration with other applications. The class roach_handle.py 

contains all of this functionality. The only change to the original code is that the initialisation of the 

RATTY is moved into two methods. Communication with the ROACH board was moved from the 

_init_ script into the roach_handle object initialisation. The rest of the initialisation contained in the 
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rfi_spectrum script was copied into a method called rfi_init which loads the FPGA code onto a 

connected RATTY device. All of the data access methods were simply copied as they were in the 

rfi_spectrum.py script. This gives us one class, roach_handle, which can initialise the RATTY system, 

calibrate the system, set the integration time, start data collection and pass that data to another 

application. 

Table 9 - Hardcoded values which were moved into the system_parameters file 

Hardcoded value name Description 

bitstream Location of the firmware to load onto the ROACH FPGA 

n_chans Number of channels in each spectrum 

n_par_streams Number of data streams in the FPGA firmware 

desired_rf_level The desired power level of signal 

adc_type Type of ADC connected to ROACH 

Spectrum_bits Number of bits for value of each channel in spectrum 

fft_shift Number of channels to shift fft by 

gain_map Array of gain mappings. This was moved to the gain_map csv. The 

system_parameters file simply has the location of the gain_map file 

bandpass Location of bandpass csv 

 

The initial code contains two classes, one for control and monitoring (cam.py) and one for calibration 

(cal.py). The cam.py class was not changed, however the cal class contained hard coded values. 

These hard-coded values are shown in table 9. We removed the hard-coded values from within the 

cal class and the rfi_spectrum script into csv files and a human readable configuration file called 

system_parameters. The antenna calibration and gains are either already in csv files or are hard 

coded into Numpy arrays. We copied the hard coded values into separate csv files and added the 

location of those files in our system_parameters configuration file. All of the values in the config file 

can be accessed using python’s standard option parser library. Now, to change the configuration of 

the RATTY system we edit one, human readable configuration file. To calibrate the system for a new 

antenna or ADC for example, we calibrate that new part of the system and save the calibration data 

in a CSV file. 

This means RATTY can be altered to accommodate new hardware as and when it became available 

without the need to alter any code. We can simply run the standard python setup.py file provided 

and the RATTY will be accessible in any python code or the python interpreter by importing the 

library. After re-structuring the RATTY system had the structure shown in Figure 32. 
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Figure 32 - Structure of roach_handle class. It contains instances of cam and cal to gather spectra with the RATTY. 

cam.py controls the RATTY and data access. cal.py calibrates the RATTY using data from the system parameters. The 

diamonds indicate that the an instance of the class is used. The arrows are simply links which point to data in another 

file. 

By this point all initialization was handled by the roach_handle class and using a roach_handle object 

we can start the RATTY system collecting spectra. All data could be accessed using the method 

get_unpacked_data. The data is returned as a Numpy array, it is then possible to pass it to code 

which analyzes the data, displays the data or simply saves the data to file. 

4.1.2 Data Storage - Database Prototype 

The data capture prototype software has a simple database which holds the spectra captured by the 

RATTY system and a class to handle databases requests. MYSQL was chosen as the DBMS we would 

use for our RFI monitoring system. 

There are two tables in the database. The system table contains configuration information of the RFI 

monitor; this allows us to recreate the system used to capture a spectrum. The contents of the 

system table are shown in Table 10. In case we discover that the data is unreliable and need to 

recalibrate it; we will know the configuration of the system which captured it. Table 11 shows the 

structure of the spectrum table. This contains the data returned by the get_unpacked_data method, 

this includes the actual spectrum and a timestamp of the spectrum. 
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Table 10 - The System table. It contains all data on the configuration of the RFI monitor 

Field name Data type Description 

n_chans integer Number of channels in each spectra 

n_accs integer Amount of accumulations for each spectra 

(determines the rate of spectral dumps) 

bitstream String The location of the FPGA code 

bandwidth Double the size of the range of frequencies that can be 

observed 

adc_type String the name of the ADC used 

spectrum_bits integer the number of bits for each value in the spectrum 

rf_gain double The gain of the antenna 

 

Table 11 - The spectrum table. It contains all the data captured with each spectrum 

Field name Data type Description 

spectra Variable length string Spectrum 

acc_cnt integer The number of spectra captured since capture 

started 

timestamp Unsigned integer The time the spectrum was captured as a Unix 

timestamp 

adc_overrange int 1 if the voltage level was too high to be captured by 

the ADC for any sample in the sample period, 0 

otherwise 

fft_overrange int 1 if the power of a channel of the spectrum was too 

high to fit in 32 bits 

adc_level double The lowest power level the ADC could capture 

ambient_temp double The temperature at the time of capture 

adc_temp double The temperature of the ADC 

system_id Unsigned integer The id of the system configuration 

 

The database is accessible by other parts of the RFI monitor code. We coded a python interface 

between the database and other software. This class is called dBControl.py. It contains methods 
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which allow data to be added to the database and to retrieve the latest spectrum in the database, 

insertDump and getCurrentSpectrum respectively. 

For the initial prototype we store all of the spectra directly in the database as a variable length 

string. The spectra can only be identified by the timestamp values associated with each spectrum. 

This is also the primary way of querying the database. This means that a spectrum can be found 

quickly if searched a timestamp is used to identify it. 

We created a program that accesses the RATTY and saves data to the database using the dbControl 

class. We call this the rfi_monitor.py class. The roach_handle and dbControl functions are run on 

separate processes spawned from the rfi_monitor class. In this way data can be collected from the 

RATTY using one process dedicated to roach_handle. The rfi_monitor class then co-ordinates passing 

that data to the dbControl thread; dbControl inserts data into our database. 

4.1.3 Data Access - Visualisation Prototype 

The visualisation prototype comprised a simple one page website. This one page website displays 

the latest captured spectrum using a Javascript line chart, Figure 33 shows an example spectrum 

displayed with this line chart. The Python based web framework Pyramid was used to serve the web 

page. This makes interfacing with the python based dbControl class simpler. 

 

Figure 33 - Example plot of the Visualisation prototype 

The pyramid web framework separates the web page’s structural and styling content (HTML, CSS) 

from the server side processing logic. The processing logic is defined as views, which are python 

methods which return a dictionary containing data required for each web page. The data in the 

dictionary can by placed symbolically in the HTML files and the pyramid framework will replace 

those symbols with content created by a view each time the associated page is requested. 

The web framework runs from a class called rfiWeb which connects to the database through a new 

instance of dbControl. The MYSQL database ensures the data is easily accessible by the web server 

which handles requests from machines across a network. The server provides the latest spectra 
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captured to each client using the pyramid framework. The data is displayed on the client side using 

the JavaScript line chart. At this stage the RFI monitor had the structure shown in Figure 34. 

 

Figure 34 - The structure of the initial RFI monitor prototype. The diamonds indicate a class is called in another class. The 

arrows indicate a link over which data can flow. 

4.1.4 Calibration and Installation 

To provide good quality information on the Radio Frequency Environment (RFE) the signal chain 

must be calibrated. The signal passes from the antenna, through an amplifier, along a coaxial cable 

and into an ADC. At each stage of this process, the signal is analogue and can be altered by the 

characteristics of the path it travels along. To calibrate the signal chain, we must determine the gain 

for the complete signal chain so that it can be de-embedded from the measured signal to regain the 

incident signal. 

The antenna comes with an antenna factor and a calibration file which records the calibration values 

of the antenna. The signal chain from the antenna output to the spectra output from the RATTY was 

calibrated using a simple python script to find the highest response of each frequency channel of the 

RATTY to a constant tone which swept through the band 0-900MHz. The difference between the 

constant known tone and the output was used to calibrate the response of the RFI monitoring signal 

chain. This calibration file is called bandpass.csv and can be found in the cal_files folder of the RATTY 

source. 

The final stage of the initial RFI monitoring prototype was to actually install the equipment at the 

MeerKAT site on Wednesday 18 July 2012. The MeerKAT engineer who designed and built the 
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original RATTY system assisted. The antenna, a ROACH board, a signal amplifier and the DELL server 

to control the monitoring system were in place. 

 

Figure 35 - RFI monitor antenna and ASC container at the KAT7 site 

We mounted the antenna on the mast of a disused RFI trailer which had been used to perform site 

measurements during the 2005 RFI measuring campaign. Figure 35 shows the antenna situated at 

the current KAT7 site, next to a shielded container which contains the ROACH board and our server.  

The ROACH board and DELL server (Figure 36) were installed into a rack in the ASC container. We 

connected the antenna to the RATTY, attached the RATTY to the server and then connected the 

server to the KAT network (the internal network between the site and the SKA SA offices in 

Johannesburg and Cape Town). The network is connected to the internet and can be accessed from 

any internet connected PC provided we have access to the proxy. This allowed us to continue with 

the rest of our RFI monitor development from Cape Town, so long as we did not need to physically 

alter the monitor’s signal chain. 

 

Figure 36- The ROACH board and DELL server that perform the processing for our RFI monitor. The ROACH is marked by 

the red box and the server by the blue box. 
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After we had physically set up the RATTY system, we performed the calibration process again. This 

time however we performed a faster sweep of the channels in order to check our previous 

calibration process. The results showed our previous calibration made in Cape Town was accurate 

enough and we could trust the spectra gathered by this system. 

4.1.5 Discussion 

Once installed, the initial prototype was a functioning data capture system which could store all 

captured spectra and allow users to view the latest spectrum captured with a web page. We set up 

the monitor to capture a spectrum once a second. This translates to 0.1246 MB/s or 315.4 GB per 

month of data. The databases could easily handle this data rate while serving the data to a web 

page. Unfortunately, with only 1TB of hard drive space we would only be able to store about 3 

months of data, not including the RFI detection data and useful statistics which we planned on 

storing. This represented a serious risk for achieving our goal of storing a long term record of the RF 

environment. A solution which allows long term storage of data became the focus of the next 

prototype. 

The other aspects of the first prototype performed well, the RATTY software was complete and did 

not require any changes. The web server and database handled multiple simultaneous queries while 

simultaneously inputting new data. However the data visualisation library from Highcharts cannot be 

used for free by SKA SA as it is not a non-profit organisation. Although it is legal to use for 

development purposes we had to come up with our own visualisation solution for the final RFI 

monitor. 

4.2 Prototype 2: Archival Functionality 

For the archival prototype we moved data from the text form saved in the databases into an HDF5 

file. This allowed us to save the overhead of representing a binary python object as text. It also 

allows us to use HDF5’s compression algorithms. However HDF5 does not support simultaneous 

reading and writing to the same file so there was no way to watch how the current spectrum 

changed as it was captured by RATTY. We created a new database called current_spectra to 

duplicate the last hour’s worth of data. In this way we could access the latest data via the 

current_spectra database and we could access older data using the HDF5 files. 

Each file contains an hour’s worth of data, starting on the hour. We altered the spectra table so that 

instead of containing the individual spectrum the table points to the file which contains the 

spectrum. Each spectrum is placed in chronological order. This allows us to find a time within the file 
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based on the location of the data in that file. For more information on the structure of the database 

see section 4.5. 

The best option to increase the length of time that we could store data was to average the data over 

1 hour periods and delete the original data to maintain enough space. The archive class takes in an 

hour’s worth of data and calculates statistics which describe the data for each channel over that 

hour. Table 12 describes the statistics that we calculated for each channel and each hour. 

A class called archive_rfi_spectra.py, contains methods to take an HDF5 file and calculate these 

statistics for all channels in that file each hour. We also added methods to the dbControl class which 

take the statistics and stores them in an archive database. We added a process to the rfi_monitor 

class which would create a new archive_rfi_spectra object after each hour to archive new data. We 

can see all of the processes controlled by the rfi_monitor class in figure 37. 

To store more than 3 months of data, we always maintain at least 10% free space on the HDD. 

Whenever the HDD is more than 90% filled the data storage process will deletes hours of data stored 

in the HDF5 files and remove records on those files from the rfimonitor database. We still keep a 

long term record of the RF record in the archival database which has a resolution of 1 hour and a 

short term record of the RF at a resolution of 1 second. This extends the lifetime of the rfi_monitor 

to approximately 3 years assuming we maintain a minimum of two weeks of high resolution data. 

Table 12 - Table of values in archival database 

Statistic Data type Description 

Mean double Mean power in channel over an hour 

Min double Minimum value in channel over an hour 

Max double Maximum value in channel over an hour 

Standard Deviation double Standard deviation of channel over an hour 

Median double The median value of channel over an hour 

Percentiles (99,95, 

90,80,70,60,40,30,20,10) 

double The value which is higher than n% of the values of 

channel over an hour, with n = 99,95,90, etc 

Time Occupancy (3 sigma, 6 

sigma) 

double The percentage of the time that values where 3 or 

6 sigma above the standard deviation 

Prototype 2 consists of a long term monitoring system which records the RF environmental changes 

over long periods of time and a short term record of the last couple of months/weeks in high 

resolution. We were still missing a vital component, that of automatic RFI detection. This was the 

focus of the 3rd prototype. 
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4.3 Prototype 3 : RFI Detection 

For the third prototype we introduced the RFI detection. To provide RFI detection we needed to 

decide on a RFI detection algorithm. The algorithm had to be able to perform RFI detection on data 

at least as quickly as data was captured and to do so reliably. Many of the concepts discussed here 

have already been described in the RFI detection part of the background chapter. 

 

Figure 37 - Flowchart of the rfi_monitor class. The rfi_monitor main process, called process 0 starts 2 processes. Process 

1 which acquires data from the RATTY and process 2 which adds that data to databases and creates hourly data files. 

Process 1 and 2 run continuously. Once an hour Process 2 creates a process 3 which calculates the hourly statistics of the 

last hour’s data and stores the result in the archival database. 
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We decided to perform RFI detection using temporal thresholding. Since the thresholding algorithm 

is easy to implement, can easily handle the throughput of the RATTY system and has a proven 

efficiency. The algorithm has already been discussed in the background section 2.6. We decided to 

implement thresholding using the Medium Absolute Distance estimator suggested by the MeerKAT 

engineers. 

We implemented this algorithm in Python, using Numpy to implement the algorithm. The 

implementation could perform RFI detection on an hour’s worth of data in a couple of minutes. The 

RFI detection algorithm we implemented detect RFI on a 2 dimensional array of data and returns a 2 

dimensional boolean array of the same size. The output array contains a false value at each point 

where no RFI was detected and a True value at each point where RFI was detected, this output array 

is called the RFI mask. This process is shown in the figure 38. 

                                 

Figure 38 - Example of the RFI detection process. On the left is the raw spectral data for a few seconds. This data is fed 

through the RFI detection algorithm, represented by the arrow. The output is a mask. The red blocks indicate where the 

algorithm produces a True value in the RFI mask.                                  

4.3.2 RFI event extraction 

As described in the Archival section 2 of this chapter, we delete all of the high resolution data after a 

few months. This means we only keep data on short RFI bursts until the high resolution data 

containing that event is deleted. Any RFI which lasted for a short period, on the order of a few 

seconds, is averaged out and lost in the long term record. This means that we are not providing an 

adequate record of RFI events. To solve this problem we decided to extract and save all events 

detected by the algorithm in a third RFI_archive database. As RFI affects only a small (<5%) part of 

each spectrum, this allows us to store high resolution data on individual RFI events as well as a long 

term record of the RF environment while still allowing us to store around 2 years of data on 1TB. 
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The process of extracting RFI events is simple. First we group contiguous parts of the RFI mask to 

find RFI events which are most likely caused by 1 source. This was achieved by using a python image 

processing library, mahotas, which is implemented in c++ to avoid the efficiency issues with Python. 

The mahotas library contains a method which takes in a boolean matrix and labels each contiguous 

group as an integer. We select and extract a rectangle around each group, which represents an RFI 

event in the original data. These extracted events can then be saved in a RFI database. This process 

is shown in the Figure 39. 

We created another database called the rfi_archive database to store raw data on all detected 

events as well as some metadata to facilitate querying the database. This metadata includes the 

start and end times of the event, the low and high channels of the detected events and the average 

power of the event. We also calculate hourly RFI related statistics to add to the archival database. 

For each channel and each hour we count the number of RFI events on that channel and the period 

of time that channel was affected by RFI. The flowchart in Figure 37 shows how the RFI detection 

thread interacts with the archival thread in the rfi_monitor process. 

 

 

Figure 39 - Event Extraction process. We take the RFI mask created by the RFI detection algorithm and process it with 

the mohotas label function. This gives us a mask with all of the connected points in the RFI mask labeled as unique 

integers. We then use this information to extract RFI events from the original data. To see how this fits in with the 

flowchart in figure 37, see figure 40. 
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Figure 40 - How the RFI detection thread interacts with the archival thread. The chart starts at the point in Figure 37 

where process 2 branches into a new hour. Process 2 then creates the archival and RFI processes and then continues as 

it did in Figure 37 by creating the next hours file. There is only 1 extra step in the archival process. Once the hourly 

statistics have been added to the archive, the RFI thread is signalled that there is an archive entry into which it can add 

the hourly RFI statistics such as number of events. The process in figure  39 is encapsulated in the block “Perform RFI 

Detection and Excision”. 

4.4 Prototype 4 : Web Interface 

Prototype 3 can access data from the RATTY system, scan that data for potential RFI and archive that 

data. In prototype 4, we allow users to access this data. In this section we describe how we made a 

functional RFI monitor website from the initial prototype, to enable researchers to access and 

interact with RFI data generated at the MeerKAT site. 
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4.3.1 Visualizations 

Visualization of the data is a key function of the RFI web interface. The data comprises spectral data, 

which is essentially continuous data in time and frequency, hourly statistics and RFI event data which 

consists of spectra on the events, RFI event counts for channels and occupancy statistics for each 

channel. 

Users need to be able to view the data in a variety of ways, including 1 second spectrums or 1 

channel over multiples timestamps, a range of times and channels at once and which channels have 

the most powerful RFI or the least amount of time corrupted by RFI. These are queries that could 

easily be satisfied by graphs and charts. In the final prototype, we implemented three visualizations 

to assist researchers in exploring the data: a line chart, a waterfall plot and a bar chart. The 

implementation and function of each of these views is described below. 

4.3.1.1 Line Chart 

We required a line chart which could display up to 14200 points for the visualisation as this is the 

number of points in each RATTY spectrum. As there are no free libraries to do this, we implemented 

our own system using the processing.js visualisation library. The Processing.js library is a JavaScript 

library which can convert a Processing visualization written in Java into a JavaScript canvas. 

An example of the line chart is shown in Figure 41. The chart can handle all of the 16384 points 

needed to display one spectrum. The point closest to the cursor has a pop-up, which displays the 

value of the point. The chart can be zoomed by using the cursor wheel and scrolled by clicking and 

dragging; allowing the user to explore the data while zoomed in. The user can also save their view as 

a PNG image at any time. The line chart can display a single spectrum or a single channel over many 

hours. 

 

Figure 41 - Example of line chart. One spectrum is displayed here. 
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The line charts can plot the latest spectrum as it is collected, giving users a real-time view of the RF 

environment. The user can pause the view of the spectrum and also move back and forward in time 

through the data while maintaining their zoom. They can see how the whole spectrum or a subset of 

the spectrum is changing over time, either in real-time or after the data has been captured. An 

example of zooming is provided in Figure 42 a,b and c. The line chart can also show the data on a 

single channel over a specified period as shown in Figure 42 d. The user can also choose to display 

the hourly statistics using the line chart. 

 

Figure 42 – a,b and c demonstrate the zoom function.  Here we show progressive levels of zoom onto the black circle 

shown in a. As you can see it is simple to switch between a high level view and a very close view to see small scale 

details. d) Example plot of the channel 70.4MHz over 24 hours (86400 points). 70.4MHz is the frequency used by 2 way 

radio's on site. 
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In order to provide a continuous flow of data we used the JavaScript/Python library socketIO which 

allows real-time communication between a web application and a server. The web browser uses a 

socketIO.js file to provide client side connections. In our client side we create a socket which we can 

use to access data sent from the server. The socketIO library determines the fastest connection 

available to perform data transfer. The server uses the Python socketIO library for real time data 

access. The server creates a new greenlet to serve the data to each client. A greenlet is a lightweight 

thread in Python to allow multiple clients to be served simultaneously from one python server, 

without the overhead of the processing library. 

We also created two databases to allow for the current hour of data to be accessible by our 

visualizations. The HDF5 files cannot be simultaneously written to and read from, so we keep a copy 

of the latest data which can be both written to and read from; a database called current_spectra. 

This database is very simple; the structure is shown in Table 13. It contains a timestamp and a 

serialized Numpy array containing the spectrum at that timestamp. Each hour, the last hour of data 

stored in the database is deleted. In this way, the database will only ever contain data from the 

beginning of the current hour. 

Table 13 - Data contained in the current_spectra database 

Value Data type Description 

Timestamp uint(10) Unix timestamp is seconds 

Spectrum binary Serialised Numpy array containing the spectrum 

 

Unfortunately deleting an hour’s worth of data can take up to 10 minutes when the server is running 

all of the components of the RFI monitor. While this data is being deleted, no new data can be added 

to the current_spectra table. Therefore we created two current_spectra databases so that when we 

need to delete data from the last hour in the first database we simply start adding data to the 

second database. To co-ordinate which database is currently in use we had to add a new table 

containing a bit value current. When the value of current is set to 1 then we know that 

current_spectra database is the one which contains the latest data and the other current_spectra 

database is being deleted from. This allows us to seamlessly transition between hours. 

4.3.1.2 Waterfall plot 

The web interface also provides a waterfall visualization of the data. Waterfall plots are standard 

visualizations for representing three dimensional data in two dimensions. The plot shows time on 

the y axis, frequency on the x axis and the power of the particular channel at a point in time is 
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displayed by the intensity of the colour of that point. A waterfall plot can show multiple channels 

and times in one plot. This grid was also created using the Processing and Processing.js libraries. 

Just ten minutes of data for 14200 channels is over eight million 64 bit numbers. Unfortunately, it is 

physically impossible to display these points on a typical screen of resolution 1024 by 768 or 

approximately 1 million pixels. The average computer and web browser can only practically display 

around forty thousand points. Therefore an interactive waterfall plot using JavaScript we would 

need to reduce the number of points used to display data to a manageable amount. 

The most straight forward way to reduce the number of points is to simply divide all of the points 

into a grid of the amount of points we would like to display and combine the points in each grid cell. 

In Figure 43 you can see a small scale example of what we needed to achieve. In this case we take a 

200 by 200 grid of points, aggregate those points into a grid of 8 by 8 points and then attempt to 

represent the data in those 40 000 points using just 16 points. 

 

Figure 43 - Example of the gridding and data aggregation process. In this example we are reducing 40 000 points to 16 

points. In the actual web interface we would be performing data reductions on the order of 10s of millions of points to 

10s of thousands of points. 

To ensure that the important features of the data are preserved, we decided to aggregate data in 

the plot by choosing the maximum value from each grid block. Looking at these plots it is easy to 

spot the most powerful signals, which are indicative of a RFI event. The aggregation reduces the 

accuracy to which the RFI event can be located. It was important to allow zooming in to the data so 

that RFI events can be shown with the highest accuracy. 

To solve this problem we decided to implement a Google Maps style zoom function. This allows the 

user to zoom into aggregate data and sends higher resolution data when the zoom goes past a 

certain limit, we then send this higher resolution data for the part of the data which the user is 

zoomed into. The server sends new data whenever a user zooms in to a level where they are 
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displaying a quarter of the points that were previously sent. This means that the data which is 

represented by for example a block of 100 by 100 points will be resent however they will be 

represented by 200 by 200 points. This way we only send higher resolution data which the user 

actually zooms into and each time we only send 0.3KB of data. This process is shown in the Figure 

44. 

 

Figure 44 - Example of the zooming process: a) is a fully zoomed out view, the red box shows the area being zoomed to, 

b) shows the zoomed view before data is re-aggregated and c) shows the zoomed view after data is re-aggregated. 

Figures 44 b and c show how the level of detail changes as the server re-aggregates and transmits 

data on zooming. The user can see a high level overview of the data. They can then zoom in on 

points until they reach the level of individual samples, allowing them to pinpoint RFI to the second 

and channel which it affected. The process is reversed as the user zooms out. Due to the fact that 

only the spectra are stored in HDF5 files, this waterfall plot can only display the spectra and none of 
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the other calculated statistics. Although it is not impossible to provide access to the other data, it is 

not being implemented for this thesis. 

The waterfall chart can also be displayed with a red RFI mask overlay. From Figure 45 we see the 

mask shows the results of RFI detection at a glance. The RFI mask can be toggled on and off, so the 

user can see the underlying signal if they choose to. The RFI mask is aggregated in the same way as 

the underlying data. If any data in the aggregated block contains RFI, that block will be red in the RFI 

mask. 

 

Figure 45 - Example of the RFI mask overlay for the waterfall plot. 

4.3.1.1 Bar Chart 

The third visualization that we provide is a bar chart created with the JavaScript library amCharts1. 

Figure 46 shows how the bar chart can displays hourly RFI event counts, channel occupancy and ADC 

over ranges. Figures 46 a) and b) show which channels have been worst affected by RFI according to 

our RFI detection algorithm. Figure 46 c) shows the times in an hour when the ADC over-ranged. If 

there was an ADC over range while a spectrum was collected the spectrum is untrustworthy. ADC 

over-ranges occur when there was a powerful signal sampling for the spectrum. The figure shows a 

                                                            
1 www.amcharts.com 
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particularly bad example of ADC over ranging: there were many strong signals generated at the time 

of capture.   

 

Figure 46 - Bar chart showing a) the number of RFI event s detected in each channel for each hour and b) Time 

occupancy at 3 sigma. c) An hour’s worth of over range data. Each orange bar represents an ADC over range for a 1 

second spectrum 

4.5 Database Structures 

The database structure is for the initial prototype is shown in Figure 47. The current_spectra and 

rfi_monitor databases respectively are essentially one table databases with a corresponding system 

table containing the information about the state of the RFI monitor at initialisation. 

For the final rfi_monitor database the spectral data is stored in hourly HDF5 files. Each entry in the 

spectra table contains a path to the file which contains the spectrum. Although the spectral data is 

not stored in the database, we can still query the database to find extrema we calculate for each 
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channel every hour. This allows us to quickly find the file which contains the maximum value for a 

particular channel as each extrema value also links to a hourly spectra file containing that spectrum. 

This can be found by using the MYSQL database. 

 

 

Figure 47 - Design of the rfi_monitor and current_spectra databases. System contains data which is constant for each 

instance of the monitor and spectra contains data which is collected each second 

The current_spectra database has the same structure as the rfi_monitor, however spectra are stored 

as binary strings in the database, not in files. There are two identical tables to store spectra, one of 

which holds current data while the other is emptied. Each hour the roles of the two tables are 

swapped. In this case we store the actual spectra in the database as a serialized Numpy array stored 

in a string format. We can access the latest data here as hdf5 files cannot be simultaneously written 

and read to. 

The archive database is broken into five tables, the structure is shown in Figure 48. It has a system 

table which is identical to those in the rfi_monitor database. The data is then broken into four 

tables. We have an element table which corresponds to a frequency and channel number and 

contains an id for each channel. A spectra table containing the first timestamp of an hours worth of 

data and a confidence value, the percentage of that hour during which the monitor was collecting 

valid data. If a spectrum is not valid because it was not captured or there was an overrange we want 

to quantify how this affects the confidence of our hourly statistics. This confidence value ranges 

from 0 to 1. Each spectrum also contains a unique id. 
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The value table contains all of the hourly statistics collected. Each value has a three element id made 

from the channel id, the timestamp of the hour it was collected in and the type of data value. We 

can pinpoint the hour and channel/frequency which any particular value comes from. Having a 

datum table allows the user to break the spectra table into separate values before searching for the 

times they are interested in. New types of hourly statistic can be added by simply adding an extra 

row to the datum table. 

 

Figure 48 - Design of the Archive database 

The final database is the rfi_event_archive. This database has an almost identical structure to the 

rfi_monitor. Except we have an rfi_event table rather than a spectra table. The rfi_event table 

contains the raw data which we extract in the RFI detection process and some metadata describing 

time and frequency that the particular RFI event was detected, this is shown in Table 14. The 

metadata places each RFI event in the context of the archived data. As RFI is detected on a 6 sigma 

threshold, this table contains all points where the power on a channel differed by more than 6 sigma 

from the median. 
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Figure 49 - Diagram showing the 3 databases, the data they contain and the amount of time that data is stored. The link 
from the raw data to the hourly HDF5 files represents the fact that the database simply stores the location of the HDF5 
files which contain the raw data. 

Together these databases provide the functionality to store a record of the RF environment at a 

resolution of one second for a minimum of two months and the ability to serve the latest collected 

data as it is captured. They allow long term storage of hourly aggregated data and raw data on 

detected RFI events for periods of up to two years. Together they allow us to easily access good data 

on the RFI around the MeerKAT antenna for long periods using a 1TB harddrive. 

Table 14 - rfi_event table 

Datum Description 

id Id of the event 

system_id Id of the system used to capture data (corresponds to system table) 

startTime The timestamp at the first detection of this event 

endTime The timestamp at the last detection of this event 

low_chan The lowest channel this event was detected on 

high_chan The highest channel this event was detected on 

spectra The raw data that was captured between the times and channels above 

mask A mask which shows which off the values in the spectra were flagged as RFI 
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4.6 Conclusions 

Each of the prototypes helps fulfil at least one of the goals of the RFI monitor: providing a 

continuous record of the Radio Frequency (RF) environment, automatic RFI detection and effective 

access. Table 15 shows how each prototype progressively improved upon previous prototypes until 

all of the requirements were fulfilled. The requirements were designed to achieve our goals. By 

prototype 4 all of our goals had been achieved. 

Table 15 – Table goals from section 3.1 and the requirements from section 3.3.4 that each prototype fulfils. 

Requirements with an asterisk were completely fulfilled at the by that prototype. 

Prototype Requirements fulfilled Goals 

Prototype 1 : Basic Operations RF record 

Access to raw data 

Data visualisations 

Continuous RF Record 

Effective Access 

Effective Access 

Prototype 2 : Archival 

Functionality 

RF record 

Descriptive statistics* 

Continuous RF Record 

Continuous RF Record 

Prototype 3 : RFI detection Automatic RFI detection* 

RF record* 

RFI record* 

Automatic RFI detection* 

Continuous RF Record 

Continuous RF Record* 

Prototype 4 : Web Interface Data visualisations* 

Access to raw data* 

Effective Access* 

Effective Access 
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5 Validation and Testing 

In this Chapter we will discuss the effectiveness of the components of the RFI monitor. Proving the 

monitor is reliable is vital if it is to become a useful tool for RFI mitigation. After implementing the 

last prototype, the system was allowed to run for six months without any human interaction except 

over the web page. This shows that the system is stable over long periods. The rest of this chapter 

shows the RFI monitor is also accurate, performs RFI detection efficiently, provides useful 

visualisations and is useful for real RFI campaigns on site 

5.1 Data Calibration 

The first and most important step of calibration was to ensure that the data collected by the RATTY 

system are accurate. This was achieved by calibrating the signal chain during RFI monitor installation 

on site. Calibration involved sweeping a known signal with a known power across the bandwidth of 

the receiver. We compared the measured result with the known input signal and created a gain 

calibration for each channel in dBs. This is a floating point number which we add to the value of each 

channel to ensure that the measured signal is equal to the expected signal. We also ensured the 

archived data is accurate by independently calculating the statistics for twenty hourly data files in 

excel and checked that the archived statistics were equal. 

5.2 Database Access 

There are two ways we tested the database: we showed data could be processed and inserted in a 

timely manner and data could be accessed quickly. The first metric shows that our RFI monitor can 

handle the incoming data rate. The second metric shows that our database is structured well enough 

to make data accessible without long delays. 

5.2.1 Inserting 

We ensured each spectrum can be captured and stored in less than one second and that hourly 

statistics can be calculated in less than 1 hour. We ran the monitor for an hour and found it took an 

average of 0.3s to insert one spectrum. This leaves time for a higher data rate if needed for later 

upgrades. We tested hourly statistics and RFI detection archiving by running the monitor for one 

week and averaging the time of each step of data collection, calculation and insertion. The results 

showed our monitor can perform all this data capture and archival in under an hour as necessary. 

Table 16 shows the times necessary for each of the archiving processes. Some of the processes are 

performed simultaneously. In the end we can expect all of our hourly data to have been calculated 

and stored by an average of 33 minutes after a capture period ends. The time taken to store data is 

dominated by the hourly percentile calculation as it involves sorting each channel. 
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Table 16 - The timing results for data retrieval and storage. 

Data process Time used 

Single spectrum archival 0.3 s 

Hourly statistic calculation 28 min 

Hourly statistic archival 5 min 

Hourly RFI detection 2 min 

Hourly RFI event extraction and archival 5 min 

5.2.2 Retrieval 

Data access is important for usability. Although data exists, they are not useful if the retrieval times 

are long. The data are presented to the user via the web interface with multiple views. In the graphs 

below we show how long data collection takes for each of these views. 

Table 17 shows results for views which should take a constant time to retrieve. These views always 

show the same amount of data. These results show the time from accessing a view on the web 

browser to when the data are visualised. The views were opened 20 times and the mean retrieval 

time is shown in the table below. The retrieval times for these views were fast enough that most 

users will not notice them. 

Table 17 - The Retrieval time for spectra and archival data. 

View Retrieval time 

Current Spectra  0.007s 

Hour Archive 0.171s 

 

The next measurements were tests which show how views with scalable data ranges performed. 

These include the graph channel view, the over-range view, the waterfall plot and the hourly statistic 

plot. We used the same time ranges for each tests. The first test was for an hour’s worth of which is 

an example of a small but meaningful amount of data, the next test is 10 hours worth of data and 

finally we tested retrieval of 100 hours worth of data. Unfortunately the waterfall plot cannot 

display 100 hours worth of data as it is too large. For the hourly statistics we use retrieval for 10, 100 

and 1000 hours as each hour represents 1 value.  
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Table 18 – The scaling of data access for different data. This data is plotted in Figure 49. 

Num Hours Over-ranges Channel Waterfall Stats 

1 0.008 s 2.47 s 11.48 s  

10 0.094 s 1 min 21 s 6 min 52 s 8.45 s 

100 3.129 s 17 min 51 s  1 min 32 s 

1000    20 min 48s 

 

Figure 49 shows that the retrieval times for the data scales approximately linearly with the number 

of hours of data requested. There is a limit to which the data can be retrieved without causing 

significant delay. This limits the ranges of data that a user can choose to view at a time. However the 

retrieval times are still usable in the data ranges for which the monitor is generally used (1 hour to a 

day). 

 

Figure 50 - Chart showing the scalability of different views on the data, both axes are logarithmic. 

One issue which is worrying is the amount of time it takes to retrieve the hourly statistics. In this 

case the number of values is far lower than the other 3 cases and the retrieval times are 

disappointing. In the 10 hour case retrieval takes approximately 8 seconds. We should be able to 

retrieve this data far faster. The main reason for this disappointing speed is that the hourly statistics 

are stored in a large database with approximately 2 years worth of data. As the database grows, the 

seek time dominates the retrieval time.  
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This problem could be solved by storing the hourly statistics in data files in the same way that the 

raw data is stored. This should increase the retrieval time for the hourly statistics to the same speed 

as retrieval for spectra. This is the recommended way to store hourly statistics in the next iteration 

of the monitor. 

5.3 RFI Detection 

One of the goals of the RFI monitor is storing a long term record of RFI on site. As discussed 

previously, we perform this task without storing all of the raw data. We only store raw data which 

contains suspected RFI in the long term. The goal of a RFI record can only be achieved if the RFI 

detection algorithm is accurate. 

We tested the RFI algorithm by creating simulated data with simulated RFI. The simulated data has a 

normal distribution as one expects for a RFI clean environment. We added broadband and 

narrowband noise of different power levels. RFI in a power level have a total power equal to the 

level number times the standard deviation of the simulated data. We ran the detection algorithm on 

this data and recorded the proportion of RFI that was correctly identified. We ran this test for 

different window sizes and threshold factors. The window length is the length of the window on 

either side of a data point used to estimate sigma using the MAD algorithm. The threshold factor is 

the multiple of the estimated sigma that is used to threshold a data point. This allows us to choose 

the best values for use on our monitor. 

False Positives VS Window Length and Threshold Factor 

 

Figure 51 - Heat map of false positives divided by total number of true RFI values VS window length and thresholds 

factor. Values are on a log scale. Lower values are better. A value of 0 means that there were as many false negatives as 

there were values corrupted by RFI. 
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Figures 50 and 51 show that, in general, the better the algorithm does at detecting RFI, the more 

likely it is to falsely classify clean data as RFI. Figure 48 shows the main factor in accurately classifying 

true RFI is the threshold value. Using a threshold of up to 13 times sigma will mean you are capturing 

most of the RFI. However from Figure 50, any threshold below 8 with most window lengths will 

create at least as many false positives and actual RFI contaminated values. These charts show the 

best way to maximise the true positive to false positive ratio is to choose a low threshold which is 

between 9 and 13 with a window of at least 11. 

Percentage of True Positives VS Window Length and Threshold Factor 

 

Figure 52 - Percentage of true positives VS window sizes and thresholds. Higher values are better. 

Percentage of True Negatives VS Window Length and Threshold Factor 

 

Figure 53 - Percentage of RFI clean values which are classified as clear of RFI. Higher values are better. 
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Figure 52 shows that the amount of false positives is low for most configurations above a threshold 

of seven sigma. Any threshold larger than nine sigma is an adequate choice to prevent too many 

false positives. This doesn’t affect the earlier finding that the best range of values is a threshold 

between 9 and 13 and a window of at least 11. 

As we only archive raw power spectrum data which is contaminated with RFI, it is better to have 

false positives than lose data because of false negatives. We decided to use a threshold of 6 sigma to 

ensure that we can accurately recreate the environment with archived data. To test how well our 

archival system could recreate the RF environment after raw data was deleted we compared the one 

week of raw data with its corresponding archived data. We calculated the mean and standard 

deviation of each channel in the hour from the raw data. We then used a 6 sigma threshold to create 

a RFI mask of the raw data. We then calculated the percentage of the raw data that differed by more 

than 6 standard deviations from the archived data. This test showed that only 0.04% of the archived 

data was not within 6 standard deviations. This proves our archival process can effectively reproduce 

the RF environment while discarding most of the raw data by storing only data that are likely RFI. 

5.4 Visualisation and Web Page 

The goal of the web page and visualisations was to provide easy access to the data. It is difficult to 

test ease of use quantitatively so we tested our visualisations with a user survey. The survey was 

completed by 15 users who represent astronomers, engineers and RFI management. All of the users 

tested are employees at SKA-SA or academics with SKA funding. As the users are experts, their 

opinion is valuable. 

Our survey tested the ease of data access as rated by the user and timed how long users took to 

perform common tasks. Users were asked to rate their experience on a 5 point scale. We asked 

users to explore the web page and provide comments how useful they found the RFI monitor. We 

tested the usability of the line chart and waterfall plot as these were the visualisations created as 

part of this thesis. We also tested the usability of the web page itself. 

The first 6 Questions established who the users were. We asked users to provide information on 

their position, their level of education, internet connection, etc. These questions were voluntary so 

users could remain anonymous, however all respondents chose to provide these details. 

Of the survey respondents twelve were employees of SKA-SA and three were post-doctoral or 

masters students on SKA grants. Of the respondents four were astronomers, four were post-doctoral 

researchers/students and seven were engineers. Two of the engineers were involved in RFI 
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management. Of the users two thirds used Chrome and 1 third used a Firefox. All users were on the 

Internal SKA-SA network, so their network connection was 1 Gbps. 

5.4.1 Line Chart 

This section includes the results for the Current Spectrum and Graph Channel views. Both views used 

the Line Chart visualisation. The Current Spectrum displays a constantly updating spectrum and the 

Graph Channel view was displays a data from one channel over a chosen time range. 

5.4.1.1 Current Spectrum 

Users were asked to open the Current Spectrum page from the home page. After checking the 

visualisation was updating, users paused the updates and used the line chart to discover the value of 

a two channels captured at that time. The first channel contains an obvious spike and the second 

channel is in the noise and would require zooming. They saved a picture of their view which were 

used to independently verify the results they got. Table 19 shows the time taken for each of these 

tasks and the amount of users who successfully completed it. 

Table 19 - Times it took for users to complete the example tasks as well as the percentage of users who correctly 

completed the task. 

Task Mean Time Accuracy 

Find power level of channel with obvious spike 12s 100% 

Find power level of channel in noise 27s 100% 

 

Table 19 shows that users found it easier to find the values of channels with a spike than those 

buried in the noise. This is a positive result as channels with spikes are most likely to contain RFI.. 

The users managed the more complicated task of finding a data point buried in the noise in the 

reasonable time of 27. This seems to show that the visualisation and zoom function is easy to use. 

This is backed up by the user responses in table 20. 

Table 20 - User responses to the usability questions. The answers to each question were ranked on a 5 point scale. 

Strongly disagree was given the value 1, no feelings is a 3 and strongly agree given the value 5. 

Question Mean 

I found the link the Current Spectrum easily on the home page. 4.3 

The instructions on the page were helpful. 4.3 

The visualisation was easy to use. 4.1 

The visualisation was responsive. 4.2 

The visualisation was clear and easy to understand. 4.3 
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The users were also asked to provide comments on their experience. Below are some responses to 

these open ended comments. 

Please comment on any part of the visualisation you found hard to use. 

There was one comment in this section which came up in most of the responses. Below is a typical 

comment. 

“Zooming in and out was a little strange in that it would zoom to the centre of the displayed 

spectrum, rather than to the location of the cursor on the figure” 

This explains why it took almost 3 times longer for users to find the value hidden in the noise. The 

zoom zooms into the centre of the view, requiring panning to find data points. Allowing zooming 

onto the cursor cursor should be implemented for the next iteration of the line chart. 

Please comment on how you would improve this visualisation. 

Some of the improvements that were common in many comments: 

1. Zoom into location of cursor. 

2. Provide a reset zoom button. 

3. Provide a save image button (in addition to the keyboard shortcut). 

4. Larger text in general. 

From the results above we can see that although the visualisation provides the basic functionality for 

users to perform their tasks and they felt positive about the usability of the visualisation, however 

there are areas of possible improvement. 

5.4.1.2 Graph Channel 

Users were asked to open the Graph Channel view. They were then told to select 2 hours of data to 

display between 8am and 10am on the 11th of September on the channel with frequency 150MHz. 

They were asked to find the values at specific times in this interval in much the same way as the 

previous Current Spectra test above. As the visualisation is the same in both cases, we wanted to 

test the usability of the forms we use to select data and also the ability to download data. This also 

allowed us if users got faster after their first attempt to use the visualization. 
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Table 21 - Average time for users to complete tasks along with accuracy 

Task Mean Time Accuracy 

Select a date range and frequency 9s 100% 

Find power at time with obvious spike 8s 100% 

Find power at time buried in noise 20s 100% 

 

Table 21 shows users found it easier to find spikes than data buried in the noise. It seems that the 

users have gotten faster in this second set of tasks than they were at the first task. The usability 

responses in Table 22 back up the results from the previous test. 

Table 22 - The user ratings for different tasks that they had to perform. They show that in general users found the task 

easy. 

Q17. I found the link the Graph Channel easily. 4.3 

Q18. The instructions on the page were helpful. 4.1 

Q19. The visualisation was clear and easy to understand. 4.1 

Q20. Choosing a time range for data was simple. 4.5 

Q21. Choosing a Frequency for data was simple. 4.3 

Q22. Downloading data was simple. 4.3 

5.4.2 Waterfall Plot 

The waterfall plot allows the user to see a range of times and channels along with the RFI which was 

detected on each of those channels. For this task users were asked to view 10 minutes of data for all 

channels. Users were asked to identify the frequencies affected worst by. Users then had to zoom 

into a portion of the data and to analyse the amount of RFI events and which channel was worst 

affected by RFI over that portion. Table 23 shows the results of the survey.  

Table 23 - The times it took for users to complete their tasks and the accuracy of their results 

Task Mean time Accuracy 

Which Frequency range is worst affected  (over all data) 8s 100% 

How many RFI events occurred in this time (includes zooming) 43s 93% 

Which frequency had the most RFI events 4s 93% 

 

Table 23 shows users could identify which channels were badly affected by RFI quickly and 

accurately. One user who could not perform the tasks after zooming as the visualisation failed to 

load the zoomed data. The times show it is easy to visually identify RFI with the waterfall plot, 
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however the zooming takes more time than the visual analysis. This shows that the representation 

of the data is appropriate, but more work is required in making the zooming simpler. The usability 

questions seem to show that this visualisation is less successful than the line chart. 

Table 24 - Responses to the usability questions for the waterfall plot. 

Q27. The instructions on the page were helpful. 4.2 

Q28. The visualisation was easy to use. 3.3 

Q29. The visualisation was responsive. 3.5 

Q30. The visualisation was clear and easy to understand. 3.5 

 

Table 24 shows we need to improve the usability of the waterfall plot. Although the users did not 

struggle to get the results they required, the user experience was not as positive as the line chart. It 

is worrying that the zoom failed to work for one of the users. Suggestions from users on 

improvements follow. 

Q31 Please comment on any part of the visualisation you found hard to use 

The two features users had the most problem with are zooming and the RFI mask. Below are some 

representative comments. 

 “Zooming in and out was very hard and completely non-intuitive.” 

There were other users who agreed. A more intuitive way to zoom needs to be implemented. 

Selecting a data range using the red box is either not implemented well or is not an intuitive way to 

zoom.  

Q32 Please comment on how you would improve this visualisation 

The main common improvement here was to provide a home zoom button to allow the users to 

reset the zoom. 

5.4.3 General Comments 

After completing these tasks users were asked to explore the other functionality on the RFI monitor 

website at their own discretion and provide comments. These comments are analysed below. 

Q33 If you work as an engineer, manager or scientist involved with the KAT7/MeerKAT projects. 

Would you use this RFI monitor as part of your operations? If so can you please explain how you 

would use this monitor? 
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The responses here were generally positive; they show that there is a need for a RFI monitoring 

system on site. The responses show that the RFI monitor we provided is useful for employees of 

SKA-SA. Some example comments are shown below.  

“It would be useful for telescope operators to have a browser tab showing the waterfall plot to 

compare to the waterfall plot for KAT7”  

“Yes. As I use data from the KAT7 [beamformer] regularly, I would find this monitor useful for RFI 

characterisation of such observations for reference”  

“I could use the RFI monitor to help me monitor RFI on site. It would be especially useful to allow me 

to corroborate my RFI measurements which I gather independently on site.” 

These comments show that although the RFI monitor could use improvement, it does achieve the 

goal of providing a RFI monitor that is useful to scientists, engineers and RFI management. 

Q34 If you could add extra functionality to the RFI monitor what would you add? 

The most common functions requested were: 

A description of the RFI monitor, including information such as how the system was calibrated and 

where the antenna is situated. 

Statistics over weeks and months as well as the hourly statistics. 

Integration with telescope system so data can be accessed and collated with telescope data. 

These suggestions and some other ideas will be discussed in the future work section 6.1 of this 

thesis. 

5.5 Case study 

In this section we discuss how the RFI monitor was used in an RFI measurement campaign on the 

MeerKAT site. The purpose of the campaign was to discover whether the two way radios in the 

bakkies on site cause harmonics which interfere with the KAT7 or MeerKAT telescopes. The radios 

themselves transmit on a fundamental frequency of 70.4 MHz. There could be a repeated signal on 

multiples of 70.4MHz, we call these repeated signals harmonics. The harmonics are less powerful 

than the 70.4MHz signal and harmonics further from the fundamental are weaker. If harmonics are 

detectable by the RFI monitor, they could interfere with KAT7 and MeerKAT. 
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The test was conducted by the Head of the RFI mitigation team at SKA-SA. He went on site and 

keyed the radio multiple times in the beam of the RFI monitor antenna. He used the RFI monitor’s 

graph channel view to look for harmonics at the time of the tests. Harmonics were detectable up to 

the 11th harmonic, at which stage the harmonics were out of the monitor’s band. You can see some 

example plots captured by Simon in Figure 53. 

This proved that the RFI monitor was useful for on-site measurements; it also showed that the 

monitor improves the efficiency of these types of tests. Without the RFI monitor Simon would have 

had to set up his own antenna and spectrum analyser, co-ordinate keying the radio and capturing 

data, upload the data from the spectrum analyser and then finally search the data. He would have 

had to use a CSV file to created his own graphs with excel. With the RFI monitor in place, Simon just 

had to key the radio and remember the time he did so. He could then use the online visualiser to 

search for the harmonics. 

The result of these tests was that further controlled tests were needed in a reverberation chamber, 

so that all confounding factors could be removed. It was also decided on the strength of these 

results to purchase and install a filter for the radio on one of the bakkies to test if it would remove 

the harmonics of the radio. 
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Figure 54 – Example plots captured in search of the two way radio harmonics : a) The fundamental signal at 70.4 MHz 

and b) the 10th harmonic  clearly visible at 704.4 MHz   
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6 Conclusions 

In this thesis the effects of RFI on observations made with radio telescopes have been presented. 

Different methods for mitigating RFI were described, ranging from legislation to post observation RFI 

excision. We examined how RFI is handled at the MeerKAT: the site had been protected by 

legislation and RFI on the site has been well characterised. We found that RFI management is a 

continuous process which needs to be informed by accurate and current information about the RF 

environment. RFI monitoring is performed at many radio telescopes and has proven to be an 

effective way of limiting RFI. These systems have been used to find RFI culprits and also to provide 

astronomers with an accurate picture of how badly their observations are affected by RFI. This led us 

to conclude that a continuous RFI monitoring system was necessary to maintain the clean RFI 

environment that the MeerKAT site was chosen for. 

This thesis focussed on the process of providing a RFI monitoring system for the SKA-SA organisation 

on the MeerKAT site. The RFI monitor was created with three goals in mind: 

 Provide automatic RFI detection 

 Provide a continuous record of the RF environment 

 Provide access to this data 

 The monitor was designed with 3 distinct types of users; astronomers who use the telescope; 

engineers who build the telescope and RFI managers who must limit RFI on site. 

The main limitation we had to deal with was the bandwidth across which we needed to monitor. 

Unfortunately it was not possible at the beginning of this project to monitor the bands over which 

the KAT7 and MeerKAT telescopes observe. As such our RFI monitor could only be a prototype 

system, showing that the techniques used work in principle. In any case the prototype still proved 

valuable for some RFI related tasks. The techniques presented in this thesis can be extended to a 

system which covers the bandwidth of the instruments themselves. In fact such a system is already 

in development and is using much of the work done in this thesis. 

The project was successful in that the outlined goals were met, within the limitations. The RATTY 

system was successfully upgraded into an autonomous RFI monitoring and detection system. The 

data was proven to be accurate. All of the data captured is run through a RFI detection which can 

reliably and automatically detect RFI in the environment. These detected RFI events are stored 

indefinitely, giving a long term record of RFI on site. This allows the RFI management team to see 

how different campaigns affect the RFI levels on site over time periods of months to years. 



 

100 
 

The second goal of providing a continuous high definition record of the RF environment was 

achieved by combining the high resolution RFI event archive with the hourly averages. Due to 

storage constraints, it was not possible to store all data at a high resolution. After a period of 1-2 

months we delete the raw data and only keep the RFI events and hourly statistics. Although this 

does not allow storing a continuous long term record in high resolution, we showed that it does 

allow us to recreate the RF environment as if we had stored all of the data. Although there is some 

difference between the high resolution and recreated data, the difference is small enough that it can 

be attributed mainly to natural noise inherent in capturing radio waves with receivers such as the 

RATTY and is therefore not a substantial loss in terms of a record of RFI. 

The third goal of providing access to the data collected by the RFI monitor was achieved by creating 

a website through which users could access the data, allowing them to download any data they were 

interested in over the web.  JavaScript visualisations which allowed the user to explore the data on 

the web page were developed. These visualisations needed to be developed as there were no 

existing JavaScript libraries that could handle the amount of data we needed to display. This website 

and its visualisations have already been used to facilitate with RFI campaigns on site. 

The greatest proof of the success of the RFI monitor is that it has been used by RFI managers 

already. It has been useful in exploring known RFI such as two way radios. It has also been used to 

alert RFI managers of high levels of intermittent RFI around the KAT7 dishes. This RFI may only have 

been discovered months later if it were not for the RFI monitor. This is strong evidence that the RFI 

monitor provides a valuable tool for RFI management. 

6.1 Further work 
Although the RFI monitor has proven to be useful in RFI management already, there are aspects of 

the monitor that could be improved upon. The next iteration of the RFI monitor will use a new 

receiver called the RATTY2 based on the old RATTY system. This new system however will cover the 

frequency from 100MHz to 2.6 GHz. This means it will be able to monitor over the frequencies that 

KAT7, MeerKAT and eventually the SKA observe on. This system is currently in development and we 

will be using the software and knowledge gained from this prototype to ensure it is a successful 

monitoring system. 

 As discussed in the validation portion of this thesis, the retrieval speed of hourly statistics was far 

too long. For the new RFI monitor we will be saving our hourly data in hdf5 files, rather than in the 

MYSQL database as in the case of the prototype. This should significantly reduce the retrieval time of 

archived data. 
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Some other features we are planning on adding are an omni-directional antenna which will allow the 

monitor to capture RFI from all over the site, rather than the approximately 60 degrees possible with 

the current antenna. We will also be upgrading the server to hold at least double the disk space so 

that we can store far more raw data. Eventually we would like to add the RFI monitor to the 

MeerKAT observations and archive. This way each observation could have an accompanying RFI 

report from the monitor at the time, and over the frequencies of the observation. 

There are plans to provide a daily, weekly and monthly RFI report which can be mailed to RFI 

managers and other interested users. We would also like to include some RFI classification, so that 

the report can say not only how much RFI there was, but what some of the likely culprits may be. 

This will hopefully help RFI managers narrow down the potential emitters they will need to measure 

to find RFI sources in future. 
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Appendix A : Code 

A.1 Roach_handle.py 

#!/usr/bin/python 

import pylab,h5py,time, corr, numpy, struct, sys, logging, os, cam, cal 

 

bram_out_prefix = 'store' 

 

class roach_handle: 

    def __init__(self, init = False): 

        try: 

            print 'Connecting to ROACH...' 

            self.r = cam.spec() 

             

            if (init): 

                self.rfi_init() #initiate rfi prog on fpga 

                self.last_cnt = self.getUnpackedData(self.r.fpga.read_uint('acc_cnt'))[2] 

 

            if self.r.spectrum_bits != 64:  

                print 'ERR: Sorry, this is only for 64 bit systems.' 

                exit() 

 

            #Access configuration of RATTY 

            self.acc_time, self.n_accs = self.r.acc_time_get()       #Get time for each accumulation 

and number of accumulations 

            self.freqs = self.r.freqs 

            self.fft_shift = self.r.fft_shift_get() 

            self.fft_scale = self.r.fft_scale 

            self.rf_gain = self.r.rf_status_get()[1] 

            self.bandwidth = self.r.bandwidth 

            self.n_chans = self.r.n_chans 

            self.bandshape = cal.bandshape(self.freqs) 

 

            print 'Scaling back by %i accumulations.'%self.n_accs 

 

            self.last_cnt = self.r.fpga.read_uint('acc_cnt') 

 

            self.af=None 

            self.units='dBm' 

 

        except Exception as e: 

            print 'Runtime error: ',e 

            raise e 

            exit() 

 

 

    def getSpectrum(self,n_acc): 

 

     spectrum = [] 

     acc_cnt = [] 
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     adc_bad = [] 

     timestamp = [] 

     adc_overrange = [] 

     fft_overrange = [] 

     adc_shutdown = [] 

     adc_level = [] 

     input_level = [] 

     adc_temp = [] 

     ambient_temp = [] 

 

        while n_acc:  #While we still need to grab next spectra 

            spectra, time, self.last_cnt, stat = self.getUnpackedData(self.last_cnt) 

            spectrum.append(spectra) 

            acc_cnt.append(self.last_cnt) 

            timestamp.append(time) 

            adc_bad.append(stat['adc_bad']) 

            adc_overrange.append(stat['adc_overrange']) 

            fft_overrange.append(stat['fft_overrange']) 

            adc_shutdown.append(stat['adc_bad']) 

            adc_level.append(stat['adc_level']) 

            input_level.append(stat['input_level']) 

            adc_temp.append(stat['adc_temp']) 

            ambient_temp.append(stat['ambient_temp']) 

            n_acc = n_acc - 1 

 

        freqs = numpy.arange(self.n_chans)*float(self.bandwidth)/self.n_chans #channel center 

freqs in Hz 

        bandshape = cal.bandshape(freqs) 

 

        ret = {'spectrum':spectrum, 'acc_cnt':acc_cnt, 'timestamp':timestamp, 

'adc_overrange':adc_overrange, 'fft_overrange':fft_overrange, 'adc_shutdown':adc_shutdown, 

'adc_level':adc_level, 'input_level':input_level, 'adc_temp':adc_temp, 

'ambient_temp':ambient_temp, 'bandshape':bandshape, 'adc_bad': adc_bad} 

 

        if (self.r.antenna_bandpass != 'none'): 

            af=cal.af_from_gain(freqs,cal.ant_gains(self.r.antenna_bandpass,freqs)) #antenna 

factor 

            ret['antenna_factor'] = af 

 

     return ret 

 

    def getAttributes (self): 

 

        ret = dict() 

        ret['n_chans'] = self.r.n_chans 

        ret['n_accs'] = self.r.acc_time_get()[1] 

        ret['bitstream'] = self.r.bitstream 

        ret['bandwidth'] = self.r.bandwidth 

        ret['adc_type'] = self.r.adc_type 

        ret['spectrum_bits'] = self.r.spectrum_bits 
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        ret['fft_shift'] = self.r.fft_shift_get() 

        ret['rf_gain'] = self.r.rf_status_get()[1] 

        ret['antenna_calfile'] = self.r.antenna_bandpass 

 

        return ret 

 

 

    def getUnpackedData(self,last_cnt): 

        """Gets data from ROACH board and returns the spectra, the state of the roach at the 

last timestamp""" 

        while self.r.fpga.read_uint('acc_cnt') == last_cnt:  #Wait untill the next accumulation 

has been performed 

            time.sleep(0.1) 

            #print "cnt = " + str(self.r.fpga.read_uint('acc_cnt')) 

        spectrum = numpy.zeros(self.r.n_chans)     #Get spectra 

        for i in range(self.r.n_par_streams): 

            spectrum[i::self.r.n_par_streams] = 

numpy.fromstring(self.r.fpga.read('%s%i'%(bram_out_prefix,i),self.r.n_chans/self.r.n_par_st

reams*8),dtype=numpy.uint64).byteswap() 

        stat = self.r.status_get() 

        ampls = self.r.adc_amplitudes_get() 

        stat['adc_level'] = ampls['adc_dbm'] 

        stat['input_level'] = ampls['input_dbm'] 

        stat['adc_temp'] = self.r.adc_temp_get() 

        stat['ambient_temp'] = self.r.ambient_temp_get() 

        last_cnt = self.r.fpga.read_uint('acc_cnt') 

        timestamp = time.time() 

 

        #print '[%i] %s: input level: %5.2f dBm (ADC %5.2f 

dBm).'%(last_cnt,time.ctime(timestamp),stat['input_level'],stat['adc_level']), 

        if stat['adc_bad']: print 'ADC selfprotect due to overrange!', 

        elif stat['adc_overrange']: print 'ADC is clipping!', 

        elif stat['fft_overrange']: print 'FFT is overflowing!', 

        #else: print str(last_cnt) + 'all ok.', 

        #print '' 

        return spectrum, timestamp, last_cnt, stat 

 

    def rfi_init (self): 

        try: 

            #r = rfi_sys.rfi_sys(mode=args[0]). 

            print 'Connecting to ROACH...', 

            self.r.logger.setLevel(logging.DEBUG) 

            print 'done.' 

 

            fpga_prog = True #Set to default value in rfi_init I got from Jason 

            fft_shift = -1 #Set to default value in rfi_init I got from Jason 

            acc_period = 1 #Set to default value in rfi_init I got from Jason (1 second) 

 

 

            print '------------------------' 
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            print 'Programming FPGA...', 

            sys.stdout.flush() 

            if fpga_prog: 

                self.r.fpga.progdev(self.r.bitstream) 

                print 'done' 

            else: 

                print 'Skipped.' 

 

            print 'Checking clocks...', 

            sys.stdout.flush() 

            if fpga_prog: 

                est_clk_rate=self.r.clk_check() 

                print 'ok, %i MHz.'%est_clk_rate 

            else: 

                print 'Skipped.' 

 

            print 'Auto-calibrating ADC...', 

            sys.stdout.flush() 

            self.r.adc_selfcal() 

            print 'done' 

 

            print 'Attempting automatic RF gain adjustment...' 

            max_n_tries=10 

            n_tries=0 

            tolerance=1 

            rf_gain=self.r.rf_gain_range[0] 

            self.r.rf_gain_set(rf_gain) 

            time.sleep(0.1) 

            self.r.ctrl_set(mrst='pulse',cnt_rst='pulse',clr_status='pulse',flasher_en=True) 

            rf_level=self.r.adc_amplitudes_get()['adc_dbm'] 

            if self.r.status_get()['adc_bad'] or self.r.status_get()['adc_overrange']:  

                raise RuntimeError('Your input levels are too high!') 

 

            while (rf_level < self.r.desired_rf_level-tolerance or 

rf_level>self.r.desired_rf_level+tolerance) and n_tries < max_n_tries: 

                rf_level=self.r.adc_amplitudes_get()['adc_dbm'] 

                difference = self.r.desired_rf_level - rf_level  

                rf_gain=self.r.rf_status_get()[1] + difference 

                print '\t Gain was %3.1fdB, resulting in an ADC input level of %5.2fdB. Trying 

gain of %4.2fdB...'%(self.r.rf_status_get()[1],rf_level,rf_gain) 

                if rf_gain < self.r.rf_gain_range[0]:  

                    print '\tWARNING: Gain at minimum, %4.2fdB.'%self.r.rf_gain_range[0], 

                    self.r.logger.warn('Gain at minimum, %4.2fdB.'%self.r.rf_gain_range[0]) 

                    self.r.rf_gain_set(self.r.rf_gain_range[0]) 

                    break 

                elif rf_gain > self.r.rf_gain_range[1]:  

                    print '\t WARNING: Gain at maximum, %4.2fdB.'%self.r.rf_gain_range[1], 

                    self.r.logger.warn('Gain at maximum, %4.2fdB.'%self.r.rf_gain_range[1]) 

                    self.r.rf_gain_set(self.r.rf_gain_range[1]) 

                    break  
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                self.r.rf_gain_set(rf_gain) 

                time.sleep(0.1) 

                n_tries += 1 

            if n_tries >= max_n_tries: print 'Failed.' 

            else: print 'done!' 

 

            print 'Setting FFT shift... ', 

            sys.stdout.flush() 

            self.r.fft_shift_set(fft_shift) 

            print 'set to 0x%x.'%self.r.fft_shift_get() 

 

            print 'Configuring accumulation period to %2.2f seconds...'%acc_period, 

            sys.stdout.flush() 

            self.r.acc_time_set(acc_period) 

            print 'done' 

 

            print 'Resetting counters...', 

            sys.stdout.flush() 

            self.r.ctrl_set(mrst='pulse',cnt_rst='pulse',clr_status='pulse',flasher_en=False) 

            print 'done' 

 

            print 'Current status:', 

            sys.stdout.flush() 

            stat=self.r.status_get() 

            if stat['adc_bad']: print 'ADC selfprotect due to overrange!', 

            elif stat['adc_overrange']: print 'ADC is clipping!', 

            elif stat['fft_overrange']: print 'FFT is overflowing!', 

            else: print 'all ok', 

            print '' 

 

        except KeyboardInterrupt: 

            exit_clean() 

        except Exception as e: 

            print e 

            exit_fail() 

 

    def exit_clean(self): 

        try: 

            self.r.fpga.stop() 

        except: 

            pass 

        exit() 

 

    def exit_fail(self): 

        print 'FAILURE DETECTED. Log entries:\n', 

        try: 

            self.r.lh.printMessages() 

            self.r.fpga.stop() 

        except Exception as e: 

            print e 
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            pass 

            raise e 

        exit() 

 

if __name__ == '__main__': 

    test = roach_handle() 

    data = test.getSpectrum(5) 

    for i in range(len(data['acc_cnt'])): 

        print '\n---------------%i------------------'%i 

        print data['spectrum'][i] 

        print data['acc_cnt'][i] 

        print data['timestamp'][i] 

        print data['adc_overrange'][i] 

        print data['adc_level'][i] 

        print data['input_level'][i] 

        print data['adc_temp'][i] 

        print data['ambient_temp'][i] 

    test.exit_clean() 
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A. 2 cam.py 
 

#!/usr/bin/env python 

''' 

You need to have KATCP and CORR installed. Get them from 

http://pypi.python.org/pypi/katcp and 

http://casper.berkeley.edu/svn/trunk/projects/packetized_correlator/corr-0.4.0/ 

 

Hard-coded for 32bit unsigned numbers. 

\nAuthor: Jason Manley, Feb 2011. 

''' 

 

import corr,time,numpy,struct,sys,logging,cal,iniparse, os 

 

front_led_layout=['adc_clip','adc_shutdown','fft_overflow','quantiser_overflow','new_accumu

lation','sync','NA','NA'] 

 

#roach='192.168.64.112' Edit by Chris 

#mode_params={'hr': {'bitstream':'r_spec_1ghz_16k_r106_2011_Feb_24_1810.bof', 

# mode_params={ 

#             #'hr': {'bitstream':'r_spec_1ghz_16k_iadc_r106_2011_Mar_10_1724.bof', 

#             'hr': {'bitstream':'r_spec_1ghz_16k_iadc_r107_2011_Mar_14_0850.bof', 

#                     'n_chans':16384, 

#                     'n_par_streams':4, 

#                     'bandwidth':898000000, 

#                     'desired_rf_level':-25, 

#                     'adc_type':'iadc', 

#                     'spectrum_bits':64, 

#                     'fft_shift':0b001111111111100}, 

#             'hr_900': {'bitstream':'r_spec_1ghz_16k_iadc_r107_2011_Mar_14_0850.bof', 

#                     'n_chans':16384, 

#                     'n_par_streams':4, 

#                     'bandwidth':900000000, 

#                     'adc_type':'iadc', 

#                     'desired_rf_level':-25, 

#                     'spectrum_bits':64, 

#                     'fft_shift':16383}, 

#             #'hr_kadc': {'bitstream':'r_spec_1ghz_16k_kadc_r108_2011_Jul_26_1810.bof', 

#             'hr_kadc': {'bitstream':'r_spec_1ghz_16k_kadc_r108_2011_Nov_09_1541.bof', 

#                     'n_chans':16384, 

#                     'n_par_streams':4, 

#                     'bandwidth':800000000, 

#                     'adc_type':'katadc', 

#                     'desired_rf_level':-25, 

#                     'spectrum_bits':64, 

#                     'fft_shift':16383}, 

#              #'lr': {'bitstream':'r_spec_1ghz_1k_r108lr_2011_Feb_28_1051.bof', 

#              'lr': {'bitstream':'r_spec_1ghz_1k_iadc_r108lr_2011_Feb_28_1655.bof', 

#                     'n_chans':1024, 
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#                     'desired_rf_level':-25, 

#                     'n_par_streams':4, 

#                     'adc_type':'iadc', 

#                     'spectrum_bits':32, 

#                     'bandwidth':900000000, 

#                     'fft_shift':1023}, 

#            } 

#katcp_port=7147 Edit by Chris 

 

class spec: 

    def __init__(self, log_handler=None, log_level=logging.INFO): 

        #-------------------------------------Code By Chris-------------------------------------------- 

        self.config_file = cal.cal_files("system_parameters") 

        try: 

            self.sys_config = iniparse.INIConfig(open(self.config_file, 'rb'))      #load config file 

        except IOError as e: 

            print "Error opening the config file : ", 

            print e 

            exit() 

        roach = self.sys_config['connection']['roach_ip'].strip()                     #load Roach IP 

        katcp_port = int(self.sys_config['connection']['katcp_port'])                  #load Roach port 

        #----------------------------------End Code By Chris------------------------------------------- 

        if log_handler == None: log_handler=corr.log_handlers.DebugLogHandler(100) 

        self.lh = log_handler 

        self.logger = logging.getLogger('RFIsys') 

        

self.fpga=corr.katcp_wrapper.FpgaClient(roach,katcp_port,timeout=10,logger=self.logger) 

        self.logger.setLevel(log_level) 

        self.logger.addHandler(self.lh) 

        time.sleep(1) 

        try: 

            self.fpga.ping() 

            self.logger.info('KATCP connection ok.') 

        except Exception as e: 

            self.logger.error('KATCP connection failure. Connection to ROACH failed.') 

            print e 

            print('KATCP connection failure.') 

            raise RuntimeError("Connection to FPGA board failed.") 

        #--------------------------------Edited by Chris------------------------------------------------- 

        #self.mode = self.sys_config['digital_system_parameters']['mode'].strip() 

        self.n_chans = int(self.sys_config['digital_system_parameters']['n_chans']) 

        self.bandwidth = int(self.sys_config['digital_system_parameters']['bandwidth']) 

        self.n_par_streams = int(self.sys_config['digital_system_parameters']['n_par_streams']) 

        self.bitstream = self.sys_config['digital_system_parameters']['bitstream'] 

        self.fft_shift = int(self.sys_config['digital_system_parameters']['fft_shift']) 

        self.adc_type = self.sys_config['digital_system_parameters']['adc_type'] 

        self.desired_rf_level = 

int(self.sys_config['digital_system_parameters']['desired_rf_level']) 

        self.spectrum_bits = int(self.sys_config['digital_system_parameters']['spectrum_bits']) 

        self.antenna_bandpass = self.sys_config['analogue_frontend']['antenna_bandpass'] 
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        if self.adc_type== 'katadc': 

            self.fpga_clk=self.bandwidth/4 

            self.sample_clk=self.bandwidth*2 

            self.rf_gain_range=(-11.5,20) 

        elif self.adc_type== 'iadc': 

            self.fpga_clk=self.bandwidth/4 

            self.sample_clk=self.bandwidth*2 

            self.rf_gain_range=(-31.5,0) 

        self.chan_width=numpy.float(self.bandwidth)/self.n_chans  

        self.freqs=numpy.arange(self.n_chans)*float(self.bandwidth)/self.n_chans #channel 

center freqs in Hz 

 

 

        #-----------------------------End Edited By Chris ----------------------------------------------- 

 

    def initialise(self,rf_gain=-10,acc_time=1,fft_shift=0xffffffff): 

        """Initialises the system to defaults.""" 

        self.fpga.progdev(self.bitstream) 

        self.fft_shift_set(fft_shift) 

        self.rf_gain_set(rf_gain) 

        self.acc_time_set(acc_time) 

        self.ctrl_set(flasher_en=False,cnt_rst='pulse',clr_status='pulse') 

        #self.ctrl_set(flasher_en=True,cnt_rst='pulse',clr_status='pulse') 

 

    def clk_check(self): 

        """Performs a clock check and returns an estimate of the FPGA's clock frequency.""" 

        est_rate=round(self.fpga.est_brd_clk()) 

        if est_rate>(self.fpga_clk/1e6 +1) or est_rate<(self.fpga_clk/1e6 -1): 

            self.logger.error('FPGA clock rate is %i MHz where we expect it to be %i 

MHz.'%(est_rate,self.fpga_clk/1e6)) 

            raise RuntimeError('FPGA clock rate is %i MHz where we expect it to be %i 

MHz.'%(est_rate,self.fpga_clk/1e6)) 

        return est_rate 

 

    def adc_selfcal(self): 

        if self.adc_type=='iadc': 

            

corr.iadc.configure(self.fpga,0,mode='inter_I',cal='new',clk_speed=self.bandwidth/1000000) 

        elif self.adc_type=='katadc': 

            corr.katadc.set_interleaved(self.fpga,0,'I') 

            time.sleep(0.1) 

            corr.katadc.cal_now(self.fpga,0) 

         

    def fft_shift_set(self,fft_shift_schedule=-1): 

        """Sets the FFT shift schedule (divide-by-two) on each FFT stage.  

            Input is an integer representing a binary bitmask for shifting. 

            If not specified as a parameter to this function (or a negative value is supplied), 

program the default level.""" 

        import cal 

        if fft_shift_schedule<0: fft_shift_schedule=self.fft_shift 
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        self.fpga.write_int('fft_shift',fft_shift_schedule) 

        self.fft_shift=fft_shift_schedule 

        self.fft_scale=2**(cal.bitcnt(fft_shift_schedule)) 

        self.logger.info("Set FFT shift to %8x (scaling down by 

%i)."%(fft_shift_schedule,self.fft_scale)) 

 

    def fft_shift_get(self): 

        """Fetches the current FFT shifting schedule from the hardware.""" 

        self.fft_shift=self.fpga.read_uint('fft_shift') 

        self.fft_scale=2**(cal.bitcnt(self.fft_shift)) 

        return self.fft_shift  

#        return self.fft_scale 

 

    def ctrl_get(self): 

        """Reads and decodes the values from the control register.""" 

        value = self.fpga.read_uint('control') 

        return {'mrst':bool(value&(1<<0)), 

                'cnt_rst':bool(value&(1<<1)), 

                'clr_status':bool(value&(1<<3)), 

                'adc_protect_disable':bool(value&(1<<13)), 

                'flasher_en':bool(value&(1<<12)), 

                'raw':value, 

                } 

 

    def ctrl_set(self,**kwargs): 

         """Sets bits of all the Fengine control registers. Keeps any previous state. 

             \nPossible boolean kwargs: 

             \n\t adc_protect_disable  

             \n\t flasher_en 

             \n\t clr_status 

             \n\t mrst 

             \n\t cnt_rst""" 

 

         key_bit_lookup={ 

             'adc_protect_disable':   13, 

             'flasher_en':   12, 

             'clr_status':   3, 

             'cnt_rst':      1, 

             'mrst':         0, 

             } 

         value = self.ctrl_get()['raw'] 

         run_cnt=0 

         run_cnt_target=1 

         while run_cnt < run_cnt_target: 

             for key in kwargs: 

                 if (kwargs[key] == 'toggle') and (run_cnt==0): 

                     value = value ^ (1<<(key_bit_lookup[key])) 

                 elif (kwargs[key] == 'pulse'): 

                     run_cnt_target = 3 

                     if run_cnt == 0: value = value & ~(1<<(key_bit_lookup[key])) 
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                     elif run_cnt == 1: value = value | (1<<(key_bit_lookup[key])) 

                     elif run_cnt == 2: value = value & ~(1<<(key_bit_lookup[key])) 

                 elif kwargs[key] == True: 

                     value = value | (1<<(key_bit_lookup[key])) 

                 elif kwargs[key] == False: 

                     value = value & ~(1<<(key_bit_lookup[key])) 

                 else: 

                     raise RuntimeError("Sorry, you must specify True, False, 'toggle' or 'pulse' for 

%s."%key) 

             self.fpga.write_int('control', value) 

             run_cnt = run_cnt +1 

 

    def rf_gain_set(self,gain=None): 

        """Enables the RF switch and configures the RF attenuators on KATADC boards. \n 

        \t KATADC's valid range is -11.5 to 20dB. \n""" 

        self.rf_gain=gain 

        if self.adc_type == 'katadc': 

            #RF switch is in MSb. 

            if gain > 20 or gain < -11.5: 

                 raise RuntimeError("Invalid gain setting of %i. Valid range for KATADC is -

11.5 to +20dB.") 

            self.fpga.write_int('adc_ctrl0',(1<<31)+int((20-gain)*2)) 

        elif self.adc_type == 'iadc': 

            if gain > 0 or gain < -31.5: 

                 raise RuntimeError("Invalid gain setting of %i. Valid range for RFI frontend is -

31.5 to 0dB.") 

            self.fpga.write_int('adc_ctrl0',(1<<31)+int((0-gain)*2)) 

            #print 'Set RF gain register to %x'%int((0-gain)*2) 

        else: raise RuntimeError("Sorry, your ADC type is not supported.") 

 

    def rf_status_get(self): 

        """Grabs the current value of the RF attenuators and RF switch state. returns 

(enabled,gain in dB).""" 

        if self.adc_type == 'katadc': 

            value = self.fpga.read_uint('adc_ctrl0') 

            self.rf_gain=20.0-(value&0x3f)*0.5 

            return (bool(value&(1<<31)),self.rf_gain) 

        elif self.adc_type == 'iadc': 

            value = self.fpga.read_uint('adc_ctrl0') 

            self.rf_gain=0.0-(value&0x3f)*0.5 

            return (bool(value&(1<<31)),self.rf_gain) 

        else: raise RuntimeError("Sorry, your ADC type is not supported.") 

 

    def adc_amplitudes_get(self): 

        """Gets the ADC RMS amplitudes.""" 

        adc_levels_acc_len=65536 

        if self.adc_type == 'katadc': 

            adc_bits=8 

        elif self.adc_type == 'iadc': 

            adc_bits=8 
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        rv = {} 

        rv['adc_raw']=self.fpga.read_uint('adc_sum_sq0') 

        rv['adc_rms_raw']=numpy.sqrt(rv['adc_raw']/float(adc_levels_acc_len)) 

        rv['adc_rms_mv']=rv['adc_rms_raw']*cal.get_adc_cnt_mv_scale_factor() 

        rv['adc_dbm']=cal.v_to_dbm(rv['adc_rms_mv']/1000.) 

        

rv['input_rms_mv']=rv['adc_rms_raw']*cal.get_adc_cnt_mv_scale_factor(self.rf_status_get()[

1]) 

        rv['input_dbm']=cal.v_to_dbm(rv['input_rms_mv']/1000.) 

        return rv 

 

    def status_get(self): 

        """Reads and decodes the status register. Resets any error flags after reading.""" 

        rv={} 

        value = self.fpga.read_uint('status') 

        self.ctrl_set(clr_status='pulse') 

        return { 

                'adc_bad':bool(value&(1<<4)), 

                'adc_overrange':bool(value&(1<<2)), 

                'fft_overrange':bool(value&(1<<1)) 

                } 

 

    def acc_time_set(self,acc_time=1): 

        """Set the accumulation length in seconds""" 

        self.n_accs = int(acc_time * float(self.bandwidth)/self.n_chans) 

        self.logger.info("Setting accumulation time to %2.2f seconds (%i 

accumulations)."%(acc_time,self.n_accs)) 

        self.fpga.write_int('acc_len',self.n_accs) 

        self.ctrl_set(mrst='pulse') 

 

    def acc_time_get(self): 

        """Set the accumulation length in seconds""" 

        self.n_accs = self.fpga.read_uint('acc_len') 

        self.acc_time=self.n_accs*self.n_chans/float(self.bandwidth) 

        self.logger.info("Accumulation time is %2.2f seconds (%i 

accumulations)."%(self.acc_time,self.n_accs)) 

        return self.acc_time,self.n_accs 

 

    def get_adc_snapshot(self,trig_level=-1): 

        if trig_level>0:  

            self.fpga.write_int('trig_level',trig_level) 

            circ_capture=True 

        else: 

            self.fpga.write_int('trig_level',0) 

            circ_capture=False 

 

        return 

numpy.fromstring(self.fpga.snapshot_get('snap_adc',man_valid=True,man_trig=True,circular

_capture=circ_capture,wait_period=-1)['data'],dtype=numpy.int8) 

 



 

118 
 

    def adc_temp_get(self): 

        if self.adc_type== 'katadc': 

            return corr.katadc.get_adc_temp(self.fpga,0) 

        else: 

            return -1 

 

    def ambient_temp_get(self): 

        if self.adc_type== 'katadc': 

            return corr.katadc.get_ambient_temp(self.fpga,0) 

        else: 

            return -1 

     

 

     

def ByteToHex( byteStr ): 

    """ 

    Convert a byte string to it's hex string representation e.g. for output. 

    """ 

     

    # Uses list comprehension which is a fractionally faster implementation than 

    # the alternative, more readable, implementation below 

    #    

    #    hex = [] 

    #    for aChar in byteStr: 

    #        hex.append( "%02X " % ord( aChar ) ) 

    # 

    #    return ''.join( hex ).strip()         

 

    return ''.join( [ "%02X " % ord( x ) for x in byteStr ] ).strip() 
  



 

119 
 

A.3 Cal.py 
# -*- coding: utf-8 -*- 

import numpy,scipy,scipy.interpolate, iniparse 

 

 

#smoothing functions from http://www.swharden.com/blog/2008-11-17-linear-data-

smoothing-in-python/ 

 

c=299792458. #speed of light in m/s 

#cal_file_path = "/etc/rfi_sys/cal_files/"; #For when you have everything working and ready 

to install with distutils 

cal_file_path = "ratty/config_files/cal_files/"; #For development 

 

def smoothList(list,strippedXs=False,degree=10):   

     if strippedXs==True: return Xs[0:-(len(list)-(len(list)-degree+1))]   

     smoothed=[0]*(len(list)-degree+1)   

     for i in range(len(smoothed)):   

         smoothed[i]=sum(list[i:i+degree])/float(degree)   

     return smoothed   

 

def smoothListTriangle(list,strippedXs=False,degree=5):   

     weight=[]   

     window=degree*2-1   

     smoothed=[0.0]*(len(list)-window)   

     for x in range(1,2*degree):weight.append(degree-abs(degree-x))   

     w=numpy.array(weight)   

     for i in range(len(smoothed)):   

         smoothed[i]=sum(numpy.array(list[i:i+window])*w)/float(sum(w))   

     return smoothed   

 

def smoothListGaussian(list,strippedXs=False,degree=5):   

     window=degree*2-1   

     weight=numpy.array([1.0]*window)   

     weightGauss=[]   

     for i in range(window):   

         i=i-degree+1   

         frac=i/float(window)   

         gauss=1/(numpy.exp((4*(frac))**2))   

         weightGauss.append(gauss)   

     weight=numpy.array(weightGauss)*weight   

     smoothed=[0.0]*(len(list)-window)   

     for i in range(len(smoothed)):   

         smoothed[i]=sum(numpy.array(list[i:i+window])*weight)/sum(weight)   

     return smoothed   

 

def dmw_per_sq_m_to_dbuv(dbmw): 

    # from http://www.ahsystems.com/notes/RFconversions.php: dBmW/m2 = dBmV/m - 115.8  

    return dbmw + 115.8 

 

def dbuv_to_dmw_per_sq_m(dbuv): 
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    # from http://www.ahsystems.com/notes/RFconversions.php: dBmW/m2 = dBmV/m - 115.8  

    return dbuv - 115.8 

 

def dbm_to_dbuv(dbm): 

    return dbm+106.98 

 

def dbuv_to_dbm(dbuv): 

    return dbm-106.98  

 

def v_to_dbuv(v): 

    return 20*numpy.log10(v*1e6) 

 

def dbuv_to_v(dbuv): 

    return (10**(dbuv/20.))/1e6 

 

def dbm_to_v(dbm): 

    return numpy.sqrt(10**(dbm/10.)/1000*50) 

 

def v_to_dbm(v): 

    return 10*numpy.log10(v*v/50.*1000) 

 

def bitcnt(val): 

    '''Counts the number of set bits in the binary value.''' 

    ret_val=0 

    shift_val=val 

    while shift_val>=1: 

        if shift_val&1: ret_val +=1 

        shift_val = shift_val>>1 

    return ret_val 

 

def polyfit(freqs,gains,degree=9): 

    """Just calls numpy.polyfit. Mostly here as a reminder.""" 

    return numpy.polyfit(freqs,gain,deg=degree) 

 

def af_from_gain(freqs,gains): 

        """Calculate the antenna factor (in dB/m) from a list of frequencies (in Hz) and gains 

(in dBi). 

            There are a number of assumptions made for this to be valid: 

             1) Far-field only (plane wave excitation). 

             2) 50ohm system. 

             3) antenna is polarisation matched. 

             4) effects of impedance mismatch are included.""" 

        #From Howard's email: 

        #The antenna factors are derived from gain by taking 9.73/(lambda(sqrt(Gain))  - note 

the gain here is the non-dB gain. It is worth noting that in dB’s the conversion is 19.8 – 

20log10(lambda) – 10 log(Gain) 

        return 19.8 - 20*numpy.log10(c/freqs) - gains 

 

def gain_from_af(freqs,afs): 

        """Calculate the gain (in dBi) from the Antenna Factor (in dB/m).""" 
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        return 19.8 - 20*numpy.log10(c/freqs) - afs 

 

def getDictFromCSV(filename): 

        import csv 

        f = open(filename) 

        f.readline() 

        reader = csv.reader(f, delimiter=',') 

        mydict = dict() 

        for row in reader: 

            mydict[float(row[0])] = float(row[1]) 

        return mydict 

 

class cal: 

 

    def __init__(self, config_file = 'default'): 

 

        self.config = conf.rattyconf(config_file) 

 

                                                         

    def __init__(self, n_chans, bandwidth, n_par_streams, bitstream, fft_shfit, adc_type, 

desired_rf_level, spectrum_bits, antenna_bandpass, atten_gain, system_bandpass, fe_gain, 

acc_period): 

        self.n_chans = n_chans 

        self.bandwidth = bandwidth 

        self.n_par_streams = n_par_streams 

        self.bitstream = bitstream 

        self.fft_shift = fft_shift 

        self.adc_type = adc_type 

        self.desired_rf_level = desired_rf_level 

        self.spectrum_bits = spectrum_bits 

        self.antenna_bandpass = antenna_bandpass 

        self.atten_gain = atten_gain 

        self.freqs = numpy.arange(self.n_chans)*float(self.bandwidth)/self.n_chans 

        self.system_bandpass = system_bandpass 

        self.fe_gain = fe_gain 

        self.acc_period = acc_period 

        self.n_accs = int(self.acc_period * float(self.bandwidth)/self.n_chans) 

 

    def inter_adc_details(self, data): 

        print 'DC offset 0: %f'%numpy.mean(data[0::2]) 

        print 'DC offset 1: %f'%numpy.mean(data[1::2]) 

        print 'Max 0: %f'%numpy.max(data[0::2]) 

        print 'Max 1: %f'%numpy.max(data[1::2]) 

        #print 'Phase difference estimate: 

%f'%numpy.acos(2*numpy.mean(data[0::2]*data[1::2])) 

 

    def plot_bandshape(freqs): 

        import pylab 

        pylab.plot(bandshape(freqs)) 

        pylab.title('Bandpass calibration profile') 
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        pylab.xlabel('Frequency (Hz)') 

        pylab.ylabel('Relative response (dB)') 

 

    def plot_atten_gain_map(): 

        import pylab 

        inputs=atten_gain_map.keys() 

        inputs.sort() 

        pylab.plot(inputs,[atten_gain_map[k] for k in inputs]) 

        pylab.title('RF attenuator mapping') 

        pylab.xlabel('Requested value (dB)') 

        pylab.ylabel('Actual value (dB)') 

 

    def get_gains_from_csv(filename): 

        freqs=[] 

        gains=[] 

        more=True 

        fp=open(filename,'r') 

        import csv 

        fc=csv.DictReader(fp) 

        while(more): 

            try:  

                raw_line=fc.next() 

                freqs.append(numpy.float(raw_line['freq_hz'])) 

                gains.append(numpy.float(raw_line['gain_db'])) 

            except: 

                more=False 

                break 

        return freqs,gains 

     

    def get_interpolated_gains(fileName): 

        """Retrieves antenna gain mapping from /etc/rfi_sys/cal_files/ant.csv file and 

interpolates data to return values at 'freqs'.""" 

        cal_freqs,cal_gains=get_gains_from_csv(cal_files(fileName + '.csv')) 

        inter_freqs=scipy.interpolate.interp1d(cal_freqs,cal_gains,kind='linear') 

        return inter_freqs(self.config['freqs']) 

 

    def plot_ant_gain(): 

        """Plots the antenna gain as read from a CSV file specified as "ant".""" 

        import pylab 

        pylab.plot(self.config['freqs']/1e6,self.ant_gains()) 

        pylab.title('Antenna gain %s'%self.config['antenna_bandpass_file']) 

        pylab.xlabel('Frequency (MHz)') 

        pylab.ylabel('Relative response (dBi)') 

 

    def plot_ant_factor(): 

        """Plots the antenna factor over the given frequencies as calculated from the specified 

antenna CSV file.""" 

        import pylab 

        pylab.plot(self.freqs/1e6,af_from_gain(self.freqs,ant_gains())) 
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        pylab.title('Antenna factor as a function of frequency 

(%s)'%self.config['antenna_bandpass_file']) 

        pylab.xlabel('Frequency (MHz)') 

        pylab.ylabel('Antenna factor (dBuV/m)') 

 

    def get_adc_cnt_mv_scale_factor(atten_gain=None): #TODO FIX THIS!! 

        """Calculate and return a scale factor for calibrating a raw ADC count to millivolts. 

Optional atten_gain in dB to map to input levels.""" 

        if atten_gain==None: 

            return 3.93 

        else: 

            return 3.93/(10**((atten_gain_map[atten_gain]+self.config['fe_gain'])/20.)) 

 

    def freq_to_chan(frequency): 

        """Returns the channel number where a given frequency is to be found. Frequency is in 

Hz.""" 

        if frequency<0:  

            frequency=self.config['bandwidth']+frequency 

            #print 'you want',frequency 

        if frequency>self.config['bandwidth']: raise RuntimeError("that frequency is too 

high.") 

        return 

round(float(frequency)/self.config['bandwidth']*self.config['n_chans'])%self.config['n_chans'

] 

      

    def 
get_calibrated_spectrum_from_raw_snapshot(adcdata,atten,bandwidth,ant_factor=None,band

shape=None,n_chans=512): 

        """Will correct for RF frontend attenuator gains, bandshape and optionally antenna 

response. Returns dBm unless antenna is specified, in which case returns dBuV/m.""" 

    #TODO: TEST THIS 

        n_accs=len(adcdata)/self.config['n_chans']/2 

        

freqs=numpy.arange(self.config['n_chans'])*float(self.config['bandwidth'])/self.config['n_cha

ns'] #channel center freqs in Hz. #linspace(0,float(bandwidth),n_chans) returns incorrect 

numbers 

        window=numpy.hamming(self.config['n_chans']*2) 

        spectrum=numpy.zeros(self.config['n_chans']) 

        adc_data_v=get_adc_cnt_mv_scale_factor(atten_gain=atten)*adcdata/1000. #factors-in 

atten_gain_map and fe_gain 

        for acc in range(n_accs): 

            spectrum += 

numpy.abs((numpy.fft.rfft(adc_data_v[self.config['n_chans']*2*acc:self.config['n_chans']*2*

(acc+1)]*window)[0:self.config['n_chans']])**2) 

            #print 

(numpy.fft.rfft(adc_data_dbm[n_chans*2*acc:n_chans*2*(acc+1)]*window)[0:n_chans]) 

        spectrum  = 10*numpy.log10(spectrum/n_accs/self.config['n_chans']) #now in dBV 

        spectrum -= 13.034 

        if bandshape != None: 

            spectrum -= bandshape 
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        if ant_factor != None:  

            spectrum = dbm_to_dbuv(spectrum) 

            spectrum += ant_factor  

        return freqs,spectrum 

 

    def get_calibrated_spectrum(data, desired_rf_gain): 

        '''Returns a calibrated spectrum from a raw hardware spectral dump. 

            Units are dBm unless an antenna is specified in which case units are dBuV/m.\n 

            Performs bandpass correction, fft_scaling adjustment, overall gain compensation, 

backs out number of accumulations, RF frontend gain etc.\n 

        ''' 

 

        ant_factor = af_from_gain(self.config['freqs'], self.atten_gain_map) 

        #SQRT? 

        data_return=numpy.array(data) 

        data_return /= float(self.config['n_accs']) 

        data_return *= bitcnt(self.config['fft_shift']) 

        #data_return /= self.chan_width 

        data_return  = 10*numpy.log10(data_return) 

        data_return -= self.atten_gain_map[desired_rf_gain] 

        data_return -= self.config['fe_gain']  

        data_return -= 120. #overall system/algorithm gain 

        if bandshape != None: 

            data_return -= self.bandshape 

        if ant_factor !=None:  

            data_return = dbm_to_dbuv(data_return) 

            data_return += ant_factor  

        return data_return 

 

    def cal_files(filename): 

        import os 

        return "%s%s"%(cal_file_path, filename) 
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A. 4 rfi_monitor.py 

import ratty1 

import rfDB 

from multiprocessing import Process, Pipe, Queue, Lock, Event 

from multiprocessing import Pool 

import sys 

import archive_rfi_spectra as arch 

import rfi_event as rfie 

import time 

import os 

import h5py 

import numpy as np 

import current_spectra as cs 

 

numLoops = 10 

 

def threadInsert (queue): 

    db = rfDB.dbControl.dbControl("localhost", "root", "meerkat", "rfimonitor") 

    current = cs.current_spectra() 

    count = numLoops 

    last_cnt = 0 

    last_day = -1; 

    data = queue.get() 

    localtime = time.localtime(data[1]) 

    fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation 

    path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1], 

"%02i"%localtime[2],'') #Filepath year/month/day of the observation 

    location = "%s%s"%(path,fileName) 

    if not os.path.exists(path): 

        os.makedirs(path) 

    f = h5py.File(location, 'w') 

    f.create_dataset('spectra', (3600, 14200),chunks = (4, 14200), dtype = type(data[0][0]), 

compression='gzip', compression_opts=4) 

    last_hour = localtime[3] 

    last_timestamp = data[1] 

    hourstart, hourend = rfDB.dbControl.get_hour(data[1]) 

    count = 0 

    while True: 

        if (last_hour != localtime[3]): #If new hour 

            #Save file 

            f.flush() 

            f.close() 

 

            #Event to synchronise archive and rfi detection 

            archive_added_event = Event() 

 

            #Archive last hour 

            p3 = Process(target=threadArchive, args = (last_timestamp,archive_added_event)) 

            p3.start() 
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            #Detect RFI and archive 

            p4 = Process(target=threadRFIDetection, args = 

(last_timestamp,archive_added_event)) 

            p4.start() 

 

            #Make sure at least 25% of harddrive is free 

            db.maintain_space() 

 

            #Create new file for next hour 

            fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation 

            path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1], 

"%02i"%localtime[2],'') #Filepath year/month/day of the observation 

            location = "%s%s"%(path,fileName) 

            if not os.path.exists(path): 

                os.makedirs(path) 

            f = h5py.File(location, mode='w') 

            f.create_dataset('spectra', (3600, 14200),chunks = (4, 14200), dtype = 

type(data[0][0]), compression='gzip', compression_opts=4) 

 

            #reset time keeping variables to current hour 

            last_hour = localtime[3] 

            last_timestamp = data[1] 

            current.deleteOld(last_timestamp) 

        # print "inserting to current"  

        current.insertSpectrum(data[0],data[1]) 

        # print "inserting to rfimonitor" 

        db.insertDump (data[0], data[1], data[3], 1, f) 

        # print "Done Inserting'" 

        data = queue.get() 

        #print "Timestamp = %i"%data[1] 

        localtime = time.localtime(data[1]) 

    db.closeDB() 

    current.close() 

    #f.close() 

 

def threadArchive (timestamp, archive_added_event): 

    print "In archive thread" 

    timeT = time.time() 

    rf_archive = arch.archive_rfi_spectra() 

    #rf_archive.connect() 

    print "Connected to DB, Start processing" 

    rf_archive.archive_last_hour(timestamp, False) 

    rf_archive.exit() 

    archive_added_event.set() 

    print "exiting rf archival, took %i seconds"%(time.time()-timeT) 

 

def threadRFIDetection(timestamp, archive_added_event): 

    print "In RFIDetection" 

    timeT = time.time() 

    num_events, len_events = rfie.rfi_detection(timestamp) 
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    print "Completed RFIDetection, took %i seconds"%(time.time() - timeT) 

    archive_added_event.wait() 

    time.sleep(6) 

    print "entering insert to archive" 

    rfie.insert_to_archive(timestamp, num_events, len_events) 

    print "Added RFI data to archive" 

 

 

     

def threadGetSpectrum (queue): 

    rat = ratty1.cam.spec() 

 

    rat.connect() 

    rat.initialise() 

    count = numLoops 

    while True: 

        spectrum, timestamp, last_cnt, stat = rat.getUnpackedData() 

        queue.put((rat.cal.get_calibrated_spectrum(spectrum, 

rat.rf_status_get()[1])[rat.cal.freq_to_chan(rat.cal.config['ignore_low_freq']):rat.cal.freq_to_c

han(rat.cal.config['ignore_high_freq'])], timestamp, last_cnt, stat)) 

        count -= 1 

 

def run(): 

 

    print "start" 

    queue = Queue() 

 

    try: 

        p = Process(target=threadGetSpectrum, args=(queue,)) 

        p2 = Process(target=threadInsert, args=(queue,)) 

        p.start() 

        p2.start() 

        print "p1 and p2 started" 

        p.join() 

        p2.join() 

    except SystemExit, e: 

        print "exiting" 

        sys.exit(0) 

 

if __name__ == "__main__": 

    run() 
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dBControl.py 
 

import MySQLdb as mdb 

import sys 

import h5py 

import os 

import time 

import numpy 

import math 

import pickle 

import datetime 

 

def get_hour(timestamp): 

    new_hour = [0,0,0,0,0,0,0,0,0] 

    new_hour[0:4] = datetime.datetime.fromtimestamp(timestamp).timetuple()[0:4] 

    start_timestamp = time.mktime(new_hour) 

    end_timestamp = time.mktime((datetime.datetime.fromtimestamp(start_timestamp) + 

datetime.timedelta(hours=1)).timetuple()) 

    end_timestamp = start_timestamp+3600 # 1 hour in the future 

    return start_timestamp, end_timestamp 

 

def array_to_csv_file (data,headings, file_name): 

    import csv 

    print headings 

    print data[0:5] 

     

    out = numpy.vstack ((headings, data)) 

 

    f = open(file_name, 'w+') 

 

    writer = csv.writer(f, delimiter = ',') 

    for row in out: 

        writer.writerow(row) 

        writer 

 

    f.close() 
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A.5 dbControl.py 
 

class dbControl: 

 

    def test (self): 

        print "In test" 

 

    def __init__(self, host, userName, password, database): 

        self.con = mdb.connect(host, userName, password, database) 

        self.cur = self.con.cursor() 

        self.cur.execute ("SET bulk_insert_buffer_size= 1024 * 1024 * 256") 

 

    def closeDB (self): 

        self.con.close() 

 

    def get_hour(self, timestamp): 

        new_hour = [0,0,0,0,0,0,0,0,0] 

        new_hour[0:4] = datetime.datetime.fromtimestamp(timestamp).timetuple()[0:4] 

        start_timestamp = time.mktime(new_hour) 

        end_timestamp = time.mktime((datetime.datetime.fromtimestamp(start_timestamp) + 

datetime.timedelta(hours=1)).timetuple()) 

        end_timestamp = start_timestamp+3600 # 1 hour in the future 

        return start_timestamp, end_timestamp 

 

 

    def getDumpAve (self, startTime = 0, endTime = time.time(), lowFrequency = 0, 

highFrequency = 16384): 

        """Returns the average power for each 1 hour dump""" 

        data = self.cur.execute("SELECT spectrum.id, AVG(ave) FROM spectrum_averages 

JOIN spectrum ON spectrum.id = dump_id WHERE startTime > %s AND endTime < %s 

AND frequency_bin > %s AND frequency_bin < %s GROUP BY dump_id ORDER BY 

dump_id",(startTime, endTime, lowFrequency, highFrequency)) 

        print self.cur.fetchall() 

 

    def getFreqAve (self, startTime = 0, endTime = time.time(), lowFrequency = 0, 

highFrequency = 16384): 

        """Returns the average power for each frequency over all dumps in the db""" 

        data = self.cur.execute("SELECT frequency_bin, AVG(ave) FROM spectrum_averages 

JOIN spectrum ON spectrum.id = dump_id WHERE startTime > %s AND endTime < %s 

AND frequency_bin > %s AND frequency_bin < %s GROUP BY frequency_bin ORDER 

BY frequency_bin",(startTime, endTime, lowFrequency, highFrequency)) 

        print self.cur.fetchmany(20) 

 

    def getFreqDumpAve (self, startTime = 0, endTime = time.time(), lowFrequency = 0, 

highFrequency = 16384): 

        data = self.cur.execute("SELECT spectrum.id, frequency_bin, AVG(ave) FROM 

spectrum_averages JOIN spectrum ON spectrum.id = dump_id WHERE startTime > %s 

AND endTime < %s AND frequency_bin > %s AND frequency_bin < %s GROUP BY 

spectrum.id, frequency_bin ORDER BY spectrum.id, frequency_bin",(startTime, endTime, 

lowFrequency, highFrequency)) 
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        print self.cur.fetchmany(20) 

 

    def insertDumpFromFile (self, fileName): 

        rootFilePath = "/home/chris/dumps" 

        f = h5py.File(fileName) 

        data = {} 

        for key in list(f): 

            data[key] = list(f[key]) 

        attr = {} 

        for key in list(f['/'].attrs): 

            attr[key] = f['/'].attrs[key] 

 

        self.insertDump(attr, data) 

 

    def insertDumpSaveFile (self, attr, data): 

        meta = self.calcMetaData(data) 

 

        startTime = data['timestamp'][0] 

        endTime = data['timestamp'][meta['n_accs'] - 1] 

        localstart = time.localtime(startTime) 

        path = os.path.join(self.rootFilePath, str(localstart[0]), "%02i"%localstart[1], '') 

        fileName = "%02i_%02i_%02i.h5"%(localstart[2], localstart[3], localstart[4]) 

 

        self.cur.execute("INSERT INTO spectra (fileLocation, starttime, endtime, location, 

direction, n_accs, n_adc_overrange, n_fft_overrange) VALUES (%s, %s, %s, 

GeomFromText(\'POINT(%s %s)\'), GeomFromText(\'POINT(%s %s)\'), %s, %s, 

%s)",("%s%s"%(path, fileName), startTime, endTime, 0, 0, 0, 0, meta['n_accs'], 

meta['n_adc_overrange'], meta['n_fft_overrange'])) 

 

        dump_id = self.cur.lastrowid 

 

        values = [(dump_id, f, meta['fAves'][f], meta['fMins'][f], meta['fMaxs'][f], 

meta['fStdDevs'][f]) for f in range(attr['n_chans'])] 

        self.cur.executemany("INSERT INTO frequency_metadata (dump_id, frequency_bin, 

ave, min, max, stdDev) VALUES (%s, %s, %s, %s, %s, %s)",(values)) 

 

        values = [(dump_id, t, meta['tAves'][t], meta['tMins'][t], meta['tMaxs'][t], 

meta['tStdDevs'][t]) for t in range(meta['n_accs'])] 

        self.cur.executemany("INSERT INTO timestep_metadata (dump_id, time_step, ave, 

min, max, stdDev) VALUES (%s, %s, %s, %s, %s, %s)",(values)) 

 

        if not os.path.exists(path): 

            os.makedirs(path) 

 

        #Create new file and save data to file 

        f = h5py.File("%s%s"%(path, fileName), mode="w") 

        ds = f.create_dataset('spectra', (len(data['spectra']), len(data['spectra'][0])), chunks = (4, 

16384), dtype = type(data['spectra'][0][0]), compression ='gzip', compression_opts = 4) 
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        for key in data:            #Put data in file 

            if (key == 'spectra'): 

                ds = f.create_dataset('spectra', (len(data['spectra']), len(data['spectra'][0])), chunks = 

(4, 16384), dtype = type(data['spectra'][0][0]), compression ='gzip', compression_opts = 4) 

                ds[:] = data['spectra'] 

            else: 

                f[key] = data[key] 

 

        for key in attr:            #put attributes in file 

            f['/'].attrs[key] = attr[key] 

 

        f.flush() 

        f.close() 

 

        #Commit changes to database 

        self.con.commit() 

 

    def insertSystem(self, attr): 

        values = (attr['n_chans'], attr['bitstream'], attr['bandwidth'], attr['fft_shift'], 

attr['adc_type'],\ 

         attr['spectrum_bits'], attr['rf_gain'], 0, 0, 0.0) 

 

        self.cur.execute("INSERT INTO system (n_chans, bitstream, bandwidth, fft_shift, 

adc_type, spectrum_bits,\ 

         rf_gain, location, direction) VALUES (%s, %s, %s, %s, %s, %s, %s, 

GeomFromText(\'POINT(%s %s)\'), %s)", values) 

 

        system_id = self.cur.lastrowid 

        self.con.commit() 

        return system_id 

 

    def insertDump (self, spectrum, timestamp, data, system_id, f): 

        meta = self.calcMetaData(spectrum) 

        #serialSpectrum = pickle.dumps(spectrum) 

 

        localtime = time.localtime(timestamp) 

        fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation in the 

month 

        path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1], 

"%02i"%localtime[2],'') #Filepath is the year followed by the month year/month/ 

        location = "%s%s"%(path,fileName) 

        # print "adc_overrange = %s for timestamp %s"%(str(data['adc_overrange']), 

str(timestamp)) 

 

        values = (system_id, timestamp, location, meta['ave'], meta['min'], meta['max'], \ 

            meta['stdDev'], data['adc_overrange'], data['fft_overrange'], data['adc_level'], 

data['ambient_temp'], data['adc_temp']) 
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        self.cur.execute("INSERT INTO spectra (system_id, timestamp, fileLocation, 

ave_power_dBuVm, min, max, stdDev \ 

            , adc_overrange, fft_overrange, adc_level, ambient_temp, adc_temp) VALUES (%s, 

%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)", values) 

 

        index = localtime[4] * 60 + localtime[5] 

        #print 'index = %i'%index 

 

        f['spectra'][index] = spectrum 

 

        ave_id = self.cur.lastrowid 

        f.flush() 

        self.con.commit() 

        return ave_id 

 

    def insertAves (self, system_id, startTime, aveOver, num_freqs): 

        self.cur.execute ("SELECT AVG(ave_power_dBuVm), MIN(min), MAX(max), 

SUM(adc_overrange), SUM(fft_overrange),\ 

         MIN(timestamp), MAX(timestamp) FROM spectra WHERE timestamp >= %s AND 

timestamp < %s", (startTime, startTime + aveOver)) 

 

        result = self.cur.fetchone() 

        self.cur.execute ("SELECT stdDev FROM spectra WHERE timestamp >= %s AND 

timestamp < %s", (startTime, startTime + aveOver)) 

        stdDevs = self.cur.fetchall() 

        stdDev = 0.0 

         

        for val in stdDevs: 

            stdDev = stdDev + val[0] ** 2 * num_freqs 

        stdDev /= (aveOver * num_freqs) 

        values = (system_id, result[5], result[6], result[0], result[1], result[2], stdDev, result[3], 

result[4]) 

 

        self.cur.execute("INSERT INTO test_ave_metadata (system_id, startTime, endTime, 

ave_power_dBuVm, min, \ 

            max, stdDev, n_adc_overrange, n_fft_overrange) VALUES (%s, %s, %s, %s, %s, 

%s, %s, %s, %s)", values) 

 

        spec_ave_id = self.cur.lastrowid 

 

        self.cur.execute("SELECT spectrum FROM spectra WHERE timestamp >= %s AND 

timestamp < %s", (startTime, startTime + aveOver)) 

        spec = self.cur.fetchall() 

        self.cur.execute("SELECT adc_overrange, fft_overrange FROM spectra WHERE 

timestamp >= %s AND timestamp < %s", (startTime, startTime + aveOver)) 

        overrange = self.cur.fetchall() 

        data = [] 

        for bin in spec: 

            data.append (pickle.loads(bin[0])) 
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        values = (self.calcFreqMeta(data, overrange, system_id, spec_ave_id)) 

 

        self.cur.executemany("INSERT INTO test_frequency_ave_metadata (system_id, ave_id, 

frequency, ave, min, \ 

            max, stdDev, spectral_occupency_3sigma, spectral_occupency_6sigma) VALUES 

(%s, %s, %s, %s, %s, %s, %s, %s, %s)", values) 

         

        self.con.commit() 

 

    def calcFreqMeta(self, data, overrange, system_id, spec_ave_id): 

        ret=[] 

 

        for j in range(len(data[0])): #for each frequency channel 

            freq = [] 

            ave = 0.0 

            mini = data[0][j] 

            maxi = data[0][j] 

            stdDev = 0.0 

            overrangecount = 0 

            for i in range (len(data)):     #Calculate median, max and min for each frequency 

channel 

                if(not overrange[i][0] and not overrange[i][1]):    #only if the overrange bits are 

not true 

                    ave = ave + data[i][j] 

                    if mini > data[i][j]: 

                        mini = data[i][j] 

                    if maxi < data[i][j]: 

                        maxi = data[i][j] 

                else: 

                    overrangecount = overrangecount + 1     #If the overrange bit was set, record this 

            ave /= len(data) - overrangecount 

 

            for i in range (len(data)):     #calculate the standard deviation 

                if(not overrange[i][0] and not overrange[i][1]): 

                    stdDev += (ave - data[i][j])**2 

 

            stdDev = (stdDev / (len(data)-overrangecount))**0.5 

 

            #calculate the spectral occupency 

            sigma3 = ave + 3 * stdDev 

            sigma6 = ave + 6 * stdDev 

            sigma3Count = 0 

            sigma6Count = 0 

            for i in range (len(data)): #for each time step 

                if(not overrange[i][0] and not overrange[i][1]): 

                    if (data[i][j] > sigma6): 

                        sigma3Count+=1 

                        sigma6Count+=1 

                    elif (data[i][j] > sigma3): 

                        sigma3Count+=1 
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            sigma3Occ = sigma3Count / (len(data) - overrangecount) 

            sigma6Occ = sigma6Count / (len(data) - overrangecount) 

 

            freq.append(system_id) 

            freq.append(spec_ave_id) 

            freq.append(j * 0.054931640625) 

            freq.append(ave) 

            freq.append(mini) 

            freq.append(maxi) 

            freq.append(stdDev) 

            freq.append(sigma3Occ) 

            freq.append(sigma6Occ) 

            ret.append(freq) 

        return ret 

 

 

    def calcMetaData(self, data): 

        ret = {} 

 

        ave = 0.0 

        mini = data[0] 

        maxi = data[0] 

        stdDev = 0.0 

        length = len(data) 

 

        for val in data: 

            ave += val 

            if mini > val: 

                mini = val 

            if maxi < val: 

                maxi = val 

        ave /= length 

 

        for val in data: 

            stdDev += (ave - val)**2 

        stdDev = (stdDev / length)**0.5 

 

        ret['ave'] = ave 

        ret['min'] = mini 

        ret['max'] = maxi 

        ret['stdDev'] = stdDev 

 

        return ret 

 

     

 

    def getCurrentSpectrum(self): 

        self.cur.execute("SELECT MAX(id) FROM spectra") 

        result = self.cur.fetchone()[0] 

        return self.getSpectrum(result) 
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    def getAllSpectraToCSV(self, fileName): 

        import csv 

        self.cur.execute("SELECT spectrum, timestamp from spectra") 

        result = self.cur.fetchone() 

        headings = [str(50 + i * 0.054931640625) + "Mhz" for i in range (16384)] 

        headings.insert(0,"Timestamp") 

 

        writer = csv.writer(open(fileName, 'wb')) 

        writer.writerow(headings) 

 

        while result is not None: 

            t = time.localtime(result[1]) 

            spec = pickle.loads(result[0]) 

            data = ['%02i:%02i:%02i on %02i/%02i/%04i'%(t[3], t[4], t[5], t[2], t[1], t[0])] 

            data.extend(spec) 

            writer.writerow(data) 

            result = self.cur.fetchone() 

 

 

 

    def calcAveMetaData(self, data): 

        """Calculate the means, mins, maxs and standard deviations of each row and column of 

data.""" 

        ret = {} 

        aves = [] 

        mins = [] 

        maxs = [] 

        stdDevs = [] 

        n_adc_overrange = 0; 

        n_fft_overrange = 0; 

        ignoreLast = True 

        xLen = len(data['spectra']) 

        yLen = len(data['spectra'][0]) 

 

 

        #Check if last row contains actual data 

        for i in range (yLen): 

            if (data['spectra'][xLen - 1][i] != 0.0): 

                ignoreLast = False 

        if (ignoreLast): 

            xLen -= 1 

 

        #calculate along x axis 

        for t in range (xLen): 

            if (not data['adc_shutdown'][t]): 

                mini = data['spectra'][t][0] 

                maxi = mini 

                ave = 0.0 

                for f in range (yLen): 
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                    ave += data['spectra'][t][f] 

                    if (data['spectra'][t][f] < mini): 

                        mini = data['spectra'][t][f] 

                    if (data['spectra'][t][f] > maxi): 

                        maxi = data['spectra'][t][f] 

                ave /= yLen 

                aves.append(ave) 

                mins.append(mini) 

                maxs.append(maxi) 

            else: 

                if (data['adc_overrange'][t]): 

                    n_adc_overrange += 1 

                if (data['fft_overrange'][t]): 

                    n_fft_overrange += 1 

        for t in range (xLen): 

            if (not data['adc_shutdown'][t]): 

                stdDev = 0.0 

                for f in range (yLen): 

                    stdDev += (aves[t] - data['spectra'][t][f]) ** 2 

                stdDev = math.sqrt(stdDev / yLen) 

                stdDevs.append(stdDev) 

 

        ret['tAves'] = aves 

        ret['tMins'] = mins 

        ret['tMaxs'] = maxs 

        ret['tStdDevs'] = stdDevs 

 

        aves = [] 

        mins = [] 

        maxs = [] 

        stdDevs = [] 

 

        #calculate along y axis 

        for f in range (yLen): 

            mini = data['spectra'][0][f] 

            maxi = mini 

            ave = 0.0 

            for t in range (xLen): 

                if (not data['adc_shutdown'][t]): 

                    ave += data['spectra'][t][f] 

                    if (data['spectra'][t][f] < mini): 

                        mini = data['spectra'][t][f] 

                    if (data['spectra'][t][f] > maxi): 

                        maxi = data['spectra'][t][f] 

            ave /= (yLen - n_adc_overrange - n_fft_overrange) 

            aves.append(ave) 

            mins.append(mini) 

            maxs.append(maxi) 

        for f in range (yLen): 

            stdDev = 0.0 
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            for t in range (xLen): 

                if (not data['adc_shutdown'][t]): 

                    stdDev += (aves[t] - data['spectra'][t][f]) ** 2 

            stdDev = math.sqrt(stdDev / yLen) 

            stdDevs.append(stdDev) 

 

        ret['fAves'] = aves 

        ret['fMins'] = mins 

        ret['fMaxs'] = maxs 

        ret['fStdDevs'] = stdDevs 

        ret['n_adc_overrange'] = n_adc_overrange 

        ret['n_fft_overrange'] = n_fft_overrange 

        ret['n_accs'] = xLen 

 

        return ret 

 

    def get_std_dev(self, startTime, channel): 

        self.cur.execute("SELECT datum.value from datum inner join spectra on 

datum.spectra_id = spectra.id where timestamp = %s and type = %s and element_id = %s", 

(startTime, 'std', channel)) 

        result = self.cur.fetchone()[0] 

        return result 

 

    def get_archive (self, startTime, endTime, type): 

        self.cur.execute("SELECT datum.value from datum inner join spectra on 

datum.spectra_id = spectra.id where timestamp >= %s and timestamp < %s and type = %s", 

(startTime, endTime, type)) 

        result = numpy.reshape(numpy.array(self.cur.fetchall()), (14200)) 

        return result 

 

    def rfi_archive_get_period (self, startTime, endTime, type, frequency): 

        import ratty1 

        rat = ratty1.cam.spec() 

 

        channel = rat.cal.freq_to_chan(frequency) 

 

        self.cur.execute ("SELECT id FROM element WHERE channel = %s", (channel)) 

        elId = self.cur.fetchone()[0] 

        print "elID" 

        print elId 

        self.cur.execute ("SELECT id FROM spectra WHERE timestamp >= %s and timestamp 

<= %s", (startTime, endTime)) 

        spectraIDs = numpy.array(self.cur.fetchall())[:,0] 

        maxID = numpy.max(spectraIDs) 

        minID = numpy.min(spectraIDs) 

        print minID 

        print maxID 

        self.cur.execute ("SELECT datum.value FROM datum FORCE INDEX (spectra_id) 

WHERE datum.element_id = %s AND spectra_id >= %s AND spectra_id <= %s AND type 

= %s", 
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                            (elId, minID, maxID, type)) 

        result = numpy.array(self.cur.fetchall()) 

        return result 

 

    def frequency_to_channel(self, frequency): 

        import ratty1 

        rat = ratty1.cam.spec() 

        print "converting %fMHz and %f MHz to channel %i and %i"%(frequency * 

1000000, rat.cal.config['ignore_low_freq'], rat.cal.freq_to_chan(frequency), 

rat.cal.freq_to_chan(rat.cal.config['ignore_low_freq'])) 

        return rat.cal.freq_to_chan(frequency * 1000000) - 

rat.cal.freq_to_chan(rat.cal.config['ignore_low_freq']) 

 

    #enter unix timestamps for startTime and endTime, enter a particular channel number if 

you would like only 1 channel, enter a tuple channelRange = (lowchannel, highchannel) 

    #if you would like a range of channels 

    def rfi_monitor_get_range(self, startTime, endTime, channel = -1, channelRange = 

(0,14200)): 

         

        self.cur.execute ("SELECT DISTINCT fileLocation FROM spectra WHERE timestamp 

>= %s AND timestamp < %s", (startTime, endTime)) 

        res = self.cur.fetchall() 

 

        startTuple = datetime.datetime.fromtimestamp(startTime) 

        endTuple = datetime.datetime.fromtimestamp(endTime) 

 

        print startTuple 

        print endTuple 

 

        now = datetime.datetime.now() 

        lastHour = datetime.datetime(now.year,now.month,now.day,now.hour) 

        nHours = None 

 

        nHours = (endTuple.day - startTuple.day) * 24  + endTuple.hour - startTuple.hour 

 

        print "startTuple" 

        print startTuple 

 

        files = [False for i in range (nHours)] 

 

        fileName = "%02i.h5"%(startTuple.hour) #Filename is the hour of the observation 

        path = os.path.join('/home/chris/rfi_data', str(startTuple.year), 

"%02i"%startTuple.month, "%02i"%startTuple.day,'') #Filepath year/month/day of the 

observation 

        location = "%s%s"%(path,fileName) 

 

        ret = None 

 

        nSecs = startTuple.minute*60 + startTuple.second 
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        nSpectra = (nHours) * 3600 - nSecs + endTuple.minute*60 + endTuple.second 

 

        if (channel != -1): #only want one channel 

            ret = numpy.zeros((nSpectra,), dtype=numpy.float64) 

        else: 

            ret = numpy.zeros((nSpectra,channelRange[1] - channelRange[0]), 

dtype=numpy.float64) 

 

        if os.path.isfile(location): 

            files[0] = True 

            try: 

                f = h5py.File(location, 'r') 

                print f['spectra'].shape 

                if (channel != -1): 

                    ret[0:3600 - nSecs] = f['spectra'][nSecs:3600,channel] 

                else: 

                    ret[0:3600 - nSecs] = f['spectra'][nSecs:3600,channelRange[0]:channelRange[1]] 

                nSecs = 3600 - nSecs 

            except IOError as e: 

                print e 

 

        currentTime = startTuple + datetime.timedelta(hours=1) 

 

        current = 0 

 

        print "endtuple = %s, lastHour = %s"%(str(endTuple),str(lastHour)) 

        print "endTuple > lastHour?" 

        print (endTuple > lastHour) 

 

        if endTuple > lastHour: 

            current = 1 

 

        for i in range(nHours - 1): 

            fileName = "%02i.h5"%(currentTime.hour) #Filename is the hour of the observation 

            path = os.path.join('/home/chris/rfi_data', str(currentTime.year), 

"%02i"%currentTime.month, "%02i"%currentTime.day,'') #Filepath year/month/day of the 

observation 

            location = "%s%s"%(path,fileName) 

            print location 

            print nSecs 

            try: 

                f = h5py.File(location, 'r') 

                if (channel != -1): 

                    print "f['spectra'].shape" 

                    print f['spectra'].shape 

                    ret[nSecs:nSecs + 3600] = f['spectra'][:,channel] 

                else: 

                    ret[nSecs:nSecs + 3600] = f['spectra'][:,channelRange[0]:channelRange[1]] 

                nSecs += 3600 

            except IOError as e: 
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                print e 

                print location 

                nSecs += 3600 

 

            currentTime = currentTime + datetime.timedelta(hours=1) 

 

        print "nSPectra = %s"%nSpectra 

        print "nSecs = %s"%nSecs 

 

        if current == 1: 

            print "IN current" 

            import rfDB.current_spectra as current_spectra 

            curr = current_spectra.current_spectra(); 

            print ("Getting %i mintues and %i seconds = %i seconds"%(endTuple.minute, 

endTuple.second, endTuple.minute * endTuple.second)) 

            spectra, times = curr.getRange(endTuple.minute * 60 + endTuple.second) 

            print spectra.shape 

            if (channel != -1): 

                ret[nSecs - 1:] = spectra[:,channel] 

            else: 

                ret[nSecs:] = spectra[:] 

 

            nSecs += spectra.size 

            curr.close() 

 

        #Interpolate zeroes 

        z = numpy.where(ret==0.0)[0] 

        nz = numpy.where (ret!=0.0)[0] 

        ret[ret==0.0]=numpy.interp(z,nz,ret[nz]) 

 

        z = numpy.where(ret > (100))[0] 

        nz = numpy.where(ret < (100))[0] 

        print z[0:5] 

        print nz[0:5] 

        ret[ret > 10 ** 20]=numpy.interp(z,nz,ret[nz]) 

 

        print "check" 

        print "nSPectra = %s"%nSpectra 

        print "nSecs = %s"%nSecs 

        print ret.shape 

        print "max = %f"%numpy.max(ret) 

 

        return ret 

 

 

    def replace_overrange_with_int (self, data, over_pos, rep_int): 

        ret = numpy.array(data) 

        ret[over_pos] = rep_int 

        return ret 
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    def get_last_ave_timestamp(self): 

        self.cur.execute("SELECT MAX(timestamp) from spectra") 

        result = self.cur.fetchone() 

        return result[0] 

 

    def get_ave_archive (self, type): 

        self.cur.execute("SELECT element.frequency, AVG(datum.value) FROM datum  

INNER JOIN element ON datum.element_id = element.id WHERE type = %s GROUP BY 

element.frequency ", (type)) 

        result = numpy.array(self.cur.fetchall()[:])[:,1] 

        print result.shape 

        return result 

 

    def archive_get_val_at_time(self, time, typ): 

        print "IN THE METHOD" 

        starttime = self.get_last_ave_timestamp() 

        print starttime 

        self.cur.execute("SELECT id FROM spectra WHERE timestamp = %s",(starttime)) 

        result = self.cur.fetchone() 

        self.cur.execute("SELECT datum.value, element.frequency FROM datum, element 

WHERE spectra_id = %s AND type = %s AND element.id = datum.element_id GROUP BY 

element.channel", (result[0], typ)) 

        result = numpy.array(self.cur.fetchall()) 

        result[:,1] = result[:,1]/1000000 

        result[:,1] = numpy.around(result[:,1], decimals = 2) 

        return result 

 

    def archive_get_frequency_list(self): 

        import ratty1 

        rat = ratty1.cam.spec() 

        low_frequency = rat.cal.config['ignore_low_freq'] 

        high_frequency = rat.cal.config['ignore_high_freq'] 

        print low_frequency 

        print high_frequency 

        self.cur.execute ("SELECT element.frequency FROM element WHERE 

element.frequency > %s AND element.frequency < %s",(low_frequency, high_frequency)) 

        result = numpy.array(self.cur.fetchall(), dtype=numpy.float32) 

        result[:,0] = result[:,0]/1000000 

        result[:,0] = numpy.around(result[:,0], decimals = 2) 

        return result [:,0] 

 

    def rfimonitor_get_adc_overrange(self, starttime, endtime): 

        self.cur.execute("SELECT timestamp FROM spectra WHERE timestamp >= %s AND 

timestamp < %s AND adc_overrange = 1",(starttime, endtime)) 

        result = self.cur.fetchall() 

        return result 

 

    def rfimonitor_get_fft_overrange(self, starttime, endtime): 

        self.cur.execute("SELECT timestamp FROM spectra WHERE timestamp >= %s AND 

timestamp < %s AND fft_overrange = 1",(starttime, endtime)) 
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        result = self.cur.fetchall() 

        print "FFT OVERRANGES" 

        print len(result) 

        return result 

 

    def rfi_monitor_get_adc_overrange_pos (self, starttime, endtime): 

        self.cur.execute("SELECT timestamp FROM spectra WHERE timestamp >= %s AND 

timestamp < %s AND adc_overrange = 1",(starttime, endtime)) 

        result = self.cur.fetchall() 

        ret = [int(t[0] - starttime) for t in result] 

        return ret 

 

    def rfi_monitor_get_oldest_timestamp(self): 

        self.cur.execute("SELECT min(timestamp) FROM spectra") 

        result=self.cur.fetchone() 

        return result[0] 

 

    #------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------- 

 

    def toCompressed (self): 

        self.cur.execute ("SELECT MIN(id) from spectra") 

        result = self.cur.fetchone() 

        mini = result[0]; 

        print "min = %i"%mini 

         

        last = mini + 800000; 

         

        for i in range(mini + 4000, last, 4000): 

            self.cur.execute("INSERT spectraCompressed SELECT * FROM spectra WHERE id 

< %s", i) 

            self.cur.execute("DELETE FROM spectra WHERE id < %s", i) 

            self.con.commit() 

            print "deleted up to %i"%i 

 

    def testAves(self, startTime, aveOver): 

        self.cur.execute ("SELECT spectrum from spectra where timestamp >= %s and 

timestamp < %s", (startTime, startTime + aveOver)); 

        result = self.cur.fetchall() 

        ave = pickle.loads(result[0][0]) 

        spectrum = pickle.loads(result[0][0]) 

 

        print ave[67] 

 

        for i in range(1,len(result)): 

            spectrum = pickle.loads(result[i][0]) 

            for j in range(len(spectrum)): 

                if (j == 67): 

                    print "ave%i = %f + %f = %f"%(i, ave[j], spectrum[j], ave[j] + spectrum[j]) 

                ave[j] = ave[j] + spectrum[j] 
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        for j in range(len(spectrum)): 

            if j == 67: 

                print "ave%i = %f / %i"%(j, ave[j], len(result)) 

            ave[j] = ave[j] / len(result) 

 

        print "equals %f"%ave[67] 

 

 

        spectrum = ave 

        self.cur.execute("SELECT max(ave_id) from test_frequency_ave_metadata") 

        lastave = self.cur.fetchone()[0] 

        print "lastave is %i"%lastave 

        self.cur.execute("SELECT ave from test_frequency_ave_metadata where ave_id = %s 

ORDER BY frequency", lastave) 

        result = self.cur.fetchall(); 

        good = True; 

 

        print "not equal %f"%result[67][0] 

 

        print (len(spectrum)) 

        print (len(result)) 

        print (len(result[0])) 

 

        for i in range (len(spectrum)): 

            if float(ave[i]) != float(result[i][0]): 

                good = False; 

                #print "spectrum%i is %f, ave%i is %f"%(i,float(ave[i]),i, float(result[i][0])) 

 

        print good 

 

    """Delete all spectra in rfimonitor db with timestamp <= timestamp""" 

    def delete_spectra (self, timestamp): 

        self.cur.execute("SELECT timestamp FROM rfimonitor.spectra WHERE timestamp <= 

%s ORDER BY timestamp",timestamp) 

        res = self.cur.fetchall() 

        location = "nothing" 

        # print res[0:20] 

        times = self.remove_duplicates(res) 

        # print times 

        for t in times: 

            try: 

                localtime = time.localtime(t) 

                fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation in 

the month 

                path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1], 

"%02i"%localtime[2],'') #Filepath is the year followed by the month year/month/ 

                location = "%s%s"%(path,fileName) 

                #d = datetime.datetime() 
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                # print "timestamp = %i"%t 

                remove = 

time.mktime((localtime[0],localtime[1],localtime[2],localtime[3]+1,0,0,0,0,0)) 

                # print "remove = %i"%remove 

                # print "diff = %i"%(remove - t) 

                self.cur.execute("DELETE FROM rfimonitor.spectra where timestamp < %s", 

remove) 

                os.remove(location) 

                print "deleted %s"%location 

                if localtime[3] == 0: 

                    os.rmdir(path) 

                if localtime[2] == 0: 

                    os.rmdir(os.path.join('/home/chris/rfi_data', str(localtime[0]), 

"%02i"%localtime[1],"")) 

 

            except OSError: 

                print "couldn't delete file %s"%location 

                pass 

        self.con.commit() 

 

    def getSpectrum(self, timestamp): 

        spectra = numpy.zeros(shape=(14200)) 

        try: 

            localtime = time.localtime(timestamp) 

            fileName = "%02i.h5"%(localtime[3]) #Filename is the hour of the observation in the 

month 

            path = os.path.join('/home/chris/rfi_data', str(localtime[0]), "%02i"%localtime[1], 

"%02i"%localtime[2],'') #Filepath is the year followed by the month year/month/ 

            location = "%s%s"%(path,fileName) 

            hour_start = 

time.mktime((localtime[0],localtime[1],localtime[2],localtime[3],0,0,0,0,0)) 

            f = h5py.File(location, mode='r') 

            spectra = f['spectra'][timestamp - hour_start] 

        except OSError: 

                print "couldn't open file %s"%location 

                pass 

        return spectra 

 

    def remove_duplicates(self, timestamps): 

        ret = [timestamps[0][0]] 

        for t in timestamps: 

            if t[0] - ret[-1] >= 3600: 

                ret.append(t[0]) 

        return ret 

 

    def maintain_space(self): 

        while self.check_space() < 0.05: 

            print "Freeing space" 

            self.cur.execute("select min(timestamp) from spectra") 

            res = self.cur.fetchone() 
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            self.delete_spectra(res[0]) 

 

 

 

 

    def check_space (self): 

        """Return percent of the harddrive is free""" 

        s = os.statvfs("/") 

        space = float(s.f_bavail)/s.f_blocks 

        print "%f of harddrive free" 

        return float(s.f_bavail)/s.f_blocks 
 

A.6 rfi_event.py 

import numpy as np 

import time 

from PIL import Image 

import mahotas 

import pickle 

import MySQLdb 

import archive_conf as cnf 

import h5py 

 

def threshold (data, devs, means, startTime): 

    sT = time.time() 

    lx = len(data) 

    ly = len(data[0]) 

    rfi_mask = np.array([[False for i in range(ly)] for j in range(lx)]) 

 

    rfi_events = [{} for i in range(ly)] 

    rfi_stats = [{'n_rfi_detections':0,'startTimes':[], 'endTimes':[]} for i in range(ly)] 

    rfi_start = [] 

    rfi_end = [] 

    rfi_chan = [] 

    temp = 0; 

    temp2 = 0; 

 

    print "data" 

    print data 

 

    for t in range(1,lx): 

         

        tS = time.time() 

        #rfi_stats[i]['n_rfi_detections'] = 0 

        #rfi_stats[i]['startTimes'] = [0] 

        #rfi_stats[i]['duration'] = [0] 

        for c in range (ly): 

            if (data[t][c] > (means[c][0] + 3 * devs[c][0])): 

                rfi_stats[c]['n_rfi_detections'] += 1 

                if (not rfi_mask[t-1][c]): 
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                    rfi_stats[c]['startTimes'].append(startTime + t) 

                     

                    rfi_chan.append(c) 

                rfi_mask[t][c] = True; 

            elif (rfi_mask[t-1][c]): 

                rfi_stats[c]['endTimes'].append(startTime + t) 

                 

            rfi_start.append(rfi_stats[c]['startTimes']) 

            rfi_end.append(rfi_stats[c]['endTimes']) 

 

    im = Image.new("1", (len(rfi_mask),len(rfi_mask[0])), 1) 

    print ("img height = %i\nimg width = %i"%(len(rfi_mask), len(rfi_mask[0]))) 

    print ("length of bitmask = %i"%len(rfi_mask.flatten())) 

    im.putdata(rfi_mask.flatten()) 

    im.save("/home/chris/rfi_monitor/database/src/RFI_mask.gif") 

 

    tS = time.time() 

    events = extractEvents(rfi_mask, data, startTime, "threshold_") 

    print "event extraction took %i seconds"%(time.time() - tS) 

 

    for key in events[0].keys(): 

        print "%s = "%key + str(events[0][key]) 

 

    print "%i events extracted"%len(events) 

 

    tS = time.time() 

    stats = [] 

    for i in range(len(events)): 

        stats.append (calc_statistics(events[i])) 

 

    print "event stats took %i seconds"%(time.time() - tS) 

    print "timestamp = %i"%startTime 

 

    print "stats[0] :" 

    print stats[0] 

 

    eT = time.time() 

    print "Took %i seconds"%(eT - sT) 

    return rfi_stats 

 

 

def extractEvents (mask, data, startTime, file): 

    structuring = np.array([[1,1,1],[1,1,1],[1,1,1]]) #Connectivity structure 

    timet = time.time() 

    labeled, nr = mahotas.label(mask, Bc = structuring) 

    print "labeling took %i"%(time.time() - timet) 

    

mahotas.imsave("/home/chris/Dropbox/rfi_monitor/database/src/testIm/%smask.tif"%file,ma

sk) 
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mahotas.imsave("/home/chris/Dropbox/rfi_monitor/database/src/testIm/%slabeled.tif"%file,l

abeled) 

    events = [{} for i in range (nr)] 

    for i in range (nr): 

        indices = np.where(labeled == (i+1)) 

        minT = indices[0].min() 

        maxT = indices[0].max() + 1 

        minC = indices[1].min() 

        maxC = indices[1].max() + 1 

        events[i]['startTime'] = startTime + minT 

        events[i]['endTime'] = startTime + maxT 

        events[i]['lowChannel'] = minC 

        events[i]['highChannel'] = maxC 

        events[i]['data'] = data[minT:maxT,minC:maxC] 

        events[i]['mask'] = mask[minT:maxT,minC:maxC] 

 

    print "number of events = %i"%nr 

 

    return events 

 

def insert_event (rfi_event): 

    db_connect = MySQLdb.connect(host=cnf.host, port=cnf.port, user=cnf.user, 

passwd=cnf.passwd, db="rfi_event_archive") 

    c_rfi = db_connect.cursor() 

 

    c_rfi.execute("INSERT INTO rfi_event (system_id, startTime, endTime, low_chan, 

high_chan, spectra, mask) \ 

            VALUES (%s,%s,%s,%s,%s,%s,%s)", (1, rfi_event['startTime'], 

rfi_event['endTime'], rfi_event["lowChannel"], rfi_event["highChannel"], \ 

            pickle.dumps(rfi_event["data"]), pickle.dumps(rfi_event["mask"]))) 

    db_connect.commit() 

 

    c_rfi.close() 

 

def insert_to_archive(timestamp, num_events, len_events): 

    import datetime 

 

    db_connect = MySQLdb.connect(host=cnf.host, port=cnf.port, user=cnf.user, 

passwd=cnf.passwd, db="rfi_archive") 

    c_rfi = db_connect.cursor() 

 

    print "timestamp = "  

    print timestamp 

 

    new_hour = [0,0,0,0,0,0,0,0,0] 

    new_hour[0:4] = datetime.datetime.fromtimestamp(timestamp).timetuple()[0:4] 

    timestamp = time.mktime(new_hour) 
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    c_rfi.execute('SELECT id FROM rfi_archive.spectra WHERE system_id=%d AND 

timestamp=%d' % (1, timestamp)) 

    spectra_id = c_rfi.fetchone()[0] 

    print "result = " 

    print spectra_id 

 

    c_rfi.execute('SELECT n_chans,bandwidth FROM rfi_archive.system WHERE id=%d;' 

% (1)) 

    [n_chans, bandwidth_hz] = c_rfi.fetchone() 

    # Only process the calibrated data between the lower and upper frequency limits 

    low_channel = cnf.freq2chan(cnf.IGNORE_LOW_FREQ, bandwidth_hz, n_chans) 

    high_channel = cnf.freq2chan(cnf.IGNORE_HIGH_FREQ, bandwidth_hz, n_chans) 

 

    print "low_channel = %i high_channel = %i"%(low_channel, high_channel) 

 

    c_rfi.execute('SELECT id FROM rfi_archive.element WHERE channel >= %s AND 

channel < %s ORDER BY channel',(low_channel,high_channel)) 

    element_ids = c_rfi.fetchall() 

    print len(element_ids) 

    print len(num_events) 

    print len (len_events) 

 

    insert_num_events = [(num_events[i], spectra_id, element_ids[i][0],'num_events') for i in 

range (len(element_ids))] 

    insert_len_events = [(len_events[i], spectra_id, element_ids[i][0],'num_events') for i in 

range (len(element_ids))] 

 

    c_rfi.executemany('INSERT INTO rfi_archive.datum(value,spectra_id,element_id,type) 

VALUES (%s,%s,%s,%s)',insert_num_events) 

    c_rfi.executemany('INSERT INTO rfi_archive.datum(value,spectra_id,element_id,type) 

VALUES (%s,%s,%s,%s)',insert_len_events) 

 

    db_connect.commit() 

 

    c_rfi.close() 

 

def getEvents(data, mask, startTime): 

 

    num_events, len_events = mahotas_check(mask) 

    structuring = np.array([[1,1,1],[1,1,1],[1,1,1]]) #Connectivity structure 

    label, n_events = mahotas.label(mask, Bc = structuring) 

    print "n_events = %s"%n_events 

    indices = np.nonzero(label) 

    rfi_groups = label[indices] 

    index = np.argsort(rfi_groups) 

    sorted_groups = rfi_groups[index] 

    sorted_index = np.searchsorted(sorted_groups, np.arange(1,n_events+1)) 

    rfi_event_indices = [] 

    rfi_event_indices.append(np.split(indices[0][index], sorted_index)) 

    rfi_event_indices.append(np.split(indices[1][index], sorted_index)) 
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    events = np.empty(n_events, 

dtype={'names':['startTime','endTime','lowChannel','highChannel','data','mask'],\ 

                                        'formats':['i4','i4','i4','i4', 'object', 'object']}) 

    # print"rfi_event_indices" 

    # print rfi_event_indices 

 

    for i in range(n_events): 

        # print "i = %i"%i 

        # print rfi_event_indices[0][i] 

        events[i]['startTime'] = startTime + np.min(rfi_event_indices[0][i+1]) 

        events[i]['endTime'] = startTime + np.max(rfi_event_indices[0][i+1]) + 1 

        events[i]['lowChannel'] = np.min(rfi_event_indices[1][i+1]) 

        events[i]['highChannel'] = np.max(rfi_event_indices[1][i+1]) + 1 

        # print "data[%i:%i,%i:%i]"%(events[i]['startTime']-startTime,events[i]['endTime']-

startTime,events[i]['lowChannel'],events[i]['highChannel']) 

        # print "type(numpy.asscalar(events[i]['startTime'])) = " 

        # print numpy.asscalar(events[i]['startTime']) 

        sT = int(np.asscalar(events[i]['startTime']-startTime)) 

        eT = int(np.asscalar(events[i]['endTime']-startTime)) 

        lC = int(np.asscalar(events[i]['lowChannel'])) 

        hC = int(np.asscalar(events[i]['highChannel'])) 

        # print data[events[i]['startTime']-startTime:events[i]['endTime']-

startTime,events[i]['lowChannel']:events[i]['highChannel']] 

        events[i]['data'] = data[sT:eT,lC:hC] 

        events[i]['mask'] = mask[sT:eT,lC:hC] 

 

    return events, num_events, len_events 

 

 

    index_array = [np.arange(sorted_index[i], sorted_index[i+1]) for i in 

np.arange(len(sorted_index)-1)] 

    event_indices = np.array([(indices[0][index][index_array[i]], 

indices[1][index][index_array[i]]) for i in np.arange(len(index_array))]) 

    events = 

[data[np.min(event_indices[i][0]):np.max(event_indices[i][0])+1,np.min(event_indices[i][1]):

np.max(event_indices[i][1])+1] for i in np.arange(len(event_indices))] 

 

 

 

 

def get_rfi(data,sigma=4): 

    """ Get the rfi for the middle of the window  

    Data is assumed to be a 2D array 

    and sigma is the standard deviation that is used""" 

    mid = data.shape[0]//2+1   # mid point of window 

    med = np.median(data[:,:]) 

    # print "med = " 

    # print med 

    mad = np.median(np.abs(data[:] - med),axis=0) 
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    # print "mad = " 

    # print mad 

    mad_limit = sigma/1.4826 # see relation to standard deviation 

    return (data[mid]  > mad_limit*mad + med ) + (data[mid]  < -mad_limit*mad + med ) 

 

def median_filter (data, window=10, sigma = 4): 

    rfi = np.zeros(data.shape) 

    for t in range(window,data.shape[0]-window) :  rfi[t,:] = get_rfi(data[t-

window:t+window+1]) 

    return rfi 

 

def count_rfi_events (mask): 

    diff = numpy.diff(mask, axis = 0) 

    count = numpy.sum (diff, axis = 0) 

    n_events = numpy.floor((count+1)/2) 

    print "len(n_events) = %i"%len(n_events) 

    check = numpy.where(n_events==0) 

    n_events[check] = numpy.logical_or(n_events[check],mask[:,check][0]) 

    return n_events 

 

def mahotas_check(mask): 

    structure = np.array([1,1,1]) 

    num_events = np.zeros(len(mask[0])) 

    len_events = np.zeros(len(mask[0])) 

    for i in range(len(mask[0])): 

        label, num_events[i] = mahotas.label(mask[:,i], Bc=structure) 

        len_events[i] = np.count_nonzero(label) 

 

 

 

    return num_events, len_events 

 

def equalarr (arr1, arr2): 

    for i in range(len(arr1)): 

        if (arr1[i] != arr2[i]): 

            print "arr1[%i] = %f != %f = arr2[%i]"%(i,arr1[i],arr2[i],i) 

 

 

def calc_statistics (rfi_event, stats): 

    func_list = ['min', 'max', 'median', 'mean', 'std'] 

    masked = np.ma.array(rfi_event['data'], mask = np.logical_not(rfi_event['mask'])) 

    for func in func_list: 

        stats[func] = getattr(np, func)(masked, axis=0) 

 

    #one_perc = int(numpy.round(len(masked)/100)) 

 

def rfi_detection (timestamp, window = 10): 

    t = time.localtime(timestamp) 

    filestr1 = "/home/chris/rfi_data/%i/%02i/%02i/%02i.h5"%(t[0],t[1],t[2],t[3] - 1) 

    filestr2 = "/home/chris/rfi_data/%i/%02i/%02i/%02i.h5"%(t[0],t[1],t[2],t[3]) 
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    print "filestr1 = %s"%filestr1 

    print "filestr2 = %s"%filestr2 

    file1 = h5py.File(filestr1, 'r') 

    file2 = h5py.File(filestr2, 'r') 

    print file1 

    print file1.items() 

    data1 = file1['spectra'] 

    data2 = file2['spectra'] 

    data = np.concatenate((data1[(-window*2): -1],data2), axis=0) 

    print "len(data1) = %i, len(data2) = %i, len(data) = %i"%(len(data1), len(data2), 

len(data)) 

    mask = median_filter(data, window = window) 

    events, num_events, len_events = getEvents(data, mask, timestamp - 2*window) 

    # stats = np.empty(len(events), dtype={'names':['min', 'max', 'median', 'mean', 'std'],\ 

    #                                         'formats':['f8','f8','f8','f8','f8']}) 

    for i in range (len(events)): 

        # calc_statistics(events[i], stats[i]) 

        insert_event(events[i]) 

     

 

    file1.close() 

    file2.close() 

 

    return num_events, len_events 
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Appendix B: RFI measurements 
 

 Table of frequencies and settings for mode 2 measurements required by SKA 

Frequency Band 
MHz 

RBW 
kHz 

       
ms 

Time 
s 

Radio Astronomy Usage 

150-153 1 100 300 Continuum 

153-322 3 10 564  

322-329 3 1000 2334 Deuterium (DI) 

329-406 30 10 26  

406-410 30 10000 1334 Continuum 

410-608 30 10 66  

608-614 30 10000 2000 Continuum 

614-1000 30 10 129  

1000-1370 30 300 3700 Continuum 

1370-1427 30 1000 1900 Hydrogen (HI), SETI 

1427-1606 30 100 597 SETI 

1606-1723 30 1000 3900 Hydroxyl (OH), SETI 

1723-2655 30 10 311  

2655-2700 100 1000 450 Continuum 

2700-3300 100 10 60  

3300-3400 100 1000 1000 Methyladyne (CH) 

3400-4800 100 10 140  

4800-5000 100 1000 2000 Formaldehyde (H2CO) 

5000-6600 300 10 54  

6600-6700 300 1000 334 Methanol (CH3OH) 

6700-8600 300 10 64  

8600-8700 300 1000 334 Helium (3He+) 

8700-12100 300 10 114  

12100-12200 300 1000 334 Methanol (CH3OH) 

12200-14400 300 10 127  

14400-14500 300 1000 334 Formaldehyde (H2CO) 

14500-18300 300 10 127  

18300-18400 300 1000 334 Cyclopropenylidene (C3H2) 

18400-22000 300 10 120  

Total   6.4 Hours  

 


