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Abstract

Mathematical models of the HIV epidemic have been used to estimate inci-

dence, prevalence and life-expectancy, as well the benefits and costs of public

health interventions, such as the provision of antiretroviral treatment. Mod-

els of sexually transmitted infection epidemics attempt to account for varying

levels of risk across a population based on diverse — or heterogeneous — sex-

ual behaviour. Microsimulations are a type of model that can account for

fine-grained heterogeneous sexual behaviour. This requires pairing individ-

uals, or agents, into sexual partnerships whose distribution matches that of

the population being studied, to the extent this is known. But pair-matching

is computationally expensive. There is a need for computer algorithms that

pair-match quickly.

In this work we describe the role of modelling in responses to the South

African HIV epidemic. We also chronicle a three-decade debate, greatly in-

fluenced since 2008 by a mathematical model, on the optimal time for people

with HIV to start antiretroviral treatment. We then present and analyse

several pair-matching algorithms, and compare them in a microsimulation of

a fictitious STI. We find that there are algorithms, such as Cluster Shuffle

Pair-Matching, that offer a good compromise between speed and approxi-

mating the distribution of sexual relationships of the study-population. An

interesting further finding is that infection incidence decreases as popula-

tion increases, all other things being equal. Whether this is an artefact of

our methodology or a natural world phenomenon is unclear and a topic for

further research.
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Chapter 1

Introduction

1.1 Mathematical models and the South African

HIV epidemic

Nearly 7 million people were living with HIV in South Africa in 2015. About

150,000 people died of AIDS that year, bringing the total number of people

in the country who have died since the onset of the epidemic in the 1980s

to 3.5 million (Johnson et al., 2016). Globally in 2015, just under 37 million

people lived with the disease, 2.1 million became infected, and 1.1 million

died (UNAIDS, 2016).

These statistics are necessarily imprecise; they are estimated by mathe-

matical models that make use of multiple sources of data such as prevalence

surveys that count how many people have HIV, incidence studies that try to

determine the rate at which people become infected with HIV, studies that

estimate life-expectancy with HIV, estimates of background life-expectancy,
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and death certificates. These sources of data are imperfectly collected, as is

our knowledge of how these factors interact. Nevertheless since the onset of

the HIV epidemic both data collection and modelling techniques have im-

proved, enhancing our understanding of this and other sexually transmitted

infection (STI) epidemics.

Since AIDS was discovered (Gottlieb et al., 1981), information has been

needed to inform life-and-death policy decisions. But because of imperfect

or absent data, modelling is used to fill in the gaps. For example, since the

late 1980s and early to mid-1990s models have been used to estimate the

past, current and future size of the South African epidemic. Until the 2000s

there were no countrywide surveys of the number of people infected. So

models were constructed using the bits of data available, such as prevalence

rates of pregnant women attending antenatal clinics and death registrations.

These models, such as Doyle (1993), ASSA500 and ASSA600 (Dorrington,

1998) then estimated past, current and future prevalence, the effect of HIV

on life-expectancy, and how the epidemic affected people by gender and age.1

These models were important for policy-making. The early models warned

of the impending size of the epidemic, indicating that preventative measures

needed to be taken. (That such measures were either not taken or failed

is a separate complex discussion beyond the scope of this work.) From the

2000s, models such as ASSA2000, ASSA2002 and ASSA2008 were used by

researchers to estimate the cost and benefits of treating people with HIV

1Most, but not all, of these early models were deterministic compartmental models:
The population was divided into compartments based on, for example, risk, sex and age.
Then differential equations were used to calculate outputs, for example prevalence, for
each compartment.
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using antiretroviral (ARV) medicines, e.g. Geffen et al. (2003), Boulle et al.

(2003) and Nattrass and Geffen (2005).

Then in the late 2000s, especially following the publication of a highly

cited and discussed article by Granich et al. (2009), models were part of the

arsenal in a great debate about the optimal time for people with HIV to

initiate ARV treatment (ART). Proponents of a test-and-treat strategy (i.e.

testing as many people as possible for HIV and immediately recommending

treatment to people who tested positive) argued this could reduce the num-

ber of new infections because people with HIV on ARVs are less infectious,

even uninfectious when the virus in their bloodstream, or plasma, is reduced

to undetectable levels. But others, including this author, wanted a more

cautious approach, because it was not yet clear when the best time to start

treatment for optimal patient health was. Granich et al. (2009) advocated

for test-and-treat, because their models estimated that the epidemic could

be virtually eliminated using this approach. (By late 2015, clinical trials had

shown that both from the perspective of patient health and reducing new

infections, immediate treatment is optimal.)

1.2 Modelling methods

Mathematical models of infectious diseases estimate information such as the

prevalence, incidence and effect on life-expectancy of the disease at time-

points for which there have been no direct measurements. These models

usually tell us about the state of an epidemic now and in the future under
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different scenarios. 2

The most common approach to modelling the HIV epidemic has been to

use deterministic compartmental methods. These “stratify the population

into groups according to each individual’s characteristics and HIV infection

status and use differential or difference equations to track the rate of move-

ment of individuals between these groups.”(Eaton et al., 2012).

For example, using an explanation provided by Johnson (2004), here is a

simple deterministic compartmental model of HIV infection:

We have a sexually active population divided into HIV-positive, Y , and

HIV-negative, X, adults. People enter the population at a rate π and die

in the absence of AIDS at a rate µ. We assume β is the probability of

HIV infection in a sexual relationship where the partners are serodiscordant,

i.e. one is infected with HIV and the other not, and c is the rate of new

partnerships. Once infected, the rate of mortality increases by α.

This is illustrated in Figure 1.1 which is taken from Johnson (2004).

Figure 1.1: Simple model of HIV transmission by Johnson (2004).

2We first expressed some of the ideas in this section in Geffen (2013).
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Figure 1.2 shows the deterministic compartmental model used in Granich

et al. (2009).

Figure 1.2: Model of HIV transmission by Granich et al. (2009). The authors
explain: “N represents population aged 15 years and above. People enter
into the susceptible class (S) at a rate βN , become infected at a rate λSJ/N ,
progress through four stages of HIV (Ii, i = 1–4) at a rate between each
stage, and then die (D). The background mortality rate is µ and people are
tested at a rate τ . If they are tested and put onto ART, they move to the
corresponding ART box Ai(i = 1–4), where they progress through four stages
at a rate σ and then die. The term governing transmission contains the factor
Jα(Ii + εAi) where ε allows for the fact that people receiving ART are less
infectious than are those who are not. They might also stop treatment or
the treatment might become ineffective, in which case they return to the
corresponding non-ART state at a rate φ. To allow for heterogeneity in
sexual behaviour and for the observed steady state prevalence of HIV, we let
the transmission decrease with the prevalence, P . If n = 1, the decrease is
exponential; if n =∞, the decrease is a step function.”

1.2.1 Microsimulation

Orcutt (1957), within the context of economics, described the basis for what

are now called microsimulations. “The severe difficulties of testing hypothe-

ses and of estimating relations by use of highly aggregative economic time

series are by now fairly widely understood by economic statisticians and are

beginning to be more adequately recognized and faced by the economic pro-

fession in general,” he wrote. “These difficulties and the resulting failure
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to achieve satisfactory testing or estimation at a highly aggregative level

have been among the elements leading to the large interest now exhibited

in formulating and testing hypotheses about the behavior of such elemental

decision-making units as individuals, households, and firms.” (our emphasis)

While deterministic compartmental models estimate aggregate informa-

tion about the natural world population being studied, microsimulations

consist of agents that typically represent individual people and whose be-

haviour is determined by a set of events and parameters. The parameters

can be set per agent, so that each agent has its own unique behaviour. Ag-

gregate information is a function of all the agents and their interactions.

Moreover, whether an event is executed on a particular agent, is determined

using random (almost always pseudo-random, actually) numbers, for exam-

ple, whether an agent becomes “infected” with HIV. So microsimulations are

stochastic: given the same inputs (but with a different seed for the pseudo-

random number generator) these models typically produce different results

on different executions.

Many new techniques for modelling infectious diseases have been devel-

oped since the early 1990s. The need for more sophisticated models has

been driven by the global HIV pandemic. But it is the increase in com-

puting power that has made microsimulations more feasible. These often

require substantial computing power to be able to deliver useful results in a

reasonable period of time.

In 2012 PLoS Medicine published a Featured Collection on mathematical

models of the HIV epidemic. The collection represents a useful landmark

for how far the technical development of models has progressed since the
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earliest models in the late 1980s and early 1990s. The articles in the collection

examined the effect of providing antiretroviral treatment to people with HIV

before clinically indicated, in order to prevent new HIV infections, one of the

most important and debated questions in HIV research at the time (Abbasi

et al., 2012).

As an example of the work done consider one of the articles in the

collection that compared twelve models, arguably the leading ones in the

field. Four were microsimulations and eight were deterministic compart-

mental models (Eaton et al., 2012). All the models considered the future

trajectory of the HIV epidemic under competing scenarios, ranging from no

ART to availability of ART to all people with HIV. The authors concluded:

“Mathematical models evaluating the impact of ART vary substantially in

structure, complexity, and parameter choices, but all suggest that ART, at

high levels of access and with high adherence, has the potential to substan-

tially reduce new HIV infections.”

It is unlikely that most of these models, especially the microsimulations,

would have been feasible with the computing power available in the 1990s,

especially not the affordable consumer hardware of that time.

Aside on terminology: microsimulation vs agent-based

model

The terms microsimulation and agent-based model are used frequently in

the literature often describing similar or the same techniques. Finding

a useful definition that describes the difference between microsimulation
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and agent-based models is illusive. For example Heard et al. (2015) is

titled Agent-Based Models and Microsimulation. Yet except for the title

of the article nowhere further in the article is there any mention of the

word microsimulation.

The Java Based Agent Simulation Library provides the most com-

prehensive explanation of the difference between the two terms we have

found:

The main differences between the two approaches can be

traced down to the following: (i), microsimulations are more

policy-oriented, while agent-based models are more theory

oriented; (ii) microsimulations generally rely on a partial

equilibrium approach, while agent-based models are most of-

ten closed models. The initial population in an agent-based

model is typically not meant to reproduce a real population

of agents: for example, in a labor market model with firm

creation all individuals might be initiated as unemployed, or

randomly employed. The focus is on the emergence of aggre-

gate patterns from the interaction of the individual agents,

with the aim to replicate some observed stylized fact (business

cycle fluctuations, for instance). Accordingly, the value of the

parameters that drive the processes are chosen ad-hoc, or only

roughly calibrated with real data. However, in their struggle

to replace dynamic stochastic general equilibrium (DSGE)

models, agent-based models are becoming more empirically
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oriented. At the same time, microsimulations are becoming

more complex, by including more behavioral responses and

general equilibrium feedbacks.

If the two approaches retain different goals and perspectives,

from a mathematical and computational perspective they are

identical. Both agent-based models and microsimulations are

recursive models, where the number and individual states of

the agents in the system are evolved by applying a sequence

of algorithms to an initial population. (JAS, 2017)

We have not found the differences in terminology useful. We use the

terms interchangeably in this work.

1.2.2 Discrete microsimulation

Microsimulations can either model the time until events take place, in which

case they are continuous, or they can iterate for discrete time periods, with

zero or more events occurring in each time period. Each event changes the

state of zero or more agents, and each agent typically represents a person.

Our work deals solely with discrete microsimulation. The algorithmic tem-

plate of the discrete microsimulations we implement is given in Algorithm

1.

The practicality of a simulation is dependent on the efficiency class of

the events. A particularly simple event is to age each agent. This merely

requires incrementing an age property for each agent by the size of the time-

step (typically a day in our work). The efficiency is linear with the number

18



Algorithm 1 Structure of a discrete microsimulation

1: for each time step do
2: for each event e do
3: for each agent a do
4: if e has to be applied to a then
5: Apply e to a
6: end if
7: end for
8: end for
9: end for

of agents.

We usually want the efficiency class of events to be linear or at worst

linearithmic 3 with the number of agents. Events with quadratic efficiency

slow simulations with large numbers of agents to the point that it often be-

comes unfeasible to run the simulation many thousands of times in order to

generate confidence intervals, conduct sensitivity testing, or estimate param-

eters. Also slow events can limit the number of agents the microsimulation

can accommodate to fewer than we would like to use.

1.2.3 The pair matching problem

Johnson and Geffen (2016) 4 compared a deterministic compartmental model

against a microsimulation for six STIs. As far as possible the implementation

of the microsimulation matched the deterministic model, except for calculat-

ing how sexual partners are matched.

The authors explained that the deterministic compartmental model makes

“the simplifying assumption that STI incidence is proportional to STI preva-

3Linearithmic means the execution is proportional to n log n where n is the number of
agents.

4The second author of this article is the author of this dissertation.

19



lence in the population,” while the microsimulation calculates “STI incidence

more realistically by classifying individuals according to their partners’ STI

status.”

The authors found that for all six STIs the deterministic compartmen-

tal model estimated higher prevalence than the microsimulation. Fitting

the parameters of the two models so as to produce the same prevalence, the

deterministic model suggested “more immunity and lower transmission prob-

abilities”. It also estimated that eliminating concurrent partnerships and a

reduction in commercial sex work had a smaller effect than doing the same

in the microsimulation, while the latter model “estimated a smaller impact

of a reduction in unprotected sex in spousal relationships.”

The two models calculated different prevalences for STIs because of the

way the microsimulation matched sexual partners. The authors wrote that

the deterministic models “make the simplifying assumption that STI inci-

dence is proportional to STI prevalence in the population”. By contrast

microsimulations calculate incidence “more realistically by classifying indi-

viduals according to their partners’ STI status.”

The initial implementations of the microsimulation were impractically

slow because of the algorithm that matched sexual partners into pairs. We

introduced various optimisations to the pair-matching algorithm that reduced

the time for a single complete simulation of 20,000 agents, coded in C++,

from about 10 minutes to less than half-a-minute on fast consumer hardware.

By speeding up the algorithm it became practical to run thousands of sim-

ulations. This made it possible to estimate some of the microsimulation’s

parameters and compare them to those of the deterministic model.
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This spurred Geffen’s interest in how to improve the vital pair-matching

algorithms of microsimulations of STIs. Our aim is to find pair-matching

algorithms that are both fast and effective, in that they approximate the

distribution of sexual partners (based on various characteristics that may be

defined by the modeller, e.g. age, location, sexual orientation, risk behaviour,

socioeconomic class) of the natural-world population being studied.

The problem of pair-matching is as follows: Given a set of n agents, each

representing a person seeking a sexual partnership 5 find a set of partnerships

such that all (or as many as possible) agents are paired with one and only

one other agent.

A typical pair-matching event for a microsimulation will, on a particular

time step, identify all agents who are looking for sexual partners, place them

in a mating pool, and then apply a pair-matching algorithm to match these

agents.

This problem can be cast as a graph problem. We can define an undirected

complete graph, G, as follows:

1. Define a distance function such that given any two agents, a and b, it

calculates a non-negative real number that indicates the compatibility

of the two agents for a sexual relationship. Note that distance(a, b) <

distance(a, c) implies agent b is a more compatible partner for a than

c. Also the function is commutative, so distance(a, b) = distance(b, a).

2. Every agent in the mating pool is a vertex in the graph.

3. The edge between any two vertices is the distance between the agents

5We call the set of agents looking for partners a mating pool.
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represented by the two vertices.

There exists for G numerous sets of distinct pair-matchings. One or more

of these is a minimum-distance, or perfect, set in that the sum of all the dis-

tances between the pairs is less than or equal to every other pair-matching set.

There are algorithms that find the minimum-distance set of pair-matchings,

for example Blossom V, which is an advance on an implementation of Ed-

monds’ algorithm by Cook and Rohe (Edmonds, 1965; Cook and Rohe, 1999;

Kolmogorov, 2009). But Blossom V is very slow (the worst-case execution

time appears to increase with the cube of the number of agents, and the graph

has to be constructed first, an operation whose time increases quadratically

with the number of agents). Also, it may be a problem for some models that

it is not stochastic — it always produces the same set of pairs, unless there

are multiple perfect pair-matching sets, in which case the algorithm could be

adapted to use a random tie-breaking mechanism. But some models may re-

quire more stochasticism than this. Also, reproducing the expected value of

a probabilistic distribution with certainty may not be a desirable statistical

attribute of some microsimulations.

To address these shortcomings we are interested in pair-matching algo-

rithms that approximate the underlying distribution of partnerships, and do

so quickly. This dissertation presents several such pair-matching algorithms,

some of them novel. They are tested, compared and analysed. Optimised

open-source C++ implementations of the algorithms have been made avail-

able, though it is likely that most modellers will wish to slightly adapt the

algorithms for their specific needs. Some of the algorithms are very fast and
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sufficiently maintain the distribution characteristics of the population being

studied. We hope that these algorithms will lead to faster more accurate,

easier-to-implement microsimulations of STI epidemics. These algorithms

can also be used by any pair-matching modelling event. They could there-

fore be useful, for example, in modelling animal population dynamics.

1.3 Limitations of modelling

In Isaac Asimov’s Foundation, a series of science fiction novels set through-

out the galaxy thousands of years into the future, mathematical modelling of

human behaviour has advanced to the point where the rise and fall of civilisa-

tion can be predicted with astonishing accuracy (Asimov, 1991). Alas, as of

2016 Asimov’s vision, while fascinating and entertaining, appears unattain-

able. We cannot even agree on our predictions of a well-studied epidemic

such as HIV. Mathematical modelling is far from an exact science. It is often

a controversial endeavour, as this dissertation makes clear. 6

Assume we wish to estimate the number of people who will be infected

with HIV in South Africa five years from now. We need to know the number

of people currently infected, the rate at which they die, which on aggregate

is determined by age and number of years infected. We need to know the

rate at which people become infected, which on aggregate is determined by

how frequently people have sex, how many partners they have, and the risk

of transmission from a person with HIV to a person without. Further factors

are that men and women have different risks of infection. Moreover rates of

6We have made the comparison with Asimov’s Foundation series previously in Geffen
(2013).
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transmission are also different among men who have sex with men.

Besides that all of these factors are imprecisely known based on flawed

data, there are further complexities. There is heterogeneity across the pop-

ulation. Some people have sex with many different partners within short

periods of time, such as sex workers, while on the other end of the spectrum

there are people who do not have sex for their entire lives. Some people are

more infectious than others. Possibly some people are more predisposed to

infection per sexual act. There are also different networks of transmission

based on who people mix with which is in turn determined by where they

live.

There are no models in existence that take all of these factors into account,

and even the most sophisticated models, such as Johnson et al. (2016), have

to simplify their assumptions.

Of the various forms of evidence available in medical and epidemiological

science — such as explanations of phenomena based on biology, observational

studies of groups of people, surveys and randomised controlled trials — pop-

ulation models are often considered one of the weakest. But there are times

when models are crucial for informing policy decisions because they provide

insights that these other forms of evidence cannot.

For example, consider how many people are currently infected with HIV

in South Africa. In a near-perfect world we would test the entire population

in a short period of time — not dissimilar to the way a census is carried out

— and calculate directly the number of infections. This has never been done

and cannot be done, because it is too costly and complex. The closest to it

has been a series of household surveys by the HSRC (Simbayi et al., 2014).
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But even assuming such a massive study has been done, how do we know

what the prevalence rate will be a year or five from now? Questions such as

this about the future can only be answered by mathematical models.

Furthermore, consider that this hypothetical survey will test many people

in the window period of HIV infection (i.e. people who have recently been

infected but even the most sensitive tests do not yet detect this), as well as

the tiny but at a population level not insignificant number of false positives,

and the fact that a substantial number of people will refuse to be tested.

Here modelling has to be done to account for these flaws in our massive

survey and improve our estimate. In the real world where such a survey isn’t

possible, models use the much less comprehensive surveys that have been

done to provide estimates broken down by country, province, sex, age and

even sexual orientation.

Also consider determining the number of deaths caused by HIV. South

Africa’s death registration data was greatly improved between the end of

apartheid and the onset of the millennium. But, it remains incomplete and

imperfect, especially for children (Dorrington et al., 2001; Statistics South

Africa, 2002). Furthermore, the underlying cause of death is frequently im-

properly recorded (Birnbaum et al., 2011). Here models have been vital for

filling in the gaps in the data, thereby providing more plausible estimates of

the number of deaths across the population by age and sex, and the number

of deaths in which HIV is the underlying cause.

Another important question is whether the additional techniques used in

newer models offer a better understanding or representation of the problems

we are modelling, or if they merely add complexity and, worse, a false sense
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of sophistication and accuracy.

For example, the model of Granich et al. (2009), mentioned above, is the

most cited one of the HIV epidemic, referenced over 1,600 times according

to Google Scholar at the time of writing. The model is distinguished by its

simplicity. It does not differentiate between males and females, and includes

a very simple, arguably simplistic, mechanism to model heterogeneity of risk

of infection. Sexual relationships are not modelled explicitly. By contrast the

microsimulations discussed in this thesis model do model sexual relationships

explicitly. The models differentiate between sexes, can and sometimes do

assign specific sexual behaviour and risk of infection to each individual in

the population, and differentiate agents based on sexual orientation. One of

our models, very primitively admittedly, makes agents more likely to match

if they “live” closer to each other.

It is an open question whether this added complexity adds anything to

our understanding to the dynamics of STI epidemics. Our assumptions about

differences in risk based on sex, sexual orientation and heterogeneity are

based on incomplete and disputed data. We might be exacerbating ignorance

by modelling based on these data. On the other hand as data collection of

these factors improves, the techniques discussed here might become more

useful and accurate.

This debate is touched upon by Brian Williams, one of the authors of

Granich et al. (2009), in response to a set of microsimulations that, with

stepwise increasing complexity, gave different results to the Granich et al.

model (Hontelez et al., 2013; Williams, 2014).
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1.4 Aims

This dissertation primarily consists of five articles. 7 The first three articles

analyse models of the South African HIV epidemic and their consequent role

in policy debates, such as the optimal time for people with HIV to initiate

ART. The next two articles offer solutions to a computer science problem:

how to efficiently and effectively match agents in sexual partnerships in mi-

crosimulations.

The dissertation therefore proceeds from a high-level overview of mod-

elling and its relationship to the response to the HIV epidemic, to a low-level

technical contribution to one aspect of modelling, albeit an important one.

This work, therefore, aims to provide a small part of the answer to this

broad question: How can we improve the modelling of the HIV epidemic, as

well as other STIs, in order to better inform policy debates and decisions?

1.4.1 Context

This collection of articles reflects 17 years of this author’s involvement in

efforts to reduce HIV-related death, ranging form high-level policy review to

technical implementations of models of the HIV epidemic.

Questions about the costs and benefits of providing ARVs to pregnant or

breast-feeding women for the prevention of antenatal and postnatal trans-

mission, providing ARVs to people with HIV to arrest the course of their

disease, and providing ARVs to sexually active people, with or without HIV,

7At the time of writing, one of the articles has been published in a peer-reviewed
journal. Two have been accepted for publication in a peer-reviewed journal. One will be
published as supplementary online material for one of the peer-reviewed articles. The fifth
is undergoing peer-review.
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for the purpose of preventing new infections, depend on models for reason-

able answers. And the usefulness of those models depends upon technical

issues, such as how people are matched in sexual relationships.

Our initial involvement in modelling the HIV epidemic, in the early 2000s,

was in the exploration of the costs and benefits of introducing PMTCT and

ART into the public health system. Discussions with the developers of the

ASSA models, and the consequent ASSA interventions model, which esti-

mated the demographic outcomes of antiretroviral treatment, was followed

by our work on costing the provision of antiretroviral treatment (Dorrington,

1998; Dorrington et al., 2001; Dorrington, 2002; Geffen et al., 2003; Nattrass

and Geffen, 2005). We also costed the introduction of PMTCT, which al-

beit a technically relatively simple exercise, depended on the estimates of the

ASSA models (Nattrass, 2001; Geffen, 2001).

Later Leigh Johnson, one of the main developers of the ASSA models, be-

gan exploring the additional insights into the HIV epidemic that he believed

could be gained from microsimulations of the HIV and other STI epidemics.

Here we encountered a problem. The most crucial difference between the

outputs of a deterministic model and a microsimulation comes from the way

sexual partnerships are modelled. Johnson had developed an algorithm for

capturing the age distribution of heterosexual relationships based on the

— admittedly limited and flawed — data available. But the algorithm to

match pairs of individuals was so slow that it rendered the microsimulation

largely impractical for his purposes. Together we worked on optimising the

pair-matching algorithm, ultimately implementing a very complex domain-

specific one which was fast enough for Johnson’s purposes (Johnson and
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Geffen, 2016).

This led to this author’s interest in exploring pair-matching algorithms

which were easily usable by other modellers.

Three features are desired of a pair-matching algorithm. It needs to be

1. simple or generic enough that other modellers could either adapt it or

use generic implementations;

2. fast, so that simulations can be executed hundreds or even thousands

of times on consumer hardware in a reasonable time period; and

3. effective in that it should closely approximate the distribution being

used to model sexual partnerships in the population.

This research presents several algorithms that appear to meet these char-

acteristics, at least for some types of microsimulations.

1.5 Structure of this dissertation

This is a thesis by publication. Table 1 lists the publications included in it.

Chapters 2 to 5 examine modelling with respect to the policy issues af-

fecting the South African HIV epidemic.

Chapter 2 describes theoretical aspects of modelling and also various mod-

els used to analyse aspects of the South African HIV epidemic. It primarily

consists of an article accepted for publication in the Southern African Jour-

nal of HIV Medicine. Because of the word count limitation of the article, it

also contains an afterword that describes models omitted from the article.
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Chapter 3 describes HIV policy controversies and the role of models in

them. It primarily consists of an article that will be included as supplemen-

tary online material to the article in chapter two.

Chapter 4 focuses on one salient policy debate: the question of when to

start treatment. It primarily consists of an article accepted for publication

in the Southern African Journal of HIV Medicine. Here models were just

one of the pieces of evidence used by protagonists in the debate to advocate

various positions. Although discussion of models forms only part of the

article included in this chapter, it helps clarify how models fit into the wider

consideration of a complex policy issue.

The next section of the dissertation deals with pair-matching algorithms,

a particular technical aspect of microsimulations, the type of model this

author has worked most closely with.

Chapter 5 presents several pair-matching algorithms, and analyses their

efficiency and effectiveness using two very simple microsimulations, defined

specifically for this purpose. It primarily consists of an article published in

the Journal of Artificial Societies and Social Simulation.

Chapter 6 presents results of a more complex microsimulation on a ficti-

tious sexually transmitted infection using three of the algorithms. The data

is from the German population because we collaborated with a German re-

searcher, Stefan Scholz, to work on the pair-matching problem. However

the insights gained from this work are as relevant to microsimulations of the

South African HIV epidemic and other STIs. The chapter primarily consists

of an article submitted for publication to the Journal of Infectious Disease

Modelling. A disquieting result of this article is that, under certain condi-
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tions, the incidence estimated by microsimulations that use a sophisticated

pair-matching algorithm decreases as the number of agents in the model in-

creases. This raises a question concerning what knowledge we actually derive

from models, and we discuss this briefly in an afterword.

The concluding chapter surveys what the preceding chapters have shown

and considers what further research arises from it. 8

8Besides the publications presented in this article, an article directly relevant to this
work is Johnson and Geffen (2016) (discussed above). The article has been omitted from
this dissertation because Geffen is the second author.
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Chapter 2

Modelling the South African

HIV epidemic

2.1 Foreword

The following article Modelling the HIV epidemic: A review of the substance

and role of models in South Africa describes the history of HIV modelling in

South Africa, starting with the first substantive model, published in 1990.

It then discusses most of the major models through to 2016. It constitutes

a literature review of HIV models. Both deterministic compartmental and

microsimulation models are described. It is the latter that are of particular

interest in this thesis, and for which the pair-matching algorithms of Chapter

5 have been developed.

Because of space limitations, a few important models are not mentioned

in the article. Brief notes on these are provided in the afterword. It also

contains further discussion on models and the pair-matching problem.
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An important point we make in this article is that although understand-

ing the inner workings of models requires technical expertise, the assump-

tions, inputs and outputs of a model should be well articulated by the model

authors, and therefore understandable to researchers, activists and policy

makers interested in HIV. Models are well-described if non-experts can read

the descriptions of two or more models and understand how they differ and

why their outputs are different.
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Introduction
No epidemic has received the attention of the ongoing human immunodeficiency virus (HIV) and 
acquired immune deficiency syndrome (AIDS) pandemic, and no matter of public health concern 
has been the subject of so much controversy and policy debate. Scenario modelling has been 
widely employed in attempts to better understand the demographic, health and economic impacts 
of the epidemic under various interventions, for example, antiretroviral treatment, pre-exposure 
prophylaxis and condom use.

Despite modelling being ubiquitous and some models generating intense public debate, with 
consequences, for example, on World Health Organization (WHO) treatment and prevention 
guidelines, it remains poorly understood by non-specialists. Even modellers themselves hold 
differing views about the principal uses and limitations of models.

This article reviews the evolution of models, and their applications, in the context of the South 
African HIV epidemic. We describe, in terms aimed at a wider audience than just modellers, the 
basic structure of the modelling process, challenges that modellers face and how this has affected 
policy debate. In Appendix 1, we explore in more detail the social complexities of the particular 
issues and controversies.

Basic modelling concepts
Books, tutorials and reviews of epidemiological modelling are plentiful, including guidance for 
working with models in the context of policy debate.1,2,3,4 Nevertheless, it is useful to review some 
essential aspects of all scenario modelling. The aim of mathematical modelling is to first identify 
the key rules that govern the behaviour of a natural world phenomenon, and then to implement 
those rules in mathematical relations, so that we can learn more about the phenomenon.

For models of the HIV epidemic, this may mean understanding how gender, age, location and 
other sociological factors influence fertility, exposure to ‘infectious contacts’, access to healthcare 
and mortality. What determines whether and what kind of model is feasible or useful are the 
questions we want to answer about the ‘real world’ epidemic, coupled with the data available to 
justify assumptions about precisely stated rules driving critical processes (dynamical rules). 
Mathematical and computational challenges may be substantial and sometimes curtail the 
ambitions of modellers.

It is important to differentiate the specialised technical aspects of model construction and analysis, 
carried out by mathematical modellers, from the conceptual aspects, which are accessible to 
anyone with basic insights into the situation being modelled, including doctors, politicians, health 

We review key mathematical models of the South African human immunodeficiency virus 
(HIV) epidemic from the early 1990s onwards. In our descriptions, we sometimes differentiate 
between the concepts of a model world and its mathematical or computational implementation. 
The model world is the conceptual realm in which we explicitly declare the rules – usually 
some simplification of ‘real world’ processes as we understand them. Computing details of 
informative scenarios in these model worlds is a task requiring specialist knowledge, but all 
other aspects of the modelling process, from describing the model world to identifying the 
scenarios and interpreting model outputs, should be understandable to anyone with an 
interest in the epidemic.

Modelling the human immunodeficiency virus (HIV) 
epidemic: A review of the substance and role of models 

in South Africa
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code with your 
smart phone or 
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to read online.
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system administrators, biologists and activists. This 
conceptual and technical distinction helps clarify thinking 
and reminds us that model building should be an inclusive 
multidisciplinary process rather than the protected domain 
of specialists.

For example, in the early 2000s, members of the activist 
organisation the Treatment Action Campaign approached the 
developers of the Actuarial Society of South Africa (ASSA) 
models and asked them to incorporate antiretroviral 
treatment into their model, which they did. An analysis of the 
cost of rolling out antiretroviral treatment in the public health 
system, based on the outputs of the ASSA model, was 
featured on the front page of the Mail & Guardian. The ASSA 
models were explained by demographers in affidavits in 
litigation by activists advocating for treatment. The scenarios, 
assumptions and outputs of the model were debated and 
understood by a broad range of people: politicians, activists, 
lawyers, etc. The actual equations in the model spreadsheet 
were likely of interest to, and understood by, only a handful 
of specialists.5,6,7,8

To maintain the distinction between concepts and techniques, 
we use concepts popularised by ecological modeller Tony 
Starfield: model world versus model implementation.9 A Model 
World is the conceptual realm in which we explicitly declare 
the rules – usually some simplification of ‘real world’ 
processes as we understand them. Model Implementation 
then refers to the mathematical and computational details.

For example, a model world may be conceptually inhabited 
by genderless people between the ages of 15 and 49 who all 
have exactly the same behaviours and mortality. We may 
declare that in our model world each day brings the same 
risk of infection or death as the day before, without any 
notion of individual age, the mechanisms of infection or 
death. A related model implementation of such a world may 
consist of some mathematical equations or computer 
programme.

Model worlds capture the essential ideas which we then 
formally analyse and explore in technical investigations, 
using mathematical and computational tools. A model world 
has abstracted entities and rules, but no particular history. 
When we set up initial conditions in a model world, like 
winding up a clock set to midnight, and then let it run, we 
produce scenarios – particular realisations of processes and 
events consistent with the assumptions of the model world. 
A full-fledged investigation may involve many scenarios 
located in several model worlds.

There are typically two kinds of variables in a model: (1) 
state variables, that is, scenario-specific accounting indicators, 
such as the size of population, number of infections and 
number of deaths, and (2) parameters, that is, model world 
defining metrics such as, most critically, rates of infection, 
rates of death and other state transition rules. When the 
model executes (e.g. as a stand-alone piece of software or as 
a spreadsheet), state variables evolve over time from given 

initial conditions, but for this to happen, parameter values 
must actively be chosen. Sometimes parameters are chosen 
based on pre-existing knowledge or estimates. Sometimes 
they are chosen entirely heuristically, just to see what is 
implied by their values lying here or there within some 
plausible range. Another option is model calibration, by 
which parameters are chosen in such a way that the 
emergent behaviour of the model is consistent with some 
data. For example, we can try different values of an 
infectious ‘contact rate’ (how frequently people become 
infected), and then see whether a suitably narrow range of 
this parameter produces a time-varying prevalence that is 
consistent with survey data.

For sexually transmitted infections, a key aspect of model 
worlds is how infections occur. Infection can happen for a 
population group at some rate, without any concern for 
sexual interactions. There can be a single rate across the 
population or it could be differentiated by age, risk group 
and gender. Alternately, infection can be conceptualised at a 
very fine level of detail: a model world could track sexual 
relationships – or even sexual acts – per individual, with each 
individual having their own risk of contracting or transmitting 
the infection.

In model worlds, there are no grey areas of the kind we find 
in the real world, no hidden unknown rules, factors and 
entities – although the interplay of components may be 
complex and may require some sophistication to implement, 
or conceptually untangle. Modelling then might be seen as 
teasing out the implications of hypothetical claims about 
how the world is composed and governed. If done skilfully, 
this helps explain some aspect of the real world. It informs 
real world choices that need to be made, even if the full 
underlying truth in the real world is much more elusive and 
ambiguous than in any model world we may have 
constructed. Table 1 highlights key features of the model 
worlds implemented in the models we review here.

The crucial point is as follows: everyone with a legitimate 
interest in the situation being modelled is entitled to a 
comprehensible description of the model world. They should 
expect to be part of the model world construction, critique 
and interpretation processes. Modellers need to talk in 
conceptual terms about this model world, without resorting 
to jargon or specialised techniques.

The core demographic models
Padayachee and Schall, working for Johannesburg’s City 
Health Department, published the first serious model of the 
whole South African HIV epidemic in April 1990.10 They 
cited two earlier models that estimated the number of gay 
men and antenatal care attendees in what was then southern 
Transvaal with HIV. They also mentioned a WHO model that 
estimated the number of AIDS cases in South Africa but 
noted that the model was based on ‘very little, if any, 
supporting evidence from South Africa’ (p. 330).
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Padayachee and Schall actually implemented three simple 
models, which used antenatal clinic, blood transfusion, 
sexually transmitted infection and family planning clinic 
data and population estimates by province to estimate 
infections for the whole country up to 1992. Their model 
worlds consist of adult (aged 15 to 49 years) black people, 
possibly living in a particular province or urban or rural area, 
but with no other identifiable characteristics. Their first 
model fitted clinic and blood transfusion data to estimate a 
rate at which the epidemic was growing. They extrapolated 
this to calculate national prevalence and the rate at which it 
was growing up to 1992. Their second model, whose method 
they called ‘direct’, used various data sets to estimate the 
number of people with HIV in each province, which they 
then aggregated for the whole country. Their third model, 
whose method they called back calculation, used the number 
of known AIDS cases and an assumption about the time from 
HIV infection to AIDS to back-calculate the number of HIV 
cases, derive an incidence rate and then use this to project the 
number of HIV cases in the future.

They estimated the number of black South Africans, aged 
15 to 49 years, with HIV for the end of 1989, 1990 and 1991. 

Their model calculated between 45 000 and 63 000 infections 
by end of 1989, rising to between 317 000 and 446 000 at the 
end of 1991. Clearly there were problems with their 
methodology: for one thing blood donor HIV prevalence 
rates were not representative. However, their models 
provided some idea of the extent of the epidemic using the 
limited data available then. They wrote: ‘Because of the lack 
of basic data, these forecasts are tentative, but they 
nevertheless indicate the great seriousness of the HIV 
epidemic in South Africa’ (p. 329).

In October 1990, Doyle and Millar, working for the 
Metropolitan Life Insurance Company, published one of the 
most influential models of the epidemic.11 They constructed a 
model world with an adult population comprising four risk 
groups: (1) people having no sexual contact, or in long-term 
monogamous relationships, who are not at risk of HIV, 
(2) people at some risk, conceived as being in stable 
relationships but with one or the other partner having more 
than one sexual relationship, (3) people with higher levels of 
risk, such as those with other sexually transmitted infections, 
and (4) sex workers and people with large numbers of sexual 
partners. These four risk groups remained a part of highly 

TABLE 1: Examples of models of the South African HIV epidemic.
Model Model world Scenarios Implementation

Population Transmission Mortality Interventions

Padayachee and 
Schall 1990

Black people aged 
15 to 49

HIV incidence and 
prevalence estimated 
from blood transfusion, 
antenatal and clinic 
infection numbers.

Not applicable None Used data sources to 
estimate number of 
black people aged 15 to 
49 with HIV from 1989 
to 1991

Three simple models 
using straightforward 
calculations

Doyle 1990 Population divided by 
sex, 5-year age 
intervals and four HIV 
risk groups.

Mainly a function of 
risk group and the 
proportion of infected 
people, but ‘some 
allowance’ for ‘sexual 
activity according to 
age and sex’.

Age-related non-HIV 
mortality. Additional 
risk of mortality for 
people with HIV

None Many. Doyle used it to 
estimate South African 
population, while Lee et 
al. used it to estimate 
infections in Soweto. The 
initial HIV-positive 
population is ‘imported’ 
into the model.

Macro

Padayachee 1992 Individuals have age 
and sex.

Each person, adjusted 
for age and sex, has a 
probable number of 
sexual partners with 
whom they have sex a 
probable number times, 
each of whom has HIV 
with a specified 
probability.

Mortality not explicitly 
discussed, but number 
of AIDS cases 
calculated based on 
infection period

None From 1985 a 
prespecified number of 
immigrants with HIV 
‘seed’ the model. 
Number of HIV and AIDS 
cases estimated until 
2000

Micro

ASSA (various) Population divided by 
sex, province, 5-year 
age intervals and four 
HIV risk groups. Infants 
enter the population 
annually. People with 
HIV at various clinical 
stages of progression.

Function of risk group, 
proportion of infected 
people, age and sex. 
Mother-to-child 
transmission also 
modelled.

Age and sex-related 
non-HIV mortality. 
Additional risk of 
mortality for people 
with HIV

From ASSA2002, 
antiretrovirals, 
mother-to-child 
transmission prevention, 
condoms, etc.

Calibrated to available 
data sources up to the 
year of the model suffix, 
and then projected 
forward. 

Macro (originally as 
spreadsheets, then as 
C++ code)

Granich 
deterministic 2009 

People of no sex or 
specific age, except 
that they are 15 to 49 
years. People with HIV 
are assigned to a 
WHO stage.

Homogenous: no risk 
groups, single incidence 
rate for the whole 
population.

Single mortality rate for 
people without HIV. 
Additional risk of 
mortality for people 
with HIV

Scaled-up universal 
test-and-treat versus 
treating at CD4 count 
of 350 versus no 
treatment

Calibrated to South 
African adult HIV 
epidemic.

Macro (the authors also 
did a stochastic model)

Hontelez 2015 In the most complex 
model of their nine 
models, people are 
differentiated by age 
and sex.

Heterogeneous sexual 
behaviour. People are 
part of sexual networks 
and people at different 
stages of HIV infection 
have different degrees 
of infectiousness.

Age and sex-related 
non-HIV mortality. 
Additional risk of 
mortality for people 
with HIV

Similar to Granich et al. Calibrated to South 
African adult HIV 
epidemic.

Micro

THEMBISA 
2014–2016

Population divided by 
sex, province, 5-year age 
intervals and HIV risk 
groups. Infants enter the 
population annually. 
People with HIV at 
various CD4 count based 
stages of progression.

Function of risk group, 
proportion of infected 
people, age and sex. 
Mother-to-child 
transmission also 
modelled.

Age and sex-related 
non-HIV mortality. 
Additional risk of 
mortality for people 
with HIV

Antiretrovirals, PMTCT 
Option B+, condoms, 
etc.

Calibrated similarly to 
ASSA but also includes 
additional data on 
marriages and 
partnerships.

Macro
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cited models derived from or based on the Doyle model (as it 
came to be known) until the late 2000s.

Model world inhabitants were assigned rates for forming 
new relationships, within and across risk groups, and rates of 
transmission within relationships. It allowed for 5-year age 
groups to be defined, with different levels of HIV prevalence 
at the beginning of a scenario. It also had parameters for 
fertility, mother-to-child transmission rate and HIV and non-
HIV mortality rates. It could be used for heterosexual or 
homosexual populations, adapted as needed to populations 
of interest. Doyle applied the model to South Africa, leading 
to prescient predictions that were not obvious in the early 
1990s, for example, that the epidemic would kill many young 
adults, but that the population would not decline (although 
the growth rate would slow).12 Lee et al. applied the model 
to Soweto, estimating that by 2010 it would account for 
28% – 52% of all deaths there.13

The model implementation of Doyle and Millar’s model 
world was in the form of population counts at discrete time 
steps, deterministically updated according to the expected 
values emerging from statistical rules (like probability of 
infection or death). Doyle cites other models developed by 
the Institute of Actuaries and Society of Actuaries at the time 
but points out that these ‘considered one small homogeneous 
risk group’ and were inappropriate for modelling the South 
African epidemic.12

These model implementations are often called deterministic 
compartmental, frequency-dependent or macro. By contrast, a 
microsimulation, network or agent-based implementation, 
possibly of the same underlying model world, proceeds by 
explicitly tracking a large number of identifiable individual 
model world inhabitants and subjecting them, usually 
stochastically, to the different events to which they are 
exposed. The first microsimulation of the South African 
epidemic that we can find is a Medical Research Council 
lecture cited in Doyle and Millar’s 1990 paper. Unfortunately, 
we can find no further references to this particular one in the 
literature.

Doyle’s model was a proprietary one used by Metropolitan 
Life, primarily for the purpose of making decisions about 
employee benefits (pers comm. Stephen Kramer). It was the 
progenitor of other models, including those of the ASSA. 
Given the computing power at the time, the level of detail is 
impressive, in most respects exceeding the complexity of a 
widely cited and highly impactful model, published as late 
as 200914 that stimulated the debate on early treatment as a 
means of reducing new transmissions.

Groeneveld and Padayachee used a microsimulation 
implementation of a model world in which each person, 
based on their age and gender, has an expected number of 
sexual partners per year, with a specified proportion of ‘short’ 
relationships, and an estimate of the frequency of sexual 
contacts with partners who are infected with HIV with a 
probability dependent on age and gender. The authors also 

estimated the annual number of immigrants with HIV who 
entered South Africa annually. Their goal was to ‘to estimate 
the extent of HIV infection among black heterosexual 
South Africans’. They attempted to predict new HIV infections 
for the period 1985–2000 and concluded that there would be 
5.7 million people with HIV in South Africa by 2000. By 
comparison, the most comprehensive up-to-date current 
model of the epidemic, THEMBISA, estimates that there 
were 3.3 million people infected in 2000.15

Brophy adapted a World Bank model for the South African 
epidemic and investigated demographic effects on the black 
population under various scenarios.16 The model world 
divided the population by sex and 5-year age groups. There 
were also partially overlapping groups: blood transfusion 
recipients, heterosexual females, heterosexual males and 
bisexual males. It considered fertility rates, the age pattern of 
fertility and mortality levels by male and female. The model 
population was matched to the sex and age structure of the 
1985 census. Various data sources were used to estimate 
fertility and life expectancy. Some parameters, such as the 
number of sexual partners, coital frequency, condom use, as 
well as fertility and life expectancy from 2005 to 2010, were 
essentially guessed (and various scenarios were tried). They 
calibrated the model so that it estimated the middle estimate 
of the number of infections in 1990 of the model by 
Padayachee and Schall (described above). Brophy predicted 
substantial reductions in the population and life expectancy 
in 2000, 2005 and 2010 under three AIDS scenarios of 
increasing severity versus a no-AIDS scenario. In the bleakest 
scenario, the model estimated that there would be just about 
1.9 million people with HIV in the adult black population in 
2000 (the actual number was about 3 million).

Dorrington described the origins of the ASSA models.17 The 
first ASSA model was developed on a spreadsheet by a team 
led by Alan Whitelock-Jones. It was titled ASSA500 and was 
similar to the Doyle model with some simplifications. 
Dorrington explains that the motivation for ASSA to develop 
a model when the Doyle model already existed was that the 
latter was proprietary and there was a need for a ‘program 
which the user could alter to his or her needs’ (p. 99). 
Consequently, the model was placed on ASSA’s website and 
Dorrington wrote: ‘the reader is encouraged to download 
and play with it’ (p. 101).

Dorrington also wished to improve the model world of 
Doyle, specifically because it assumed constant fertility and 
non-HIV mortality over time; the ASSA model world would 
include decreasing fertility rates and improving non-HIV 
mortality. Using the same risk groups as the Doyle model, it 
additionally accounted for ‘net national in-migration’ 
(p. 100). While users of the Doyle model needed to set the 
parameters for the community they were modelling, the 
ASSA models are explicitly aimed at modelling the South 
African epidemic, with later models disaggregating the 
outputs by province.

The starting point of the ASSA600 model was the 1985 South 
African population, known from a census conducted that 
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year. The model was calibrated to reported AIDS cases in 
1995 and antenatal HIV prevalence, derived from annual 
surveys by the Department of Health for 1994–1997. 
Dorrington described the calibration of the model as ‘perhaps 
inevitably a little more art than science’. The ASSA modellers 
aimed to produce a population estimate for 1996, national 
mortality rates for 1998, a projection of antenatal clinic HIV 
prevalence rates and a projection of national fertility rates.

Over the next decade, ASSA600 had several successors: 
ASSA2000, ASSA2002 and ASSA2008. From 2000, the suffix 
indicates the latest year of the empirical, primarily antenatal 
survey, data against which the models were calibrated 
(i.e. not the year they were published). The goal was to fit the 
known empirical data, estimate past unknown and project 
future, demographic and HIV outputs, such as population 
size, non-HIV and HIV mortality, HIV prevalence and 
incidence. From ASSA2002, the effects of antiretroviral 
treatment were incorporated.5,6

The ASSA models are widely cited. Besides being 
comprehensive, they have also been open and easily 
accessible. As Johnson explains, the ‘Excel interface of the 
publicly-available model is appealing to many non-
modellers’.18

The latest ASSA model has been calibrated with data only as 
far as 2008. In recent years, the ASSA models too have been 
superseded, most notably by the THEMBISA model.18 
This combines the features of three other models, besides 
the ASSA model. The model world complexity is substantial, 
including more realistic sexual behaviour ‘calibrated 
to marriage data and cross-sectional data on numbers 
of partners’, ‘more determinants of mother-to-child 
transmission’ and ‘most of the new strategies for preventing 
and treating paediatric HIV’. For example, it features CD4 
count staging instead of clinical staging as in the ASSA 
models and allows for earlier antiretroviral initiation. It 
includes newer prevention interventions such as male 
medical circumcision, pre-exposure prophylaxis and ‘WHO 
options B and B+ for prevention of mother-to-child 
transmission’. In contrast to the ASSA models, it takes into 
account change in risk behaviour by people over time.

The Joint United Nations Programme on HIV and AIDS 
(UNAIDS) has also produced widely used models. In the 
1990s, UNAIDS used Epimodel – developed in 1987 by the 
Global Programme on AIDS – for its global, regional and 
country HIV projections.19 This was eventually replaced by 
Spectrum, developed by the erstwhile Futures Group (now 
Avenir Health), and the Estimation and Projection Package 
(EPP), since combined into one programme.20,21,22

The model provides a user interface that takes a range of 
inputs, for example, base year population by age and sex, 
fertility rates, life expectancy (AIDS and non-AIDS), 
migration rates, number of people on antiretrovirals, number 
of people on cotrimoxazole and about a dozen or so more 
(see Table 1).22 It then aggregates all cases in the population 

aged 15 to 49 years and fits a non-age-structured population 
model to the historical aggregates, thereby inferring incidence 
and projecting outputs such as HIV infections and deaths.

Johnson18 writes:

The Spectrum/EPP model is used … in producing estimates of 
the global distribution of HIV, and therefore has the advantage of 
benefiting from a substantial body of international expertise in 
HIV epidemiology. However, the separation of the modelling of 
HIV incidence and demographic impact in this model does limit 
the ability of the model to make use of age-specific data in model 
calibration. [p. 6]

Spectrum/EPP is used to estimate official estimates for every 
country in the world every two years for the United Nations 
Population Division; it serves an important purpose, providing 
rough estimates of HIV prevalence and mortality where none 
would otherwise be available. The model is also used to 
analyse the long-term impact and cost of interventions, 
though as Johnson says, it is ‘limited in its ability to evaluate 
the impact of HIV prevention strategies and make long-term 
projections’. Where countries have developed high-quality 
specialised models, such as the THEMBISA model for South 
Africa, it makes more sense to use these.

Modelling when to start treatment
In 2009, Granich et al. at the WHO presented two models.14 
The first model is a population-level transmission model 
(implemented deterministically) that calculated the long-
term dynamics of the HIV epidemic based on different 
treatment strategies. The second model (implemented 
stochastically) investigated the effect on R0 – ‘the number of 
secondary infections resulting from one primary infection in 
an otherwise susceptible population’ – of different treatment 
strategies applied to an hypothetical person.

The paper argued that, in South Africa, a policy of universal 
testing coupled with immediate treatment for adults found 
to be HIV-positive would effectively eliminate the epidemic. 
In particular, they estimated that HIV incidence could drop 
to less than 0.1% per year by 2016. They also costed the 
strategy.

The paper caused great excitement and controversy. It has 
been cited, according to Google Scholar, 1640 times (as of 
11 March 2017). We know of no other HIV model that has 
been cited as often, which is extraordinary considering the 
simplicity of the models: there is no gender or age structure. 
Perhaps this simplicity, coupled with the strongly stated 
message the authors conveyed, engaged readers across 
multiple disciplines and accounted for much of the interest 
taken in the paper. The paper also encouraged a flurry of 
other models that looked at the same question.23

Even 4 years later, a detailed set of microsimulation models 
by Hontelez et al. was published, trying to answer the same 
question as Granich et al.14 The modellers developed 
‘nine structurally different mathematical models of the 
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South African HIV epidemic in a stepwise approach of 
increasing complexity and realism’.

The simplest resembled the Granich model. The most 
complex included ‘sexual networks and HIV stages with 
different degrees of infectiousness’. Hontelez et al.24 defined 
‘universal test-and-treat’ as annual screening and immediate 
treatment for all HIV-positive adults, starting at 13% in 
January 2012 and scaling up to 90% coverage by January 
2019. Elimination of the HIV epidemic was defined as 
incidence below 1 per 1000 person-years.

It is controversial whether addition of complexity to models 
improves them. For example, one of the authors of the 
Granich et al. paper, Brian Williams, has written:

Hontelez et al. suggest that the [then] current scale-up of ART at 
CD4 cell counts less than 350 [cells/mm3] will lead to elimination 
of HIV in 30 years. I disagree … and believe that their more 
complex models rely on unwarranted and unsubstantiated 
assumptions.25

The Granich model and the ensuing attempts by other 
modellers to verify, refute or improve upon it raise important 
questions about what we are trying to achieve with modelling. 
The original paper is the one that was widely debated. Even 
though it could be improved, it answered the question of 
whether a test-and-treat policy had the potential to massively 
reduce incidence. Most subsequent models agreed with that 
of Granich et al. that universal test-and-treat would 
substantially reduce new infections but not as quickly as they 
proposed. The assumption of rapid scale-up of treatment 
coverage and significant viral suppression in those failing 
treatment were, perhaps, too optimistic.

Models targeting particular policy 
conundrums
Interventions other than antiretroviral treatments have also 
been modelled. There are numerous such models, and here 
we briefly note some without describing their model worlds.

The results of a randomised controlled trial that compared 
infection rates in circumcised versus uncircumcised men in 
Orange Farm26 were used to calculate that this intervention 
could prevent between 1.1 and 3.8 million infections as well 
as 0.1 to 0.5 million deaths over a 10-year period in sub-
Saharan Africa.27 A comparison of the cost-effectiveness of 
treatment as prevention, treatment (solely for the benefit of 
the patient) and circumcision concluded that although 
treatment as prevention was cost-effective, it was less so than 
treatment or circumcision.28,29

Modelling the introduction of pre-exposure prophylaxis 
(PrEP), researchers found that it could avert 30% of new 
infections in ‘targeted age groups of women at highest risk of 
infection’. However, they also found that the cost-
effectiveness of PrEP relative to treatment would decrease 
rapidly as treatment coverage increased.30 Another group 
had more optimistic results modelling PrEP in serodiscordant 

couples (although it is unclear how a model can address 
whether antiretrovirals should be given to the HIV-negative 
or HIV-positive partner in a relationship).31 They concluded:

Although the cost of PrEP is high, the cost per infection averted 
is significantly offset by future savings in lifelong treatment, 
especially among couples with multiple partners, low condom 
use, and a high risk of transmission. [p. 1]

Another model found that treatment plus PrEP was more 
effective than either strategy alone but would also produce 
high prevalence of drug resistance.32 Hallett et al. investigated 
the use of PrEP for seronegative partners in stable 
serodiscordant partnerships, as an alternative or adjunct to 
treatment for the HIV-positive partner.31

Sexual behaviour – such as condom use, number of partners, 
concurrency, and transactional sex – has been widely 
modelled.33,34,35,36,37,38 Models developed by the ASSA 
researchers, for example, estimated that HIV incidence in 
South Africa dropped during the period from 2000 to 2008 
and that increased condom use was the ‘most significant 
factor explaining’ this decline.39 The role of concurrency has 
however been contentious, with conflicting findings.33,34,40

Experimental interventions such as microbicides41 and 
vaccines have also been considered,42 and so has the role of 
treating sexually transmitted infections.43 For further 
references, see Johnson.18

Currently, models such as THEMBISA and Spectrum are 
being used to track progress towards national and global 
objectives, such as the UNAIDS 90-90-90 targets (90% of 
people with HIV diagnosed, 90% of people diagnosed on 
treatment and 90% of people on treatment virally 
undetectable),44 as well as elimination of mother-to-child 
transmission.45

Discussion
The distinction between model worlds and the technical 
implementation of models is useful for demystifying 
modelling and perhaps allows more people to participate in 
model construction and critique, and hence reach better 
informed decisions on the policy implications of models. 
While models, with their complex equations and computer 
code, might be impenetrable to all but specialists, the 
conceptual ingredients – the model world – should be 
accessible to a wide audience.

The earliest models of the South African HIV epidemic 
projected prevalence and mortality over time, a task that 
remains useful today. New models were subsequently 
developed to estimate the effects of interventions, for 
example, how antiretroviral treatment would reduce 
mortality (ASSA2002 interventions model) or how it would 
reduce new infections (the Granich model).

The challenge facing modellers was summarised by 
Dorrington5:
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Estimating the exact impact of HIV/AIDS on mortality is not a 
simple task since there are many uncertainties surrounding the 
dynamics of the spread of the virus and subsequent passage to 
death. In addition there are difficulties in deciding on the level of 
overall mortality in South Africa since not all deaths are 
registered. However, determining an order of magnitude of the 
impact is well within the capabilities of a trained demographer. 
(our emphasis) (para. 7)

Models, even simple ones, can shed light on ‘big picture’ 
questions. They cannot be used to provide precise predictions 
of the long-term future. Models can also provide plausible 
estimates of unobserved epidemic indicators and assist with 
planning for the short-term future. These benefits and 
limitations of models should be kept in mind before deciding 
to add complexity to model worlds, and consequently model 
implementations.

Modelling is still an evolving component of biomedical 
science. Perhaps, as we argue in Appendix 1, a key factor in 
advancing consensus in how models are assessed, especially 
with societal implications, is a more inclusive interdisciplinary 
approach to defining and debating ‘model worlds’, and 
‘model world scenarios’, the conceptual aspects of modelling 
that should be accessible to everyone with an interest in the 
HIV epidemic. This should lead to improved models that 
contribute more robustly to policy discussions.
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2.2 Afterword: Important models not described

in the article

Because of limitations on space in the preceding article, a number of impor-

tant models were left out. These models were located in a literature review

of models (Johnson, 2014) and two article that did head-to-head comparisons

of multiple models (Eaton et al., 2012, 2015). Here are brief notes on them.

The article notes that the Thembisa model integrates four pre-existing

models, including ASSA2008 (Actuarial Society of South Africa, 2011; John-

son, 2014; Johnson et al., 2016). These are the STI-HIV, UCT Paediatric

HIV and NSP ART Need models. These are all macro models that essentially

implement advances on features of the ASSA model.

In STI-HIV sexual behaviour is calibrated to marriage data and cross-

sectional data on numbers of partners. It was developed to “simulate changes

in numbers of sexual partners, changes in marital status, changes in commer-

cial sex activity and changes in the frequency of unprotected sex over the life

course. This is extended to allow for the transmission of HIV, and the model

is fitted to South African HIV prevalence data and sexual behaviour data.

Results suggest that concurrent partnerships and other non-spousal partner-

ships are major drivers of the HIV/AIDS epidemic in South Africa” (Johnson

et al., 2009).

UCT Paediatric HIV models children under 15 years. It includes pre-

vention of mother-to-child transmission and antiretroviral treatment. One of

the four models integrated into Thembisa. It was developed to estimate the

effect of a change in treatment guidelines that provided for children to be
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given antiretrovirals as soon as they were diagnosed with HIV, rather than

based on CD4 cell percentage or counts or onset of AIDS. It concluded that

the guideline change would significantly reduce paediatric AIDS mortality

at young ages, “but further efforts are required to reduce the substantial

growing AIDS mortality in older children” (Johnson et al., 2012).

The NSP ART Model uses CD4 staging instead of clinical staging that

ASSA2008 uses, and allows for earlier treatment initiation. Its purpose was

to assess rates of progression through CD4 stages based on ART coverage

(Johnson, 2012).

Bacaër et al. (2010) developed a similar model to Granich et al. (2009) but

included age structure, which the Granich model lacked. They found that

because of high reported condom use, lower testing coverage than suggested

by the Granich model would also lead to a long-term decline in HIV incidence

in South Africa.

Eaton and Hallett (2014) implemented a macro model that estimates how

HIV transmissions by people in the early phase of infection, usually before

they are aware of their own status, affects incidence, even after the intro-

duction of treatment as prevention (i.e. everyone who tests positive for HIV

is offered ART). The “model includes stages of HIV infection, flexible sex-

ual mixing, and changes in risk behavior over the epidemic. The model was

calibrated to HIV prevalence data from South Africa using a Bayesian frame-

work.” The authors found: “Immediately after ART was introduced, more

early transmission was associated with a smaller reduction in HIV incidence

rate—consistent with the concern that a large amount of early transmission

reduces the impact of treatment on incidence. However, the proportion of
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early transmission was not strongly related to the long-term reduction in

incidence.”

EMOD is a microsimulation in which individuals have age and gender

and there is heterogeneous sexual pairing through a complex pair-matching

algorithm (Klein, 2012). It allows various assumptions to be made about how

ART is provided. The model has been used to “estimate the potential impact

of expanding treatment guidelines to allow earlier initiation of ... ART ... in

sub-Saharan Africa with current or improved treatment coverage” (Klein

et al., 2014).

The re-PopART model aimed to estimate the effect on incidence of inter-

ventions in a clinical trial called PopART (Cori et al., 2014). It is a macro

model of heterosexual HIV transmission. Individuals do not have age (they’re

assumed to be over 15), but they do have gender. The model predicted that

the trial intervention (ART offered to everyone who tested positive, plus

some additional interventions) could reduce HIV population-level incidence

by 60% over three years. The study is expected to complete in December

2017 (Network, 2016).

The Synthesis microsimulation is used to estimate the effects of long-term

drug resistance on HIV mortality (Phillips et al., 2011; Cambiano et al., 2013,

2014). Agents have age and gender and are paired with other agents as the

simulation proceeds. Agents can be in multiple relationships at a time.

The above is not intended to be a complete survey of HIV models. How-

ever, it is, to the best of our knowledge, a description of the most influential

or important ones, especially with respect to the South African epidemic.
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Chapter 3

Debates related to models of

the South African HIV

epidemic

3.1 Foreword

The following article, A history of controversies involving HIV models in

South Africa, describes the often-heated life-and-death policy debates that

surrounded HIV models from the 1990s through to 2015. While the article

in Chapter 2 described how modelling is done, the purpose of this article

is to show how models have been used and debated in the context of HIV

policy-making.

A view underlying this dissertation is that technical work in the absence

of context is an impoverished way of approaching modelling. Constructing

models in a policy void risks being out of touch with societal needs and
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therefore being an irrelevant, albeit intellectually stimulating, pastime. Ex-

amining the politics of modelling, i.e. the role of models in changing views

and policies, is crucial for a rounded, richer understanding of them.
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Appendix 1: A history of 
controversies involving human 
immunodeficiency virus (HIV) 
models in South Africa

1. Introduction
Disputes over models of the human immunodeficiency 
virus (HIV) epidemic have been public, vociferous, fraught 
and acrimonious. In this article, which supplements our 
article reviewing the main models of the South African HIV 
epidemic, we describe these debates. It is perhaps strange 
that the equations of obscure spreadsheets or highly 
technical computer code, understood only by a few 
specialists, should occupy so much attention in the media. 
But the stakes have been high, with millions of lives at risk. 
Also, as we explain in the main article, while, on the one 
hand, the technical workings of models might be understood 
by a few, on the other hand, the model world, that is, the 
conceptual realm of explicitly declared rules that match, in 
a simplified way, some aspect of the real world, can be 
understood by many.

2. The effect of models on policy in 
the 1990s
In 1990, although less than 1% of pregnant women attending 
public antenatal facilities in South Africa tested positive for 
HIV, modellers had predicted explosive growth during the 
subsequent decade, unless significant interventions were 
mounted. Indeed, by 2000, antenatal prevalence had 
increased to over 24%.1 This failure to control the epidemic 
might suggest that modelling had no useful influence on 
policy, but in fact the situation was more complex.

Concern about the growing HIV epidemic, based on 
modelling data and antenatal survey results, led to the 
formation of a body called the Networking HIV, acquired 
immune deficiency syndrome (AIDS) Community of South 
Africa (NACOSA) in 1991.2 In the transition to democracy in 
1994, the African National Congress released a national 
health plan. It cites demographic modelling projections, 
stating that credible predictions ‘indicate that by the year 
2005, between 18% and 24% of the adult population will be 
infected with HIV’ and that the ‘cumulative death toll will be 
2.3 million, and that there will be about 1.5 million AIDS 
orphans’ (p. 30).3 But the plan’s recommendations, while 
cognisant of the rights of people with HIV, were mostly broad 
and vague, which, to be fair, was largely a reflection of the 
lack of effective interventions available at the time.

The small but growing AIDS activist movement was also 
aware of the model projections. The Treatment Action 
Campaign (TAC) was formed in late 1998. There are few 
early documents of the organisation’s work still available, 
but a letter to the Pharmaceutical Manufacturers Association 
on 22 September 1999 notes that the HIV epidemic is an 

‘unprecedented health crisis in South Africa’ and ‘3.5 million 
people are already infected with HIV and it is estimated that 
150,000 people die of AIDS related illnesses every year’.4 
These figures were likely obtained from a model by the 
Actuarial Society of South Africa, such as ASSA600.5

3. The Medical Research Council 
report
A controversy with a model at its centre erupted in 2001. 
Dorrington et al. produced a technical report under the 
auspices of the South African Medical Research Council 
(MRC) that analysed mortality data collected by government 
agencies. The researchers also compared the mortality data 
with the projections of the ASSA600 model.6

The preface written by the president of the MRC at the time, 
Malegapuru Makgoba, stated there had been a shift in the 
age pattern of mortality in the country ‘from the old to the 
young over the last decade particularly for young women – 
this is a unique phenomenon in biology’, and ‘this shift in 
mortality fits several AIDS models’. Makgoba wrote that the 
‘future burden’ of the epidemic was ‘broadly predictable 
from the models with reasonable confidence over the next 
decade’ (p. 4).

The study investigated trends in reported deaths until 1996 
based on data from Statistics South Africa (Stats SA), 
compared with more recent data (mid-1997 to September 
2000) from the population register of the Department of 
Home Affairs. These empirical data were then compared 
with the outputs of the ASSA600 demographic model ‘to 
assess the consistency of the empirical data with the model 
projections’ (pp. 8–9). The authors used standard techniques 
for adjusting the data to take into account under-reporting of 
deaths.

The data showed a ‘steady increase in adult mortality in the 
1990s’. Women aged between 25 and 29 years had a 3.5 times 
higher death rate in 1999/2000 than in 1985 (p. 5).

The authors compared the empirical data with the projections 
of the ASSA600 demographic model, which they described as 
a ‘behavioural demographic component projection model, 
which models the heterosexual epidemic for the country as a 
whole, ignoring race and geographical heterogeneity’ (p. 19). 
The model was calibrated to reproduce the results of antenatal 
HIV surveys up to 1997.

The model projected antenatal infections between the 
values found for the 1999 and 2000 antenatal clinic surveys. 
It estimated that there would be between 4 and 7 million 
AIDS deaths from 2000 to 2010 in the absence of any 
interventions (behavioural change or treatment). The authors 
wrote that: ‘given the pattern of deaths exhibited by the 
ASSA600 model … the … estimate of non-AIDS deaths is 
probably a little on the low side … and the AIDS deaths a 
little exaggerated.’ (p. 24)
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They also considered and critiqued the outputs of three other 
models: the Doyle one discussed in our main article,7 the one 
by the United Nations and the one by the US Bureau of 
Census (pp. 24–25).

The report noted limitations of both the available data and 
models. Its recommendations included proposals for 
improving both. It stated: ‘Considering these different 
sources of information, it seems highly probable that about 
40% of the adult South African 1999/00 mortality in the 15–
49 age group is due to HIV/AIDS.’ (p. 37).

It briefly considered interventions to mitigate the effect of the 
epidemic: AZT for mother-to-child transmission prevention, 
promoting increased use of condoms and a national campaign 
to treat sexually transmitted infections. The authors 
concluded that the interventions ‘can make a significant 
difference to the course of epidemic, although it will still 
exact a heavy toll’ (p. 38).

They also wrote: ‘Unfortunately the ASSA600 model was not 
designed to model the impact of antiretroviral therapies. 
Provided these drugs could be implemented successfully 
they could have a significant impact on the future prevalence 
levels.’ (p. 38)

(Note: the interaction between antiretrovirals, incidence, 
prevalence and mortality is complex and still not fully 
resolved by today’s models.)

The report was written against the background of the 
acrimonious debate in South Africa over the cause of AIDS, 
the size of the epidemic and whether antiretrovirals should 
be introduced in the public health system, both for mother-
to-child transmission prevention as well as treatment (for a 
history of the AIDS denialist era, see Cameron).8 In particular, 
in March 2001, the Presidential AIDS Advisory Panel Report 
had been released.9

This panel, constituted by President Mbeki, consisted of a 
roughly equal number of AIDS denialists and conventional 
scientists. It was criticised for promoting AIDS denialism.10 
The panel’s report contained a very short section on 
modelling (p.44), essentially noting a fundamental 
disagreement on their utility. It also stated in a section on 
epidemiology that repeated requests for ‘reliable data and 
statistics on the magnitude of the AIDS problem or even HIV 
prevalence’ (p. 45) had not been provided to the panel. Yet, 
the MRC report did provide this, as did many other reports 
available during the time of the panel’s deliberations, such as 
the Department of Health’s annual antenatal clinic studies.

The MRC report was carefully researched and showed the 
growing impact of the epidemic on adult deaths. However, 
the MRC board, together with the Minister of Health, stopped 
or delayed its publication, possibly ‘because it contradicted 
President Thabo Mbeki’s view that the epidemic was being 
vastly exaggerated and that there were other, larger causes of 

death’.11 However, findings from the report were leaked to 
the media. It was subsequently officially released in October 
2001.12 The tensions surrounding the MRC study are 
illustrated by a news report: ‘[The study] prompted a whole 
new furore around AIDS statistics and the reliability of MRC 
research. Stats SA was then used by government to rubbish 
the MRC report, a move that was yesterday slammed by one 
of the authors of the MRC report, University of Cape Town 
Actuarial Science professor Rob Dorrington. Pointing 
out that he was speaking in his personal capacity, 
Dorrington said it was a great shame that Stats SA had 
decided to trash the report. “It is clear that they have a 
limited understanding of the estimation process and 
model. Their (Stats SA) presentation was riddled with half 
truths and misunderstandings”.’9

Instead of acting on the report’s concerning findings, the 
state’s response was to try to determine who leaked it. On 17 
April 2002, Independent Newspapers published quotations 
from a letter obtained by reporter Lynne Altenroxel and 
written by the Minister of Health, Manto Tshabalala-
Msimang, to the chair of the MRC board, Taole Mokoena, on 
17 September 2001.13 Tshabalala-Msimang wrote, ‘this is not 
the first time that the MRC president has acted against 
government’.

She continued: ‘You will recall that when the president of 
South Africa established a website for the members of the 
Presidential Advisory Council on AIDS to debate their 
different points of view, the MRC president was instrumental 
in establishing a separate website for the orthodox scientists, 
under the umbrella of the MRC.’13

She further wrote: ‘The [health department] director-general 
[Ayanda Ntsaluba] advised the MRC president and his team 
not to release the report until the report had been presented 
to the minister of health and the cabinet.’13

Tshabalala-Msimang called for ‘corrective action’ to be taken. 
Makgoba was accused of being the source of the leak, but a 
subsequent investigation cleared him and three other MRC 
members. An earlier report by Independent Newspapers 
alleged that a private consultancy had been paid to find out 
the source of the leak.13 Makgoba soon resigned from the 
MRC and became the vice-chancellor of the University of 
KwaZulu-Natal.

Dorrington would later write that the only institution that 
seriously questioned the finding by the MRC study that AIDS 
was the largest cause of mortality in South Africa by 2000, 
responsible for 25% of all deaths, was Stats SA. But, wrote 
Dorrington, ‘[Stats SA] have not produced any statistics of 
their own and have not claimed that the figure should in fact 
be lower’.14

Stats SA officials attempted to discredit the Actuarial Society 
of South Africa (ASSA) model results. The institution released 
a press statement claiming that the model gave lower 



Page 11 of 15 Original Research

http://www.sajhivmed.org.za Open Access

projected AIDS mortality by 2010 (1 to 2 million deaths vs. 
5 or 6 million, in the absence of antiretroviral treatment) 
simply by changing the model’s assumptions. But as 
Dorrington pointed out, Stats SA failed to calibrate the model 
under their assumptions to known prevalence data.14

4. Mother-to-child transmission 
prevention court case
When the TAC launched with a small protest at St George’s 
Cathedral in Cape Town, one of the protesters’ demands was 
for the ministers of health and finance to meet with AIDS 
organisations to ‘plan for resources to introduce free AZT for 
pregnant mothers with HIV/AIDS’.15

Over the next 4 years, the TAC tried to convince the South 
African government to implement a countrywide mother-to-
child HIV transmission prevention programme. The 
organisation, along with several others, proceeded with 
litigation against the national and provincial health ministers, 
eventually winning a seminal judgement at the Constitutional 
Court in July 2002. The court ordered the state to: ‘devise and 
implement within its available resources a comprehensive 
and co-ordinated programme to realise progressively the 
rights of pregnant women and their newborn children to 
have access to health services to combat mother-to-child 
transmission of HIV.’16

In this and subsequent TAC litigation, we find clear examples 
of modelling being used to make an argument for policy 
changes to increase access to antiretroviral medicines.

Evidence put before the court by the TAC included an 
affidavit by Nicoli Nattrass, an economist at the University of 
Cape Town. She concluded that the: ‘cost to the health sector 
of [mother-to-child transmission prevention] programmes ... is 
less than the costs of treating all children born HIV+ in the 
absence of a … programme. This is true for all … of the … 
programmes discussed here.’17

Nattrass performed costing analyses in her affidavit, and 
cited similar work by other researchers. Her model was 
relatively simple compared with most of those discussed 
here, but Nattrass’s affidavit offered compelling arguments 
in favour of implementing mother-to-child transmission 
prevention. Although the role of Nattrass’s affidavit in the 
court’s decision is not mentioned explicitly in the court’s 
judgement, her submission made it practically impossible for 
the state to offer a coherent financial argument against 
implementing the programme (p. 31).16

5. Competition commission 
complaints
In 2002, the TAC lodged a complaint with the Competition 
Commission against two pharmaceutical companies, 
GlaxoSmithKline and Boehringer Ingelheim, over what the 
organisation called the excessive pricing of the antiretroviral 
medicines zidovudine (AZT), lamivudine and nevirapine.18

Here again an expert affidavit describing the results of 
several models was placed on record.14 The affidavit, written 
by Dorrington, explained the impact of HIV: ‘According to 
the models referred to above, well over five million people 
are currently infected with the virus and, unless they receive 
treatment that would increase their life expectancy, most of 
these people will die within the next 10 years. It is clear that 
HIV/AIDS is estimated by all demographers outside 
government to be having a devastating effect on the 
population and is undoubtedly the leading cause of death 
these days in South Africa.’ (p. 7)

In 2003, the TAC reached a settlement with the two companies 
that allowed generic manufacturers to sell the drugs in 
competition with them, not only in South Africa but also in 
sub-Saharan Africa.

The TAC followed up with other successful complaints and 
actions to lower antiretroviral prices. The effect on drug 
prices was profound: when Judge Cameron began taking 
antiretrovirals in 1997, the monthly cost of his regimen was 
R3419. By 2008, the standard regimen in the private sector 
cost under R240 per month.11 The Dorrington affidavit played 
a small but significant role in this.

6. Pushing for the state to treat
After the TAC won the mother-to-child transmission 
prevention court case, the organisation stepped up its 
demand for antiretrovirals to be made generally available in 
the public health system for the treatment of HIV.

To make the case for this much more expensive and vast 
programme, a TAC researcher, with the assistance of the 
ASSA model developers, Nattrass and others, calculated the 
cost of a countrywide treatment programme using the 
outputs of the ASSA2000 demographic model. The article 
concluded that implementing treatment would incur 
substantial direct costs but potentially provide long-term 
savings from reduced hospitalisations and treatment of 
opportunistic infections. The publication of this article in 
2003 was at the height of the conflict between the TAC and 
government over antiretroviral treatment.19 The lead story in 
one of the country’s leading weekly newspapers at the time, 
Mail & Guardian, describing this work, was ‘Counting the 
cost of three million lives’.20 Its findings were debated in 
subsequent issues of the Mail & Guardian.21

This was not the first such costing model. In October 2002, 
Boulle et al. modelled eight scenarios of a limited antiretroviral 
rollout.22 This research did ‘not explicitly link their numbers 
on treatment to an external demographic model’, but they 
estimated the number of people needing treatment in their 
model would be about 10% of new HIV cases in an ASSA 
model.23

Another case of a model being used to advocate for treatment 
arose in mid-2003. The government had established the Joint 
Health & Treasury Technical Team, which used a model to 
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estimate the cost of implementing an antiretroviral treatment 
programme in the public health system, and the number of 
deaths that would be averted by such a programme. The 
Director-General of Health, Dr Ayanda Ntsaluba, presented 
the team’s findings to the Health MinMec (the national 
and provincial ministers of health) on 9 May 2003.24,25 
The presentation considered an antiretroviral treatment 
programme scaled up over three years in public hospitals. It 
showed three scenarios: treating 20%, 50% and 100% of AIDS 
cases. In the 50% scenario, 600 000 people would be on 
treatment by 2008 at a cost of about R10 billion (about $1.3 
billion at the 2003 exchange rate). According to slides not 
shown at the meeting, this scenario would ‘defer’ 733 000 
deaths until after 2010, assuming that treatment led to ‘4–5 
additional years of relatively illness-free life’ (an extremely 
conservative assumption, on hindsight).

What model was used and how the results were calculated 
remains out of the public domain. The presentation was 
supposed to be a secret. However, based on a review of 
costing models by Boulle et al.,23 it appears that this prescient 
costing model was likely developed by Fareed Abdullah, an 
official at the time in the health department, in March 2003.

The TAC obtained the presentation and leaked it to the media 
in July 2003. Accusations and counter-accusations followed. 
At the time, following pressure from TAC, including a 
civil disobedience campaign, negotiations for a treatment 
plan were taking place, at the National Economic 
Development and Labour Council (NEDLAC), between the 
state, labour, business and civil society organisations. 
Advocate Rams Ramashia, the Director-General of the 
Department of Labour, accused the TAC of breaching ‘state 
security’ and ‘undermining and possibly de-railing the 
NEDLAC process’.24

The TAC responded: ‘On a matter of such fundamental 
importance to millions of people’s lives, the Constitutional 
right of access to information and the Constitutional duties 
that govern public administration are paramount. The notion 
that state security has been breached is ludicrous: in fact it is 
the personal security of millions affected and infected with 
HIV that is threatened by government procrastination.’24

By April 2004, the state began providing antiretroviral 
treatment to people with AIDS in the public health system. 
The programme stuttered in its first few years as Mbeki and 
Tshabalala-Msimang continued to undermine it, for example, 
by promoting untested remedies as alternatives. Eventually, 
the programme scaled up rapidly and is the largest of its kind 
in the world.

Since 2008, there has been considerable debate about the 
optimal clinical stage at which to start antiretroviral 
treatment. As described in our main article, models, such as 
the one by Granich et al., have played a central role in this 
debate.26 Following the results of a clinical trial in 2015, the 
World Health Organization has recommended, and the South 

African government has adopted, a policy of universal access 
to treatment for all people with HIV.

7. AIDS denialists attack models
South Africa’s period of state-supported scepticism of the 
link between HIV and AIDS under President Thabo Mbeki 
lasted from the late 1990s until Mbeki was removed from 
power by his own party in 2008. It’s important to note that 
the governing party was not unified in its dismissal of the 
epidemic, and Mbeki’s position ultimately delayed rather 
than entirely prevented the implementation of the public 
sector antiretroviral treatment programme, which began in 
2004. Throughout this period, there was a constant battle 
between the supporters of the scientific position and the 
AIDS denialists, with the former slowly becoming ascendant 
until AIDS denialism ceased to be a relevant political force in 
South Africa.11

Mathematical models were at the centre of this conflict. The 
AIDS denialist attack on modelling did not come from a 
scientist but from a journalist, Rian Malan. Well-known for 
his best-selling non-fiction book My Traitor’s Heart,27 Malan 
wrote an article in Rolling Stone in 2001, disputing that there 
was a large HIV epidemic in Africa including South Africa. 
The article questioned HIV testing methodology on the 
continent and essentially accused UNAIDS of cynically 
exaggerating the size of the epidemic.28 He followed this with 
articles in the British magazine The Spectator29 and the South 
African magazine Noseweek.30 A large part of the latter two 
articles was aimed at mathematical modelling of the 
epidemic, particularly the ASSA models.

A TAC researcher published a detailed rebuttal of Malan.31 
Interestingly, no rebuttal approaching the detail of the 
TAC’s response was written by scientists with recognised 
expertise in demography, although Leigh Johnson, one of 
the main producers of the ASSA and subsequent models, 
assisted the TAC’s researcher. It appears that academics 
found Malan’s arguments so absurd that they were not 
worth more than a cursory occasional response in newspaper 
articles. This despite the fact that his three articles, which 
appeared in large-circulation popular publications, almost 
certainly were more widely read than the peer-reviewed 
publications on AIDS demographics in sub-Saharan Africa.

Malan’s articles had numerous errors. In Noseweek, he 
miscalculated the number of South African HIV deaths from 
a Stats SA report, ignoring that many deaths owing to AIDS 
were not officially classified as AIDS deaths. He therefore 
reached the incorrect conclusion that they were a small 
fraction of the ASSA estimates.

The Stats SA report in fact made it clear that if physicians 
wrote the cause of death as, for example, tuberculosis, then 
this was not classified as an AIDS death, even though many 
such deaths are AIDS-related. The report stated that 
extricating the HIV-related deaths from the other death 
categories is where ‘official statistics stop and research 
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begins’ (p. 28).32 The TAC added: ‘Malan has not bothered 
with such research, which would be a very complex 
undertaking’.31

Mbeki mentioned Malan favourably in his 2004 State of the 
Nation speech, which a TAC researcher characterised thus: ‘It 
was not explicitly about HIV, but to anyone following the 
debate at the time, it was clear that Mbeki was grateful for 
Malan’s support on AIDS’.33

Running battles in print between Malan, activists and, to a 
lesser extent, scientists continued through the 2000s. In 
2007, Malan published again in Noseweek, suggesting that 
the rise in recorded deaths was primarily owing to 
improved registration.34 Grebe35 pointed out on a website 
dedicated to refuting AIDS denialism, https://www.
aidstruth.org/, that Malan continued to ignore the age 
pattern of deaths in South Africa, in which most recorded 
deaths were among young adults, as well as ‘the increase 
in the recorded deaths resulting from causes typically 
associated with AIDS’.

In the post-Mbeki, and thus post-denialist, period, Minister 
of Health Aaron Motsoaledi delivered a presentation in 
which one of his slides had erroneously substantially 
overstated the number of 2008 deaths. Malan pounced on 
this in the online news site Politicsweb. Besides correcting the 
error, Malan wrote, ‘[T]here is no apocalypse. No massive 
AIDS  related death surge. If anything, death registrations are 
stable’.36 Malan’s point was petty: Motsoaledi’s slide had 
mistakenly transposed two digits, reporting 756 062 instead 
of 576 062 AIDS deaths.

The argument continued when Malan published his book, 
Resident Alien, in 2009.37 It contained a chapter that reaffirmed 
his position, disputing there was a large HIV epidemic. The 
Daily Maverick, a popular South African news site, gave it a 
favourable review, and then published a critical reply by the 
TAC.38,39

After the removal of Mbeki from office, AIDS denialism no 
longer had any political force. Public debates over the size of 
the HIV epidemic receded.

8. The impact of AIDS denialism
After the rollout of antiretroviral treatment and the 
termination of Thabo Mbeki’s presidency, two studies were 
conducted that calculated the loss of life owing to AIDS 
denialist policies.

Nattrass40 used the ASSA2003 demographic model to 
estimate that if the national government had used 
antiretrovirals for mother-to-child transmission prevention 
and treatment of people with HIV at the same rate as the 
Western Cape province ‘which defied national policy on 
ARVs’, then 171 000 HIV infections and 343 000 deaths could 
have been prevented, just between 1999 and 2007.

A few months later, Chigwedere and colleagues at Harvard 
University used a different methodology but reached similar 
conclusions.41 They considered what the South African 
government could have achieved had it scaled up treatment 
coverage from 5% in 2000 to 50% in 2005 instead of 3% to 
23%. These estimates were actually more modest than what 
was achieved by Botswana or Namibia. Using a UNAIDS 
model accounting for the period 2000 to 2005, they concluded 
that delayed treatment caused 2.2 million lost person-years 
and over 330 000 deaths, and delayed mother-to-child 
transmission prevention caused over 35 000 excess infections 
and 1.6 million lost person-years. Both studies have been 
cited in an argument that Mbeki and the late South African 
Health Minister Manto Tshabalala-Msimang should have 
been prosecuted.42

9. Conclusion
This article has shown that mathematical models have been 
at the centre of policy debates and decision-making in the 
context of the South African HIV epidemic. In the early 1990s, 
models acted as a warning sign of the pending mortality that 
would be caused by the disease. In the late 1990s until the 
mid-2000s, modelling was a key point of discussion in 
the AIDS denialist controversy that characterised the 
government’s response to the epidemic. Modelling also 
informed discussions on the relative efficacy of treatment 
and prevention options.

But, these examples also show the limitations of the influence 
of modelling over public policy. Despite the warnings of the 
early 1990s, little was done to stem the rise of HIV infections. 
And in the 2000s, the models were simply disputed by the 
AIDS denialists, so that antiretroviral treatment was delayed 
until 2004, and then only after an immense conflict between 
the state and AIDS activists, of which the dispute over 
modelling results was but one aspect. Also, no AIDS denialists 
have been held accountable for their role in hundreds of 
thousands of avoidable deaths, despite the estimates of 
Nattrass and Chigwedere et al.

Even the Granich model, cited an order of magnitude more 
often than any other model, had a limited effect on public 
policy. It was not until the publication of the HPTN 052 trial 
that there was consensus that test-and-treat would be 
effective at reducing new infections,43 and it was not until the 
results of the START randomised control clinical trial in 2015 
that there was consensus that antiretrovirals should be 
provided to all with HIV irrespective of CD4 count.44 
Although models have informed these debates, they do not 
carry the same weight as other forms of evidence in medicine, 
especially randomised controlled trials.

Perhaps, if consensus is reached on which modelling 
techniques produce the most robust estimates of past outputs 
and future projections – in other words if the science of 
modelling improves greatly – future models will be more 
effective at changing policy. We are aware of no developments 
that suggest this is likely to happen. Nevertheless, as a means 



Page 14 of 15 Original Research

http://www.sajhivmed.org.za Open Access

of exploring future scenarios and understanding the epidemic 
better, models have played a vital role.
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11. Summary of Appendix 1
Mathematical models have helped describe and project the 
South African human immunodeficiency virus (HIV) 
epidemic. They have also informed, and been the subject of, 
public debates. We describe the main policy debates in which 
models had a crucial role, explaining how they were used to 
inform these debates, and we discuss the limits of how they 
influence policy. In the early 1990s, models were used to 
warn of the impending epidemic. The models of the early 
2000s informed debates on treatment for people with 
acquired immune deficiency syndrome (AIDS) and 
prevention of mother-to-child transmission. Models were 
also at the centre of the AIDS denialist controversy. In more 
recent years, models have played a key role in the debate on 
when to start treatment.
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Chapter 4

The “when to start” debate

4.1 Foreword

The following article, When to start antiretroviral treatment? A history and

analysis of a scientific controversy, is a detailed description of one of the

seminal HIV debates. It began with the trial of the first ARV, zidovudine,

in the 1980s. It concluded with the publication of results of a randomised

controlled clinical trial in 2015. Official treatment guidelines and prevailing

views fluctuated dramatically over this three-decade period. As explained

in the article, as it became clear that initiating people with HIV onto ART

reduced their infectiousness, it raised the issue of what was in the best interest

of patients versus public health.

The debate is particularly interesting from a modelling perspective. A

model by Granich et al. (2009) 1 reignited the debate in the late 2000s. The

authors’ model estimated that providing treatment to everyone with HIV

1Strictly speaking, the authors published two different models in one article.
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could eradicate the epidemic. No model has been cited as often, generated

as much discussion, debate, praise and annoyance. The Granich et al. model

was a very simple one, consisting of a homogeneous population of adults 15

years and above; there was no differentiation based on age, sex or risk group.

A flurry of models followed in the wake of Granich et al. that attempted to

give more sophisticated estimates. Whether they succeeded remains a matter

of debate (Williams, 2014).

After the article the section titled Understanding the importance of pair-

matching in these models (4.2) further discusses the role of modelling in the

debate about when to start ART, and hence its role in this dissertation.
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Introduction
Since the publication of the first antiretroviral trial in 1987, scientists and patient advocates have 
debated the optimal time for people with HIV to start antiretroviral treatment. Guidelines, both 
national and international, have changed back and forth on this question, reflecting changes in 
expert opinion and new scientific developments.

We describe the when-to-start debate and its resolution in mid-2015. This debate exemplifies the 
problem of deciding policy when the evidence is still being collected, or how ‘technological 
decision making’ is done when there is ‘scientific uncertainty’.1 While much has been written 
about the debate over the cause of AIDS, a consequence mainly of former South African President 
Thabo Mbeki’s views, little has been written on the when-to-start debate. Yet, there is more to be 
learnt about how science works from the when-to-start debate. This is because it was genuinely 
hard to determine public health policy from the limited evidence. By contrast, the science that 
HIV is the cause of AIDS was clear, and that debate was fuelled not by legitimate scientific 
disagreements, but by politics and ideology.

The question of when-to-start treatment was contested not only between scientists, but also 
between AIDS activists. Participants with reasonable claims to expertise who for the most part 
were familiar with the same scientific literature reached opposing conclusions on what treatment 
guidelines should recommend.

The participants in the debate differed in their assessments of the value of observational versus 
clinical trial data. They also differed on whether the public health benefits of reducing HIV 
transmission by treating people earlier outweighed the unknown harms to individual patients 
because of side effects of drugs, difficulties with adherence to lifelong medication and the 
development of drug resistance. And they differed on how much value to assign mathematical 
models and observational data. The stakes were high: the contestants understood that settling the 
question of when-to-start treatment might have considerable effects on life expectancy and the 
incidence of HIV.

If we think about the when-to-start debate as a court case, then the main exhibits were a 
mathematical model by Granich et al.2 which showed that a policy of universal testing followed by 
immediate treatment of people with HIV would lead to the eradication of the disease; a clinical 

Background: Since 1987 HIV scientists and activists have debated the optimal point to start 
antiretroviral treatment. Positions have varied between treating people with HIV as soon as 
they are diagnosed, based on biological, modelling and observational evidence, versus 
delaying treatment until points in disease progression at which clinical trial evidence has 
shown unequivocally that treatment is beneficial.

Objectives: Examining the conduct and resolution of this debate may provide insight into 
how science works in practice. It also documents an important part of the history of the HIV 
epidemic.

Method: We describe clinical trials, observational studies, models and various documents that 
have advanced the debate from 1987 to 2015.

Results and conclusion: Evidence accumulated over the past decade, especially from 
randomised controlled clinical trials, has shown that immediate treatment both reduces the 
mortality and the risk of HIV transmission; it benefits both public health and the individual 
patient. By mid-2015, the debate was resolved in favour of immediate treatment.

When to start antiretroviral treatment? A history and 
analysis of a scientific controversy
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trial that showed that people with HIV on antiretroviral 
treatment are unlikely to transmit the virus3; several 
observational studies, with inconsistent results, which 
compared what happened to patients who started treatment 
at different stages of HIV infection; and a massive 
multinational clinical trial called Strategic Timing of 
Antiretroviral Treatment (START).4 Besides these exhibits, 
there were many others that either supported or contested 
some of the main ones.

The publication of results of the START trial in August 2015, 
a year-and-a-half ahead of schedule, effectively resolved 
the question of when-to-start treatment, generating broad 
scientific consensus on the question. But it did not and 
could not resolve differences in values and methodologies 
of the debate’s participants. These differing values and 
methodologies in the approach to resolving medical science 
questions will continue, perhaps indefinitely, to be the 
subject of sociological and philosophical enquiry.

Background
The results of the first randomised controlled antiretroviral 
clinical trial, BW002, were published in 1987.5 For 24 weeks, 
people with AIDS received azidothymidine (now better 
known as AZT or zidovudine) or placebo. Of the 145 
participants who received AZT, one died, compared to 19 out 
of 137 who received placebo.

Despite this promising result, the trial was too short to 
show that monotherapy soon results in drug resistance 
followed by most patients developing AIDS illnesses again. 
New combination treatments were needed to reduce the risk 
of resistance.

New antiretrovirals went to trial and were approved by the 
United States Food and Drug Administration (FDA) 
through the 1990s: didanosine (1991), zalcitabine (1992), 
stavudine (1994) and lamivudine (1995). It was, however, 
the development of protease inhibitors and non-nucleoside 
reverse transcriptase inhibitors – such as saquinavir (1995), 
ritonavir (1996), indinavir (1996) and nevirapine (1996) – 
which changed the nature of HIV treatment.6 Arts and 
Hazuda6 write, ‘The advent of combination therapy, also 
known as HAART, for the treatment of HIV-1 infection was 
seminal in reducing the morbidity and mortality associated 
with HIV-1 infection and AIDS’. People with HIV on 
combination therapy, typically three antiretrovirals taken 
daily for life, who adhere to their regimen have a very 
small risk of resistance. The virus can remain suppressed 
indefinitely restoring near-normal life expectancy.7

Today there are about 25 individual antiretroviral drugs 
spread over six different classes (i.e. differing modes of 
action) approved by the FDA.8 But it was only in the second 
half of 2015, 28 years after the completion of the first 
randomised controlled antiretroviral trial that the answer to 
the when-to-start question was settled.

Changing guidelines
The two main criteria in treatment guidelines for determining 
when to start treatment have been symptoms of AIDS and 
CD4 T-lymphocyte count. The ‘to and fro’ of treatment 
guideline changes has previously been described.9 When 
AZT was approved in 1987, the US Department for Health 
and Human Services (DHHS) set the CD4 threshold at 
500 cells/µL. In April 2001, it was reduced to 350, and then 
to 200 in 2003. In 2007, it was raised to 350, and then 500 in 
2009. In 2013, CD4 count was removed as a criterion for 
determining when-to-start treatment. In 2003, the World 
Health Organization (WHO) guidelines – produced for 
resource-limited settings – set the CD4 threshold at  
200 cells/µL. This increased to 350 in 2010 and then 500 in 
2013, with a recommendation that some groups of patients 
start irrespective of CD4 count. Changes over time in the 
CD4 initiation threshold can be found in the South African 
Department of Health’s, British HIV Association’s and 
European AIDS Clinical Society’s guidelines. And often, they 
were not in sync with each other. For example, in 2012, these 
differed from the DHHS guidelines by retaining the  
350 threshold. South Africa’s guidelines have changed from 
200 cells/µL to 350 to 500, followed by treatment irrespective 
of CD4 count.

One of the reasons why many scientists, clinicians and 
activists in the late 1990s and the early 2000s were reluctant to 
endorse early treatment for people was the surprising results 
of the Concorde trial.10 Symptom-free people with HIV were 
enrolled in the trial from 1988 to 1991. Follow-up of the 
patients continued until they died or end of 1992, whichever 
came first. When the trial began, AZT was the only 
antiretroviral available. Participants were randomly assigned 
either to receive AZT immediately or to defer treatment until 
they developed AIDS symptoms or had persistently low CD4 
counts. The trial was blinded: the deferred group received 
placebo, but upon developing signs of AIDS, participants 
were unblinded and offered AZT if they were on placebo.

There was no statistical difference in the primary outcome 
between the two arms: on the immediate arm, 176 of 877 
people died or progressed to AIDS versus 171 of the 872 on 
the deferred arm. By starting treatment before they were ill, 
the immediate arm participants found no more benefit from 
AZT than those who deferred, and they were more likely to 
have become resistant to the drug so that by the time they did 
become ill, it was no longer beneficial.

That it was disadvantageous to start early was confirmed by 
a long-term follow-up of the trial participants who showed 
statistically significant worse survival in the immediate arm. 
But even then matters were not straightforward, because by 
pooling the results of a similar trial that was conducted at 
about the same time as Concorde, there was no significant 
difference between the deferred and immediate strategies.11

Even though these discouraging results were based on 
monotherapy, and the drug resistance this approach caused, 
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Concorde was a warning about jumping to the conclusion 
that early combination treatment would be beneficial.

With the growing success of combination therapy, 
Ho published an article in the New England Journal of 
Medicine (NEJM) in 1995 provocatively titled ‘Time to Hit 
HIV, Early and Hard’. He wrote that recent scientific findings 
and therapeutic development favoured an ‘aggressive 
interventional strategy early in the course of HIV-1 infection’.12

But the scientific findings Ho referred to were based on 
improved understanding of the pathogenesis of the disease. 
For some, this was unconvincing because it was not based on 
clinical data and did not consider drug side effects and long-
term adherence challenges. In an article published in 
The Lancet entitled ‘Hit HIV-1 hard, but only when necessary’ 
by Harrington and Carpenter,13 the authors argued for caution 
and a CD4 threshold of 350 cells/µL. They stated that:

[N]o available regimen can eradicate HIV-1; all currently 
effective regimens may cause undesirable, sometimes life-
threatening, toxic effects; and, unless regimens are strictly 
adhered to, multidrug resistance can develop, limiting future 
treatment options.

Through the 2000s, as various randomised controlled clinical 
trials were conducted, the when-to-start debate became 
increasingly nuanced. A trial showed that treating infants 
upon diagnosis reduced mortality by 76% and HIV 
progression by 75%.14 Two trials in adults showed that a 
threshold of 350 cells/µL resulted in better outcomes than 
250 or 200.15,16 But the question of whether to treat adults 
irrespective of CD4 cell count, or to wait until it declined to 
some optimal value remained unanswered, at least in clinical 
trials.

A mathematical model causes a stir
Studies of antenatal transmission of HIV as well as 
observational data showing that sexual transmission was 
more likely if the infected partner’s viral load was higher 
suggested that antiretroviral treatment could be used to reduce 
new infections.17 Based on these findings, Granich et al.2 
published results of two mathematical models. They found 
that if a policy of universal testing coupled with the offer of 
immediate treatment to people who were found to be HIV-
positive was introduced in South Africa, incidence and 
mortality because of the disease could be reduced to ‘less than 
one case per 1000 people per year by 2016, or within 10 years 
of full implementation of the strategy’. They wrote that the 
prevalence of HIV could be ‘less than 1% within 50 years’.

The authors included leading WHO researchers, including 
Kevin de Cock, the director of its HIV department. Its 
publication, while not responsible for starting the discussion 
on whether the CD4 count initiation criterion should be 
dispensed with and a policy of universal testing and 
immediate treatment should be pursued, certainly escalated 
the intensity of the debate. At the time of writing the article 
has been cited over 1600 times according to Google Scholar. 

This is extraordinarily high for mathematical models, the 
details of which most scientists, activists and policymakers 
are unlikely to understand, even though these were relatively 
simple models, which was part of their appeal.

The article’s findings were first presented ahead of 
World AIDS Day in 2008, and the response to it was 
divided. Email correspondence at the time by leaders of the 
Treatment Action Campaign (TAC), the leading AIDS activist 
organisation in South Africa, conveyed both the excitement 
and scepticism the article generated. The organisation’s 
leader, Zackie Achmat wrote, ‘This is going to overwhelm 
us with calls. [Our policy department] will draft a 
statement. The heavens are opening up’ (Achmat Z, personal 
communication, n.d.).

Another leader of the organisation, Mark Heywood, wrote:

I heard Kevin de Cock present this paper in Geneva … I 
have serious concerns about it, as does Peter Piot and most at 
UNAIDS! It has the potential to create a great deal of confusion, 
so our statement will have to be very careful. You should also be 
aware that in meetings to justify the paper de Cock is also 
claiming it has the support of activists... (Heywood M, personal 
communication, n.d.).

Heywood was a co-signatory on a statement by a group of 
‘independent experts advising UNAIDS on HIV and human 
rights’ published on World AIDS Day 2008. While welcoming 
‘a model that proposes the attainment of universal access to 
HIV treatment and HIV testing’, that ‘confirms the critical 
link between HIV prevention and HIV treatment’, the authors 
wrote the study did not ‘really address’ the problems of 
stigma and discrimination which could be exacerbated by 
potentially coercive approaches. They wrote:

To be both effective and just, programmes to scale-up HIV testing 
and treatment must be based on evidence and must protect the 
human rights of both the non-infected and the infected.

They cautioned about ‘the application of theoretical models 
to fictitious populations’.18

The publication of the Granich et al. article was accompanied 
by letters from accomplished researchers in various fields of 
HIV who criticised various aspects of the model:

•	 The ‘hypothesis that suppressive antiretroviral therapy 
can reduce HIV transmission within a sexual relationship 
is plausible, but unproven’, wrote Cohen et al.,19 scientists 
who within a few years would indeed prove the protective 
effect of treatment within a sexual relationship.

•	 They underestimated infectiousness in early infection 
and overestimated the number of partners South Africans 
report having, wrote Harvard demographers.20

•	 Harold Jaffe, who was at the forefront of the discovery of 
the AIDS epidemic, and his colleagues pointed out that 
the risks and benefits of treating people with a CD4 count 
above 350 cells/µL were unknown. They wrote, ‘Trials of 
therapy for patients with higher counts are yet to begin. 
Within the field of communicable diseases, we are aware 
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of little precedent for the approach of “treating for the 
common good”.’21

•	 Ethiopian public health officials described the difficulties 
of implementing mass testing in a resource-limited 
setting.22

More complex models were developed in the aftermath of 
the Granich et al. article, though none achieved as much 
public discussion. Twelve models, including one of the 
Granich et al. ones, were described in an article by Eaton 
et al.23 The model results were compared under a set of 
similar assumptions about how universal testing and 
treatment would be carried out versus if the South African 
treatment guideline criteria at the time (with a CD4 initiation 
threshold of 350 cells/µL) were used.

The authors concluded that although the models evaluating 
the impact of treatment ‘vary substantially in structure, 
complexity, and parameter choices’, all suggested that 
treatment at ‘high levels of access and with high adherence’ 
would reduce new infections. Although there ‘was broad 
agreement regarding the short-term epidemiologic impact of 
ambitious treatment scale-up’, the models varied on their 
‘longer term projections’ and ‘in the efficiency with which 
treatment can reduce new infections’.

One of the most sophisticated set of models aimed at 
determining the effect of universal testing and treatment on 
the epidemic was published by Hontelez et al.24 Explaining 
the motivation for their study, they wrote:

there are as many different conclusions as there are models that 
investigated the issue. As models are profoundly different in 
many aspects – structure, parameterization, and assumptions 
about the intervention – it is difficult to determine which factors 
are responsible for the differences in the model predictions. (p. 2)

The period since the publication of the Granich et al. model 
had also produced new evidence that the authors relied 
upon.

The authors developed nine structurally different models 
of increasing complexity, starting with one that resembled 
that of Granich et al. In contrast to the set of relatively 
simple differential equations that characterised the Granich 
et al. model, their most complicated models simulated 
people (usually referred to as agents in simulation 
literature) with complex algorithms for choosing sexual 
partners. Their results confirmed that ‘universal testing 
and immediate treatment at 90% coverage’ would eliminate 
the HIV epidemic in South Africa. But they also found that 
their models, which they claimed were more realistic, 
‘show that elimination is likely to occur at a much later 
point in time than the initial model suggested’. They also 
found that universal testing and treatment is cost-effective, 
but less so than calculated by Granich et al. Most 
interestingly, they found that ‘the current South African … 
treatment policy alone could already drive HIV into 
elimination’.24

However, it is controversial whether adding complexity 
to models improves them. One of the authors of the 
Granich et al.’s article, Brian Williams, a leading figure in 
mathematical modelling of infectious diseases, has written a 
response questioning their methodology. He writes:

Hontelez et al. suggest that the current scale-up of ART at CD4 
cell counts less than 350 [cells/µL] will lead to elimination of 
HIV in 30 years. I disagree … and believe that their more 
complex models rely on unwarranted and unsubstantiated 
assumptions.25

Williams’ view was that there was already sufficient evidence 
to make treatment universally available. He wrote:

the challenge now is to mobilize the political will and the 
financial support to make early treatment available to all that 
want it in order to save lives, save money and stop AIDS.25

Treatment as prevention
Observational studies published between 2006 and 2011 
showed that people with HIV on antiretroviral treatment 
were likely less infectious.26,27,28,29 But a clinical trial was 
needed to remove the possibility of confounding factors and 
estimate the magnitude of the effect.

In July 2011, the results of the HPTN 052 study were 
presented to a standing ovation at the meeting of the 
International AIDS Society in Rome. A month later the 
results were published. In this multinational randomised 
controlled trial of 1700 sero-discordant couples, the partner 
with HIV was randomly assigned to receive treatment 
immediately or to delay until 250 cells/µL. This partner 
also had to have a CD4 count between 350 cells/µL and 550 
cells/µL at enrolment, which took place between 2007 and 
2010.

Using genetic analysis, the authors found that in the 
immediate group, there was only one transmission to the 
HIV-negative partner. In the deferred group, there were 27 
such transmissions, meaning that the transmission rate in 
the immediate group was 96% lower.3 To date, this remains 
the most beneficial HIV sexual transmission prevention 
effect found in any randomised controlled clinical trial.

The study also found that there were clinical benefits for 
patients who started earlier, but as the initiation threshold 
was 250 cells/µL, a point already known to be lower than 
optimal (although the most convincing clinical trial 
showing this had not yet completed at the time HPTN 052 
enrolled), it did not resolve the when-to-start debate, at 
least not from the perspective of the individual patient. 
However, it did result in the WHO publishing guidelines 
that recommended immediate treatment – for the purpose 
of prevention – for HIV-positive people with HIV-negative 
sexual partners.30

The debate on when-to-start swung noticeably towards 
earlier treatment after the publication of HPTN 052. Here is 
some of the discussion that followed.



Page 5 of 8 Original Research

http://www.sajhivmed.org.za Open Access

Joseph Sonnabend, a physician, wrote a blog expressing 
caution against immediate treatment of anyone who tested 
positive and had a CD4 count above 350 cells/µL:

The recent demonstration that antiretroviral treatment can 
prevent transmission of HIV among sero-discordant heterosexual 
couples is great news. However, when the person offered 
treatment has not yet been shown to personally benefit from it, 
an ethical issue needs to be addressed.31

In an interview, the study’s principal investigator, Myron 
Cohen, stated his support for the earlier treatment 
recommendations made to the US guidelines following 
HPTN 052. ‘That’s a pretty big change’, he said, ‘and it 
respects the accrued benefits, which are very, very strong’.32

In a critical response to Cohen, AIDS activist Simon Collins33 
wrote:

a radical public health approach to HIV care is presented as self 
evident, while neglecting to discuss the lack of important data or 
presence of contradictory evidence. This is a serious omission in 
an historical context of guideline recommendations that have 
been wrong on this question more often than they have been 
right.

He further wrote:

Even with the best intentions, guidelines produced by experts, 
can be wrong. The limited evidence and lack of randomised 
data, restricts the ability to know the risks as well as the benefits.33

Given the state of uncertainty about the optimal initiation 
threshold and that many sexually active people would want 
to start treatment to reduce their infectiousness, Collins and 
Geffen wrote:

the decision of when to start must be taken by the HIV-positive 
person in consultation with their health worker based on 
accurate information. That choice will vary depending on a 
person’s individual health, their reason to want to treat and the 
resources of the health-care facility.9

Observational data
In April 2009, two large studies were published that had a 
considerable impact on the when-to-start debate. Both used 
observational data to calculate the effect on mortality of 
different CD4 count initiation thresholds.34,35

Kitahata et al.34 studied over 17 000 Canadian and US 
patients. They found a substantial increase in the risk of 
death for people who deferred treatment below a CD4 count 
of 500 cells/µL. Those who deferred to below 350 cells/µL 
had the highest risk of death. However, the study used novel 
methods that introduced bias in favour of earlier treatment. 
The authors were criticised for this in several subsequent 
letters to the editor. They responded that even taking these 
concerns into account, their data still supported earlier 
treatment.

An accompanying editorial pointed out that the strengths of 
this study:

included its relatively large size, the use of advanced statistical 
methods that attempted to analyze the data in a fashion similar 
to that of a randomized trial, and the use of survival … as the end 
point.36

Nevertheless:

the results of the … study cannot be considered definitive 
evidence that everyone with HIV should start receiving 
antiretroviral therapy. This was not a randomized trial, and the 
patients who chose to begin therapy early might have differed in 
other important ways from those who chose to defer therapy – 
ways that improved survival but were not measured.36

The editorial concluded that if five years previously an 
asymptomatic patient with HIV with a CD4 cell count above 
500 cells/µL wished to start treatment, most experienced 
clinicians ‘could have made an excellent case’ for deferring 
treatment.

Today, if a similar patient were eager to start, we should be ready 
and willing to prescribe therapy – with ongoing careful 
monitoring of toxic effects that could arise during decades of 
treatment.36

But the UK funded when-to-start consortium,35 which looked 
at over 21 000 patient records, had less convincing results 
with less controversial methods. The authors found that 
deferring therapy to a CD4 count of 250–350 cells/µL was 
associated with higher rates of a composite endpoint of AIDS 
or death than deferring to 351–450. However, when mortality 
alone was considered, there was no statistical significance. 
And at stepwise comparisons of higher CD4 count ranges, 
they could find no significant difference in the primary 
outcome. The authors noted, ‘The evolution of guidelines has 
been compared to the swings of a pendulum’. They motivated 
for a 350 cells/µL threshold.

Subsequently, UK and US guidelines diverged, with the latter 
taking steps in subsequent editions that promoted earlier 
treatment.

Jain and Deeks37 summarised the situation at the time:

Although the debate regarding when to start antiretroviral 
therapy has been present for over two decades, consensus on this 
question has been hard to achieve. This lack of clarity continues 
in the current era, with major guidelines recommending very 
different treatment strategies. All agree, however, that the 
pendulum has swung back in favor of more aggressive 
approaches to therapy. The philosophy of delaying potentially 
toxic medications as long as possible has increasingly shifted 
toward a philosophy of initiating therapy as soon as possible.

This shift was evident when UNAIDS published its 90–90–90 
strategy in October 2014.38 The second of the three 90s referred 
to having 90% of people diagnosed HIV-positive on sustained 
antiretroviral treatment by 2020 – a target that amounts to 
an endorsement of test and treat. But this was at odds 
with the WHO’s treatment guidelines, which at the time 
only recommended treatment initiation at CD4 counts of 
500 cells/µL or below.39
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In his budget vote speech in July 2014, shortly after returning 
from the 20th International AIDS Conference in Melbourne 
Australia, South Africa’s Minister of Health endorsed the 
90–90–90 targets and treatment irrespective of CD4 count. 
While he endorsed test and treat, he only went as far as 
announcing that the treatment initiation threshold would be 
raised from 350 cells/µL to 500 cells/µL.40 In response, the 
TAC’s policy director criticised Motsoaledi for recommending 
earlier treatment initiation without consulting activists.41

Strategic Timing of Antiretroviral 
Treatment (START)
Members of the trial’s community advisory board wrote that 
the Strategic Timing of Antiretroviral Treatment (START) 
trial:

is a study that has been driven by community demand that the 
optimal clinical initiation threshold for [antiretroviral treatment] 
be determined by clinical trial evidence rather than expert 
opinion informed primarily by observational data.42

START was conceived in the mid-2000s to resolve definitively 
the question when it would be best to start treatment from the 
perspective of a patient with HIV. The trial was randomised 
but open-label because a placebo arm would have created 
insurmountable practical and ethical problems.4

Nearly 4700 people enrolled in the trial at 215 sites in 
35 countries between April 2009 and December 2013. To 
participate, patients had to be antiretroviral treatment naive, 
and have a CD4 cell count greater than 500 cells/µL. 
Participants were randomised either to begin treatment 
immediately or to wait until their CD4 counts dropped to 
350, or treatment was clinically indicated. The primary 
endpoint was a composite of any serious AIDS- or non-AIDS-
related event, or death.43

Support for the trial was not universal. Franco and Saag44 
wrote that the balance of data strongly supported starting 
treatment in nearly everyone regardless of CD4 count. They 
cited the availability of better drugs that were now available, 
the current understanding of HIV biology and pathogenesis 
and evidence from observational data. They conceded that a 
small group of people who ‘have undetectable virus in the 
absence of antiretroviral therapy’ might be exceptions. But for:

everyone else, to wait on randomized clinical trial data could 
well be doing harm. The time spent waiting is time that the 
patients cannot get back and the long-term damage associated 
with waiting could well be irreversible.44

By the time they wrote this, however, START was well 
underway.

Contrast this with a view expressed by some of the main 
researchers involved in the publication of the observational 
data, after the US guidelines changed. Phillips et al.45 wrote 
‘We are concerned that some may interpret the new 
recommendations as implying that the deferral group of this 

trial [START] is no longer ethical. Such an interpretation 
would endanger the future of the trial in the USA’. After 
explaining the problems with the observational data, they 
concluded:

We therefore do not believe that there is convincing evidence to 
conclude that deferral of initiation of ART to a CD4 count of 350 
causes net harm, particularly in terms of mortality, compared 
with starting at any higher level. We strongly support continued 
enrolment into START. Large randomised studies represent the 
only means of eventually obtaining the definitive result we need 
to properly inform future patient care.

The trial was only expected to produce results in late 2016 
or early 2017. But in May 2015, the trial’s independent data 
and safety monitoring board informed the main sponsor that 
the question had been answered. It recommended that the 
findings be ‘immediately disseminated’. The primary endpoint 
occurred in 42 people in the immediate arm versus 96 in the 
deferred one, meaning the risk of serious illness or death was 
less than half in the immediate one (though for an HIV cohort, 
patient outcomes were good in both arms). Even at high CD4 
counts, treatment reduced the risk of AIDS illnesses.43

At about the same time as START, a smaller trial (2076 
participants) called TEMPRANO was run in Côte d’Ivoire. 
Primarily concerned with the effect of earlier treatment in an 
area with high tuberculosis, it had a similar primary endpoint 
to START. Its findings, which also showed the benefit of 
immediate treatment, were made public shortly before 
START’s were. However, the details of the study were 
presented at the International AIDS Conference in Vancouver 
on the same day as START’s and both studies were published 
in the same journal on the same day.46

The last outstanding piece of evidence in the when-to-start 
controversy had now been answered.

Discussion
There were two main points of contention in the when-to-
start debate.

First, there was disagreement over what constituted sufficient 
evidence that early treatment was beneficial. There was an 
implicit hierarchy of evidence, with biological plausibility 
and mathematical models constituting the lowest evidence, 
followed by observational data. For many, this was sufficient 
to make the case for immediate treatment.

But those who considered observational data to be too 
uncertain and prone to confounding demanded a randomised 
clinical trial. They were concerned by the additional 
adherence demanded of patients who started treatment early 
in their HIV infection, the side effects primarily associated 
with earlier generations of antiretroviral drugs, the 
unfortunate experience of Concorde and the fluctuations of 
guideline recommendations in the absence of compelling 
evidence. There was also concern that the public health 
concern of the reduced infectiousness of people with HIV 
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was taking precedence over the uncertainty about the benefit 
of immediate treatment for the health of individuals with 
HIV. The publication of the START results resolved these 
points of contention.

Conclusion
There are no accepted criteria for resolving scientific debates 
with policy repercussions when the evidence is still being 
gathered. In contrast to the destructive and irrational debate 
on the cause of AIDS that took place in South Africa in the 
2000s, the protagonists on both sides of the when-to-start 
debate included leading experts in HIV science who could 
draw on substantial evidence to make their arguments. In the 
case of AIDS denialism, one side of the debate shunned the 
immense body of evidence, preferring conspiracy theories 
instead, whereas on the question of when-to-start, the science 
truly was in dispute (see1,47,48,49 for further discussion on this). 
Now that all the data, including the gold standard of medical 
science – a randomised controlled trial – support immediate 
treatment, continuing to advocate for delayed treatment on 
medical grounds would be irrational.
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4.2 Understanding the importance of pair-

matching in these models

The debate on the optimal point following HIV infection to begin treatment

exemplifies the role of modelling in policy debates, and allows for an expla-

nation on the role of pair-matching. Although the when-to-start debate long

preceded Granich et al. (2009), their article, cited over 1,600 times, brought

the question to the fore of public discussion. Yet it is an extremely simple

model. The model world consists of adults, without gender or age, either on

or not on ART, and with a reduced mortality rate and infectiousness if they

are on ART.

The transmission function works as follows: On each time step of the

model, additional people become infected as a function of the proportion

of people in the population who are infected and not on treatment and the

proportion of people who are infected and are on treatment. The greater the

latter proportion relative to infected people not on treatment, the lower the

proportion of new infections (or incidence). Heterogeneity is also accounted

for very simply: as a greater portion of the population becomes infected,

it is reasonable to assume the more saturated is the pool of people at risk.

Therefore a factor is included in the transmission function so that incidence

reduces as prevalence increases. See Figure 1.2 for details.

By contrast, in more complex macro models, such as Thembisa (John-

son, 2014), the population is divided into many more compartments (usually

based on age, gender and risk group) and each compartment has a transmis-

sion function, with higher risk groups having higher transmission rates. This
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accounts for heterogeneity in a more sophisticated way than Granich et al.

In microsimulations this can be taken further with agents representing

individual people being paired in partnerships. The risk of infection is sim-

ulated per partnership, or even per sexual act. The key challenge in these

microsimulations is how to pair agents into relationships. We could randomly

pair agents, but then that defeats the purpose of using a microsimulation in

the first place, because we are failing to account for heterogeneity. Alterna-

tively we could pair agents according to a distribution of relationships in the

population we’re modelling as in Emod (Klein, 2012), STDSIM (Hontelez

et al., 2013) and Johnson and Geffen (2016). A problem that then arises

is that pair-matching algorithms can be very slow. The technical computer

science work in this dissertation is to develop pair-matching algorithms that

are fast and reasonably approximate the distribution of sexual relationships

in the population being modelled.

4.2.1 Critique of additional complexity

In the article When to start antiretroviral treatment? A history and analy-

sis of a scientific controversy the criticisms we describe by Williams (2014)

— one of the authors of the Granich et al. model — of the STDSIM mi-

crosimulation by Hontelez et al. (2013) raises an important question about

the additional complexity introduced by complex models such as microsimu-

lations. Williams, among other criticisms, states that the authors have relied

on unrealistic assumptions about heterogeneity in sexual behaviour. Indeed,

little is understood about the distribution of sexual relationships and it is a
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valid criticism that over-defining that distribution in a model doesn’t add to

our knowledge of the epidemic. On the other hand, the Granich model goes

in the opposite direction, with its extremely simple assumptions of homoge-

neous sexual behaviour.

The question about what it makes sense for models to include needs to

be kept in mind when implementing pair-matching in a microsimulation. On

the one hand more fine-grained simulation is taking place that apparently

accounts for heterogeneous sexual behaviour, but on the other hand it should

be asked if this additional complexity is based on quality data about what is

actually happening in the real-world population that we are modelling.
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Chapter 5

Pair-matching Algorithms

5.1 Foreword

The articles in this chapter and the next constitute the original technical

work of this PhD thesis.

The following article, Efficient and effective pair-matching algorithms for

microsimulations, presents and analyses algorithms for matching agents into

pairs (Geffen and Scholz, 2017). Six pair-matching algorithms, conceived

and implemented by this author, are described and compared: Brute force,

Distribution counting, Cluster shuffle, Weighted shuffle, Random k and Ran-

dom. Cluster shuffle, Weighted shuffle, Distribution counting and Random k

pair-matching are novel. However, Brute force and Random pair-matching

are too obvious to be considered original, and are no doubt implemented

in other work without being named as such. The article in Chapter 6 im-

plements some of the algorithms in an actual microsimulation of a fictitious

STI.
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Chapter 2 described most of the important models of the South African

HIV epidemic. It differentiated between two types of models: determinis-

tic compartmental (or macrosimulation) versus agent-based models (or mi-

crosimulation). The former type of model divides the population into com-

partments and then uses differential equations to estimate outputs. By con-

trast in microsimulations, each individual in a population is represented by

an agent. The potential advantage of microsimulations is that they allow for

fine-grained modelling that allows us to capture much more heterogeneous

behaviour. For STIs, microsimulations provide the opportunity for much

more sophisticated modelling of individuals starting and ending sexual re-

lationships. However, it is difficult to do this in a way that captures the

distribution of the relationships in a population and does so speedily enough

to make the microsimulation practical. The following article presents algo-

rithms we have developed that aim to achieve this.

The algorithms are implemented in discrete microsimulations, There ap-

pears to be no barrier to implementing them in event-driven microsimulations

in continuous time, but this needs to be tested in future research.

The algorithms presented in the paper require a domain-specific func-

tion, called a distance function, that measures the suitability of two agents

for pairing. Although the distance functions implemented in the paper are

quite simple, they can in theory be made as complex as desired. They can

even account for a situation in which the agent attributes are multivariate

with complex covariance structures. But a practical barrier to this is that

the distance functions may then become too slow, rendering the model im-

practical beyond small numbers of agents.
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5.1.1 Reassessment of claim about Blossom V’s prac-

ticality for some simulations

Between the following article being accepted for publication and the sub-

mission of the article presented in Chapter 6, further research caused the

authors to tone down one of the (minor) claims made in the following arti-

cle. In this chapter’s article the authors state that the Blossom V algorithm

is not usually practical for microsimulations because it is too slow and not

stochastic.

In fact, the algorithm may be practical for some simulations. The au-

thors successfully executed it on a population of 100,000 agents in the article

presented in Chapter 6 (the mating pool on each time step was considerably

smaller than this, approximately 400 agents each day of the ten-year simu-

lation on average). It took about 50 minutes for a single simulation. 1 Also,

although the Blossom V algorithm is not stochastic, the selection of agents

for the mating pool is stochastic, and this may be sufficient.

5.1.2 Errata

Since the paper is published, errors detected post-publication are described

here:

Table 1 states “90% of males are men who have sex with men, 90% of

females are women who have sex with women”. It should instead state “90%

of males are men who have sex with women, 90% of females are women who

have sex with men”.

1This is far too slow however if we wish to run thousands of simulations in order to fit
parameters or do sensitivity analysis.
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Abstract:

Microsimulations and agent-based models across various disciplines need to match agents into relationships.
Some of these models need to repeatedly match di�erent pairs of agents, for example microsimulations of
sexually transmitted infection epidemics. We describe the requirements for pair-matching in these types of
microsimulations, and present several pair-matching algorithms: Brute force (BFPM), Random (RPM), Random
k (RKPM), Weighted shu�le (WSPM), Cluster shu�le (CSPM), and Distribution counting (DCPM). Using two mi-
crosimulations, we empirically compare the speeds, and pairing quality of these six algorithms. For models
which execute pair-matching many thousands or millions of times, BFPM is not usually a practical option be-
cause it is slow. On the other hand RPM is fast but chooses poor quality pairs. Nevertheless both algorithms
are used, sometimes implicitly, in many models. Here we use them as yardsticks for upper and lower bounds
for speed and quality. In these tests CSPM o�ers the best trade-o� of speed and e�ectiveness. In general, CSPM
is fast and produces stochastic, high quality pair-matches, which are o�en desirable characteristics for pair-
matching in discrete time step microsimulations. Moreover it is a simple algorithm that can be easily adapted
for the specific needs of a particular domain. However, for some models, RKPM or DCPM would be as fast as
CSPMwith matches of similar quality. We discuss the circumstances under which this would happen.

Keywords: Agent-Based Modelling, Pair-Matching, Partner Matching, Sexually Transmitted Infections, HIV

Introduction

1.1 Microsimulations and agent-based models (ABMs) are increasingly used across a broad area of disciplines, i.e.
biology (Gras et al. 2009), sociology (Macy et al. 2002), economics (Deissenberg et al. 2008) and epidemiology
(Gray et al. 2011). In many of these applications an artificial society of agents, usually representing humans or
animals, is created, and the agents need to be paired with each other to allow for interactions between them.

1.2 Zinn (2012) addresses some of the conceptual challenges of finding suitable pairs of agents, particularly with
respect to closed continuous ABMs. The author di�erentiates between stochastic versus stablematching rules,
discusses di�erent measures of compatibility between agents (which we call distance functions) and which
agents choose their partners and which only get chosen. While the paper provides a conceptual framework
of matching procedures, computational algorithmic aspects are le� out and only little research can be found
on this topic. Bou�ard et al. (2001) presents an algorithm for finding suitable pairs for marriage. However this
algorithm would be too slow for the repeated pair-matching required in many microsimulations of sexually
transmitted infections (STIs).

1.3 The identification of suitable pairs of agents for partnershipsmay be di�icult to compute e�iciently. If a simula-
tion does notmeasure the compatibility of two agents, i.e. it assumes that agents behave uniformly andmatch
randomly with one another, then it risks failing tomodel essential features that determine the outcomes being
studied.
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1.4 On the other hand if a model attempts tomeasure the compatibility of agents, so that it produces sets of agent
partnerships that very closely match the population being studied, it may become too computationally slow
to study large populations; it may even be too slow for small populations where agents seek new partners re-
peatedly. The choice of pair-matching algorithm therefore needs to consider the trade-o� between accuracy
and speed to ensure the feasibility of the microsimulation for the research question at hand. This is especially
true if the model is stochastic and needs to be run many times for the construction of confidence intervals or
sensitivity analyses.

1.5 Two algorithms are commonly used for pair-matching in microsimulations. One randomly matches agents in
a mating pool into pairs. While this does not usually yield good quality matches with respect to the actual
distribution of partnerships in the population being studied, it is fast: the time of the pair-matching procedure
is linear with the number of agents being matched.

1.6 The second algorithm is a brute force approach (using common computer science terminology, e.g. Levitin
(2011)). This algorithm compares each agent to every other unmatched agent in the mating pool, using a com-
patibility or distance function, in order to choose appropriate partnerships. While this method usually yields
good quality matches, it is slow, with execution time quadratic with the number of agents being matched.

1.7 The aim of our study is to present several alternative pair-matching algorithms formicrosimulations and ABMs,
which allow for a better trade-o� between good quality matches and computation time than the random and
brute-force methods. A�er the general problem statement and a description of general characteristics of pair-
matching algorithms, we provide a detailed description of the matching algorithms. As this paper focuses on
the computational features, we analyse the respective relative e�iciency and e�ectiveness of the algorithms
compared tobrute forceand randommatchingalgorithms foroneabstractmicrosimulation, andonemicrosim-
ulation that models some features of a natural population in the field of epidemiology.

1.8 We have provided open-source C++ implementations of the algorithms, although modellers will likely wish
to adapt them for their domains. We hope that these algorithms will lead to faster more accurate, easier-to-
implement microsimulations, especially, but not only, of STI epidemics.

Background

General problem statement

2.1 The typical structure of a discrete microsimulation or ABM is that the simulation is divided into time steps, and
in each time step events execute over all the agents. For example, see Algorithm 1.

Algorithm 1 Structure of a discrete microsimulation
1: for each time step do
2: for each event e do
3: for each agent a do
4: if e has to be applied to a then
5: Apply e to a
6: end if
7: end for
8: end for
9: end for

2.2 The practicability of a simulation is dependent on the e�iciency of the events. A particularly simple event is to
age each agent. Thismerely requires incrementing an age property for each agent. The execution time is linear
with the number of agents. We usually want the e�iciency class of events to be linear, or at worst linearithmic
(i.e. the execution time is proportional to n log n, where n is the number of agents being matched). An event
whose time e�iciency is quadratic (n2) with the number of agents being matched will slow simulations with
large numbers of agents to the point that itmay becomeunfeasible to generate confidence intervals or conduct
sensitivity testing.

2.3 Pair-matching represents a more complex event involving the properties of more than one agent and can be
stated formally as follows: We have a set of n agents eligible for pairing a1, a2...an. We have a distance func-
tion distance which takes two agents as its parameters such that if distance(a, b) < distance(a, c) then b is
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a more likely, compatible, suitable or appropriate match for a than c. (If it is possible that distance(a, b) =
distance(a, c) the modeller must decide on a tie-breaking mechanism.) A pair-matching solution is a set of
matches such that every agent is paired with exactly one other agent. This can be recast as a fully-connected
graph problem such that every vertex is an agent and every edge is a distance between two agents.

2.4 There exists for such a graph with n vertices multiple sets of distinct pair-matchings. One or more of these
is a minimum-distance — or perfect — set in that the sum of all the distances between the pairs is less than
or equal to every other pair-matching set. There are algorithms that find the minimum-distance set of pair-
matchings, such as Blossom V (Kolmogorov 2009; Cook & Rohe 1999). However, Blossom V su�ers from two
serious problems: it is far too slow for most microsimulations, and it is not stochastic — it always produces
the same set of pairs, unless there are multiple perfect pair-matching sets, in which case the algorithm could
be modified to produce a random tie-breaking mechanism. Usually, though, more stochasticism than this is
required. Nor is reproducing the expected value of a probabilistic distributionwith certainty usually a desirable
statistical attribute of a microsimulation.

2.5 Instead we are interested in pair-matching algorithms that approximate the underlying distribution, and do
so quickly. This paper presents several such pair-matching algorithms, some of them novel. They are tested,
compared and analysed, including against the Blossom V algorithm.

Characteristics of pair-matching algorithms

2.6 Pair-matching algorithmsmay be described and categorized in general by the following characteristics:

Distance function If agents are not matched randomly, a distance function must be defined. This function
indicates the compatibility of a pair of agents for a partnership based on the distribution of partnerships in the
population being modelled, as described in 2.3.

Exact vs approximate In some applications, agents are only paired if they are an exact match, i.e. for two
agents a and b, they are paired if and only if distance(a, b) equals a defined value. In other applications, only
an approximate match is necessary. In this paper the algorithms are compared using approximate matching
applications. Nevertheless, the algorithms can all be adapted to do either approximate or exact matching.

StochasticismStochasticism inpartner choice isusuallydesired inmicrosimulations, for example so thatmulti-
ple executionsof the simulationdi�er fromeachother. As agents areusually stored in anarraydata structure, or
similar, pair-matching algorithmswill process the array from front to back. If the agents that are processed first
aremore likely to find compatible partners than those processed last, as the pair-matching event is repeated in
subsequent time-steps, the partner selections will become increasingly biased. An easy way to avoid this ”stor-
age” bias is through the introduction of randomness by shu�ling agents using the techniquedescribed in Knuth
(1997, pp.142–146) and that is implemented inmostmodern programming language standard libraries. Further
randomness can be introduced if desired. For example, themaximumnumber of evaluated potential matching
candidates or the threshold of the value of the distance function for accepting partners may be stochastic.

E�ectivenessWecall analgorithm’s success at generatingmatches its e�ectiveness. Weevaluate this using two
measures. When exact matching is used, the first e�ectiveness measure is calculated as the proportion of the
agent population, who are supposed to be in relationships, that are actually in relationships a�er the algorithm
is executed across all agents. For approximatematching, e�ectiveness is themeanormedian distance between
all paired agents. The second e�ectivenessmeasure is defined as follows: For any agent awe can rank all other
agents in order of distance from a. Then the e�ectiveness is the mean or median rank of all agent partners.
Both measures are relative, if the best possible matching result is unknown (because it is too computationally
demanding to calculate).

Initialisation vs in-simulation All the pair-matching algorithms discussed here are intended for execution as
events during a simulation as in Algorithm 1. However, in some simulations, it is necessary to pair agents before
the simulation starts. An example of an algorithm to do this is discussed in Scholz et al. (2016).

Distance functions

2.7 Euclidean distance would be a convenient measure of the suitability of pairing two agents a and b withm ap-
propriately scaled properties a1, b1, a2, b2...am, bm. For multi-dimensional space, the equation for Euclidean
distance is:

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (am − bm)2
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Figure 1: Heterosexual pair-matching violates the Triangle Inequality and does not map to a Euclidean plane.
The two male agents, marked M, are closer on the Euclidean plane than the female agent, marked F, but if we are mod-
elling heterosexual pair-matching then the distance functionwill record the twomales as being further apart than the agent
marked F.

2.8 Algorithms exist that e�iciently but approximately find the nearest neighbour to a point in high-dimensional
Euclidean space (Indyk & Motwani 1998; Beis & Lowe 1997; Arya et al. 1998). It is unclear how easily these can
be adapted to microsimulations, but perhaps if we could map the properties of agents to Euclidean space, we
could use one of these algorithms (or a variation thereof) to find suitable partners.

2.9 Tomap thematchingproperties tometric space, ofwhichEuclidean space is oneexample, thedistance function
would have to satisfy the triangle inequality (Weisstein 2016). For agents a, b and c this is:

distance(a, b) + distance(b, c) ≥ distance(a, c)

2.10 In some simulations the agent properties violate the triangle inequality. An example is the primarily hetero-
sexual HIV epidemic in South Africa. Consider the agent properties we are interested in for measuring pairing
suitability:

• age

• sex

• desire for a new partnership at this time

• risk behaviour propensity (including whether or not the agent is a sex worker)

• relationship status (including whether or not the agent is married)

• location

2.11 The more similar two individuals the closer they are to each other in Euclidean space, but this is not the case
for heterosexual agents in an HIV epidemic: If two people share the same sex they are not suitable partners in
this model. See Figure 1 for a graphical depiction of how this violates the triangle inequality.

2.12 The problem is not confined to modelling heterosexual relationships. Even if we want to model only men who
have sex withmen (MSM) with respect to an STI, it would be di�icult to map our agents to Euclidean space. We
might want our microsimulation to make it less likely for married agents seeking a new partnership to partner
with other married agents, or with other agents currently in a relationship. When searching for a new rela-
tionship, we might want the distance to be great between otherwise well-matched agents who have been in a
partnership with each other previously. Wemight also want to extend ourmodel to account for people looking
for partners of di�erent age, wealth or education from themselves.

2.13 In our model’s set of agent properties, age, risk behaviour propensity and geographical location may be at-
tributes thatmapwell to Euclidean space; we could define our distance function so that themore similar these
are between agents, the more likely they are to form partnerships. However, sex for heterosexual agents does
not map to Euclidean space, and, depending on the model’s assumptions, neither might several other agent
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attributes. (While it might be argued that sexual orientation is a categorical variable, a distance function simply
returns a real number, and therefore has to represent incompatible categories of agents by calculating a very
high value for such pairs of agents.)

2.14 We call a model’s agent properties which domapwell to Euclidean space attractors, and attributes that do not
rejectors. Twoof thealgorithmswepresent (CSPMandWSPM)workby clusteringagents togetherbasedon their
attractors. Therefore clustering functions have to be defined bymodellers who use these algorithms. However,
when the rejectors dominate the distance function, the cluster function is less useful and the e�ectiveness of
these two algorithms degrades.

Pair-matching algorithms

2.15 Besides the abovementioned Brute force pair-matching (BFPM) and Random pair-matching (RPM) algorithms,
we describe the following four pair-matching algorithms.

• Random k pair-matching (RKPM)

• Weighted shu�le pair-matching (WSPM)

• Cluster shu�le pair-matching (CSPM)

• Distribution counting pair-matching (DCPM)

Brute force pair-matching (BFPM)

2.16 This algorithmworks as follows: For every agenta in a set of agents, it calculates thedistance toevery remaining
unpaired agent a�er a in the set. The agent bwith the smallest distance to a is marked as a’s partner (and vice-
versa).

2.17 This is a naive algorithm that is very e�ective. However, unless pair matching only needs to be executed a few
times, or on small populations, it is impractically slow—quadratic with the number of agents being paired. For
example to run one simulation of a subset of the South African population to model the HIV epidemic for five
years, we iterate over tens of thousands of agents daily or weekly, executing pair-matching on each iteration.
Numerous simulations need tobe run in order to build confidence intervals or to performsensitivity testing (see
for example Hontelez et al. (2013) and Johnson &Ge�en (2016)). The BFPM algorithm is usually too slow for this
purpose.

2.18 As BFPM, or variations thereof, is widely implemented in microsimulations and ABMs, we use it here as a refer-
ence against which to measure the e�ectiveness and speed of the other algorithms.

2.19 The pseudocode for BFPM is provided in Algorithm 2.

Algorithm 2 Brute force pair-matching (BFPM)

Parameters: Agents, an array of agents, with subscripts 0..n− 1, where n is the number of agents. If n is
uneven, one agent will remain unmatched.

1: function BRUTEFORCEMATCH(Agents)
2: shuffle(Agents) . So that the algorithm is stochastic
3: for each unmatched agent a in Agents do
4: best←∞
5: for each unmatched agent b after a in Agents do
6: d← distance(a, b)
7: if d < best then
8: best← d
9: bestPartner ← b
10: end if
11: end for
12: Make a and bestPartner partners
13: end for
14: end function
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Random pair-matching (RPM)

2.20 Many deterministic models that use di�erential equations to model population dynamics or epidemiology, as
well as simple microsimulations make the simplifying assumption that people are randomly paired with their
sexual partners. This corresponds to a randommatching algorithm using no distance function. Although this is
extremely fast, with execution speed linearwith the number of agents beingmatched, by ignoring the compati-
bility ofmatched agents itmay result in the simulation producing outputs that di�erwildly from the population
being modelled.

2.21 Aswith BFPM, this algorithm’s primary purpose is as a yardstick againstwhich tomeasure the other algorithms.
A good algorithmwill executemuch faster thanBFPMbut perhaps considerably slower thanRPM. The e�ective-
ness of a good algorithm should far exceed RPM. Algorithm 3 presents the pseudocode for this algorithm.

Algorithm 3 Random pair-matching (RPM)

Parameters: Agents, an array of agents, with subscripts 0..n − 1, where n is the number of agents. For
simplicity assume n is even.

1: function RANDOMMATCH(Agents)
2: shuffle(Agents)
3: for i ∈ 0, 2, 4.., n− 4, n− 2 do
4: makeAgents[i] andAgents[i+ 1] partners
5: end for
6: end function

Random k pair-matching (RKPM)

2.22 This algorithm is a small conceptual advance on RPM and BFPM (Pelillo 2014; Larose & Larose 2014). Instead of
only considering all agents followinga, the oneunder consideration (as inBFPM), ormatchingwith the adjacent
agent (as in RPM), we consider the k adjacent agents a�er a in the array of agents. We partner awith the agent
with the smallest distance. Assuming k is a constant (which it is in our implementation), the e�iciency of this
algorithm is linear with the number of agents.

2.23 The pseudocode for RKPM is provided in Algorithm 4.

Algorithm 4 Random k pair-matching (RKPM)

Parameters:
Agents, an array of agents, with subscripts 0..n − 1, where n is the number of agents. For simplicity
assume n is even.
k, the number of adjacent agents to consider when finding a suitable partner

1: function RANDOMKMATCH(Agents, k)
2: shuffle(Agents)
3: for each unmatched agent a in Agents do
4: best←∞
5: for each unmatched agent b in one of up to k positions in the array after a do
6: d← distance(a, b)
7: if d < best then
8: best← d
9: bestPartner ← b
10: end if
11: end for
12: Make a and bestPartner partners
13: end for
14: end function

2.24 Surprisingly, unlike RPM the e�ectiveness of this simple algorithm is quite good in our applications. In e�ect,
assumingn agents in themating pool, the algorithm randomly draws k elements without replacement from an
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ordered list of n elements, and selects l, the lowest of the k elements in the ordering. The mean position of l is
1

k+1 × n in the ordered list, and the median is 1− e−
ln(2)

k × n.

2.25 This means, for example, if we have k >= 100, then on average the partner chosen will be ranked in the top
one percent in suitability from the remaining available agents.

Weighted shu�le pair-matching (WSPM)

2.26 This algorithm is an extension of RKPM, except that instead of ordering the agents entirely randomly, thosewith
compatible pair-matching attributes are more likely to be clustered together. The algorithmworks as follows:

2.27 Agents are assigned a cluster value. Then the cluster value ismultiplied by auniform randomnumber—giving a
random value weighted towards the cluster of the agent — to introduce stochasticism into the algorithm. Then
the agents are sorted on this weighted value. Finally for each agent a, the agent with the smallest distance to a
in the k adjacent agents is selected.

2.28 To calculate the cluster value for each agent, we need a domain-specific clustering function. This would typ-
ically be based solely on the attractor attributes, or a subset thereof, of the distance function. Despite being
domain specific, a programmer without knowledge of the application can work out a cluster function solely by
examining thedistance function. However, it is likely thatwith greater domain knowledge, amore sophisticated
cluster function can be defined.

2.29 Algorithm 5 is an example of a simple cluster function using some of the attractor attributes described above.

Algorithm 5 Example of a cluster function
1: function CLUSTER(a) . a is an agent
2: return AGE_FACTOR ∗ a.age + ORIENTATION_FACTOR ∗ a.orientation +

RISK_FACTOR ∗ a.riskiness
3: end function

2.30 Algorithm 6 provides pseudocode for WSPM.

Algorithm 6Weighted shu�le matching (WSPM)
Parameters:
Agents, an array of agents, with subscripts 0..n − 1, where n is the number of agents. For simplicity
assume n is even.
k, the number of adjacent agents to consider when finding a suitable partner.
The function rand() returns a random number in the range [0..1).

1: functionWEIGHTEDSHUFFLEMATCH(Agents, k)
2: for each agent a inAgents do
3: a.weight← cluster(a) ∗ rand()
4: end for
5: sortAgents by weight
6: Execute lines 3 to 13 of RKPM (Algorithm 4).
7: end function

2.31 Assuming k is a constant, which it is in our implementation, then sorting has the slowest e�iciency of the steps
in this algorithm, linearithmic with the number of agents being matched. Therefore the e�iciency of the entire
algorithm is linearithmic with the number of agents.

Cluster shu�le pair-matching (CSPM)

2.32 This algorithm is a conceptual advance on WSPM. As with WSPM, it also extends RKPM and uses a cluster func-
tion. It works as follows:

2.33 The agents are sorted by the value returned by the cluster function (as opposed to a cluster weighted random
number as in WSPM). They are then divided into a user-specified number of clusters. Then each cluster is shuf-
fled to introduce stochasticism. (In contrast toWSPM, agents in the same cluster always remain relatively close
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to each other.) Finally, just as with WSPM and RKPM, it finds the best of k agents a�er the agent under consid-
eration.

2.34 Algorithm 7 provides the pseudocode for this algorithm.

Algorithm 7 Cluster shu�le pair-matching (CSPM)

Parameters:
Agents, an array of agents, with subscripts 0..n − 1, where n is the number of agents. For simplicity
assume n is even.
c, the number of clusters to divide the agents into. For simplicity assume c divides into n.
k, the number of adjacent agents to consider when finding a suitable partner.

1: function CLUSTERSHUFFLEMATCH(Agents, c, k)
2: for each agent, a, inAgents do
3: a.weight← cluster(a)
4: end for
5: sortAgents by weight
6: clusterSize← n/c
7: i← 0
8: for each cluster do
9: first← i ∗ clusterSize
10: last← first+ clusterSize
11: shu�leAgents[first...last− 1] . to introduce stochasticism
12: i← i+ 1
13: end for
14: Execute lines 3 to 13 of RKPM (Algorithm listing 4).
15: end function

2.35 AswithWSPM, the e�iciency of the entire algorithm is linearithmicwith the number of agents, because the only
step that is not linear is the sort, which is linearithmic.

Distribution counting pair-matching (DCPM)

2.36 This algorithm is influenced by sorting by counting (Knuth 1998, p 75-79), also called distribution counting sort
(Levitin 2011, p 283). It is only useful if the agents can be distributed into buckets that exactly or approximately
correspond to the properties of the partners with whom they need to bematched. Therefore a domain specific
function that places a given agent into one of a set of predefined buckets must be defined.

2.37 Thealgorithmworksas follows: Pointers to the shu�ledagents are copied intoanarray. The copy is sortedusing
distribution counting which makes use of the bucket function (Levitin 2011, p 283). This sorting has linear e�i-
ciency—as opposed to the linearithmic e�iciency of standard sorting algorithms—because it uses information
about the underlying distribution of the objects provided by the bucket function.

2.38 A table with the same number of entries as there are buckets is then constructed so that given the “desired”
partner properties of an agent, a, we can directly access the first agent with those characteristics in the copied
agents array. We then linearly examine up to k agents, selecting the partner with the closest distance. The
algorithm uses a defined getBucket function which assigns an agent, or its “desired” partner to a bucket.

2.39 To understand how agents are assigned to buckets consider the agent properties of age, sex, and sexual ori-
entation. If an agent representing a female “desires” a 25-year-old male, then it is assigned to the bucket of
agents looking for 25-year-old heterosexual males. When looking for a partner, it will search up to k agents in
this bucket and choose the one with the lowest distance to it. If the model’s agents are either male or female,
heterosexual or homosexual, and any age from 16 to 50, then there are 2 ∗ 2 ∗ 35 = 140 buckets.

2.40 One caveat: Because age is a flexible characteristic (e.g. if the desired partner of a is 25 it does not mean that
if b is a 24-year-old, it should have no prospect of partnership with a), the algorithm can be adapted so that it
searches for a partner in several adjacent buckets, which di�er by one or more years of age.

2.41 Assuming k is a constant, which it is in our implementation, the algorithm’s execution time is linear with the
number of agents being matched.
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2.42 The pseudocode for the unadapted algorithm is provided in Algorithm 8.

Algorithm 8 Distribution counting pair-matching (DCPM)

Parameters: Agents, an array of 0..n− 1 pointers to agents,
buckets, the number of buckets the agents can be distributed into
k, the number of agents in a bucket to search for a partner.
There is also a domain-specific getBucket function which assigns an agent to its correct bucket in the
range [0..buckets− 1].

1: function DISTRIBUTIONCOUNTINGMATCH(Agents, buckets, k)
2: shuffle(Agents)
3: copyAgents← Agents
4: Sort copyAgents using sort by counting and the getBucket function
5: for i = 0 to buckets− 1 do
6: Table[i].start← 0
7: Table[i].entries← 0
8: end for
9: for each a inAgents do
10: bucket← getBucket(a)
11: table[bucket].entries← table[bucket].entries+ 1
12: end for
13: lastIndex← 0
14: for i = 0 to buckets− 1 do
15: table[i].start← lastIndex
16: lastIndex← lastIndex+ table[i].entries
17: end for
18: for each unmatched agent a inAgents do
19: bucket← getBucket(a′s desired partner)
20: startIndex← table[bucket].start
21: endIndex← startIndex+ table[bucket].entries
22: lastIndex← min(startIndex+ k, endIndex)
23: Find agent b that returns the smallest distance(a, b) in copyAgents[startIndex..lastIndex− 1]
24: Make a and b partners
25: swap(copyAgents[index of agent b], copyAgents[lastIndex− 1]
26: table[bucket].entries← table[bucket].entries− 1
27: end for
28: end function

Methods

Simulation experiments

General set-up

3.1 To test and analyze the algorithms, two di�erent simulations have been programmed that use the structure
depicted by Algorithm 1. The twomodels di�er in the properties of the agents and the distance functions. While
the first (ATTRACTREJECT) is somewhat abstract and intended to explore the relative e�ect of attractor and
rejector attributes, the second (STIMOD) resembles a more concrete application in the field of epidemiology
taken from research on the HIV-epidemic in South Africa (Eaton et al. 2012; Hontelez et al. 2013; Johnson &
Ge�en 2016).

3.2 The purpose of these simulations is solely to test and compare the algorithms; the simulations are not intended
to model the natural world. They also di�er from simulations of the natural world in that every agent on every
iteration (or time step) is in the mating pool, so that comparisons of the algorithms remain as fair as possible.
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3.3 Both experiments were coded in C++ (ISO C++11) and compiled with the GNU C++ compiler version 4.8.4. Pro-
cessing of results was conducted using R. The experiments were executed on amachinewith an Intel Xeonwith
20 cores running at 2.3 GHZ and with 32GB RAM, under the GNU/Linux operating system. The source code is
available on Github at https://github.com/nathangeffen/pairmatchingalgorithms.

ATTRACTREJECT experiment

3.4 In the first microsimulation, which we call ATTRACTREJECT, every agent has two properties: attractor and rejec-
tor. When executing the simulation, the user sets two constants, ATTRACTOR_FACTOR and REJECTOR_FACTOR,
to values between 0 and 1, such that they add to 1. The distance function is simple and the pseudocode for it is
provided in Algorithm 9.

Algorithm 9 Example of a distance function

Parameters a and b are agents with properties attractor and rejector, both in the range [0, 1].
ATTRACTOR_FACTOR and REJECTOR_FACTOR are user defined positive constants whose sum is 1.

1: function DISTANCE(a, b)
2: attraction← ATTRACTOR_FACTOR ∗ |a.attractor − b.attractor|
3: rejection = REJECTOR_FACTOR ∗ |a.rejector − (1− b.rejector)|
4: return attraction+ rejection
5: end function

3.5 This distance function captures the issueof attractors and rejectors that a�ect thedi�iculty of thepair-matching
problemwhen the triangle inequality is violated. The closer to 1 ATTRACTOR_FACTOR is set and the closer to 0
REJECTOR_FACTOR is set, the more clustered agents suitable for pairing will be. Conversely, the closer to 0 AT-
TRACTOR_FACTOR, the less useful clustering is, because agents that are clustered together will not be suitable
matches.

STIMOD experiment

3.6 The ATTRACTREJECTmodel is not intuitive. The model in the second microsimulation (STIMOD), is intended to
be more so. It is loosely based on previously published microsimulations (Johnson & Ge�en 2016; Hontelez
et al. 2013) that model the South African HIV epidemic, but much simpler than these. The pair matching char-
acteristics of the agents are typical for a model of STIs: a list of previous partners, age, sex, sexual orientation
and a variable that represents at howmuch risk of infection their sexual behaviour places them. We have also
included an additional attractor factor in the distance function: location, described by x and y co-ordinates on
a Euclidean plane, representing how far agents live from one another. An overview of the characteristics of the
starting population can be found in Table 1.

3.7 We emphasise that the model and distance function used here are solely for comparing the algorithms. “Pro-
duction” standard models of the natural world would need to bemore complex.

3.8 Aswith the ATTRACTREJECTmodel there are user defined constants that specify theweighting of each of these
factors in the final distance calculation. The pseudocode for this distant function is provided in Algorithm 10.
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Variable Range Amount that distance function increases
by (higher scores are poorer matches)

Age Uniformly distributed over the ages 15 to
25

AGE_FACTOR x the di�erence in age

Sex 50%male/50% female If mismatch on sexual orientation, add
ORIENTATION_FACTOR x di�erence in
sexual orientation

(which is always 1 on amismatch)Sexual orientation 90% of males are men who have sex with
men, 90% of females are women who
have sex with women

Risk index Uniformly distributed over [0-1] RISK_FACTOR x the absolute di�erence
between two agents

Location Uniformly distributed over a Euclidean
plane with co-ordinates (0-10,0-10)

0.1 x the Euclidean distance (DIS-
TANCE_FACTOR)

Table 1: Agent attributes in STIMODmicrosimulation

Algorithm 10 Distance function used in STIMOD

Parameters a and b are agents.
Upper case names are user defined constants.
The higher PREV_PARTNER_FACTOR the lower the
probability of previous sexual partners rematching.
The higher AGE_FACTOR, ORIENTATION_FACTOR and RISK_FACTOR the
lower the probability of agents of di�erent age, incompatible
sexual orientation and risk behaviour are tomatch.
The heterosexual property is 1 if the agent is heterosexual else 0.
1: function DISTANCE(a, b)
2: if a and b have been partners before then
3: prev_partner ← PREV _PARTNER_FACTOR
4: else
5: prev_partner ← 0
6: end if
7: age_diff ← AGE_FACTOR ∗ |a.date_of_birth− b.date_of_birth|
8: if a.sex = b.sex then
9: sex_diff ← ORIENTATION_FACTOR ∗ (a.heterosexual + b.heterosexual)
10: else
11: sex_diff ← ORIENTATION_FACTOR ∗ ((1.0−a.heterosexual)+(1.0− b.heterosexual))
12: end if
13: risk_diff ← RISK_FACTOR ∗ |a.riskiness− b.riskiness|
14: distance_diff = EuclideanDistance(ax, ay, bx, by) ∗DISTANCE_FACTOR
15: return prev_partner + age_diff + sex_diff + risk_diff
16: end function

3.9 Inall tests,wesetPREV_PARTNER_FACTORto500,ORIENTATION_FACTORto 100, AGE_FACTORto 1, RISK_FACTOR
to 1, and DISTANCE_FACTOR to 0.1 (see Table 2). Agents with similar ages, riskiness and location aremore likely
to partner, so these are attractors. Since 90% of agents are set to heterosexual, having the same sex is usually
a rejector. Two agents who have been partners are also very likely to reject each other.
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E�ectiveness and e�iciencymeasures

Measuring speed

3.10 To compare the speed of the algorithms, we ran 10 simulations of the STIMODmodel for each algorithm using
20,000 agents. Each simulation was executed for 20 iterations (i.e. time steps). In other words, every algorithm
was executed 200 times.

3.11 Weare also interested in howalgorithmsperformas thenumber of agents increases, or as the size ofk increases
for the algorithms that depend on this parameter. For the CSPM algorithm we are also interested in how the
number of clusters a�ects speed. Since this algorithm achieved the best balance of e�ectiveness and speed in
our tests, we ran tests on it varying the number of agents up to 10million. We also ran tests varying k from 50
to 500, and tests varying c from 50 to 500.

Measuring e�ectiveness

3.12 We ran the following tests to compare the e�ectiveness of the algorithms in the STIMODmodel:

• STIMOD with 5,000 agents, simulated 36 times with di�erent random number seeds, with each simula-
tion having 20 iterations. In other words every algorithm executes 720 times. Algorithms were compared
against Blossom V for e�ectiveness.

• STIMOD with 20,000 agents, simulated 36 times, with each simulation having 20 iterations.

• Using CSPMwith 20,000 agents, we varied k, the number of adjacent agents to consider, from 50 to 1,000
stepping up by 50 on each execution of the microsimulation, while holding the number of clusters con-
stant, to see the e�ect on themean ranking anddistance. We then similarly varied the number of clusters,
c, initially setting it to 1 and then from 50 to 1,000 stepping up by 50 on each execution of themicrosimu-
lation, while holding k constant at 200.

3.13 We ran the following tests to compare the e�ectiveness of the algorithms in the ATTRACTREJECTmodel:

• ATTRACTREJECT microsimulation with 5,000 agents, with each simulation executed 20 times with dif-
ferent random seeds with the following combinations of ATTRACTOR_FACTOR and REJECTOR_FACTOR
respectively:

– 0.0 and 1.0
– 0.25 and 0.75

– 0.5 and 0.5
– 0.75 and 0.25
– 1.0 and 0.0

• ATTRACTREJECT microsimulation with 20,000 agents, with each simulation executed 20 times with the
above combinations of ATTRACTOR_FACTOR and REJECTOR_FACTOR respectively.

Best-possible result

3.14 Asmentioned above, themean distance andmean rankingmeasures can only be used for the relative compar-
ison of the di�erent algorithms. Furthermore, the set of partnerships with the minimum distance possible is
not known a priori. This can be calculated using the Blossom V algorithm. A prerequisite for the application
of Blossom V is the creation of a fully connected undirected graph where the vertices represent the agents and
the edges represent the distances between them, a process with a quadratic speed increase with the number
of agents being matched. The Blossom V algorithm itself is not stochastic and is very slow, with speed worse
than cubic with the number of agents being matched. It is therefore only used for reference purposes in the
simulations of 5,000 agents.
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Mean of mean distances

3.15 In the firstmeasurewe calculatemeandistance of all the pairings for a single execution of the pairing algorithm.
Since every algorithm is executed multiple times, we calculate the mean of these means. The measure of ef-
fectiveness for an algorithm is then themean of its mean distances divided by the mean of the mean distances
calculated by Blossom V.

3.16 However, when we use 20,000 agents Blossom V is too slow to use. On state of the art consumer hardware (an
Intel Xeon running 20 i7 cores) a single execution of BlossomVover 20,000 agents, including creating the graph,
takes over 2 hours — and we have had to run hundreds of simulations. Instead, e�ectiveness of the algorithm
with the lowest mean of mean distances (usually BFPM) is assigned the value of 1. The e�ectiveness of the
remaining algorithms is the ratio of their mean of mean distances to this algorithm’s mean of mean distances.

Mean of mean rankings

3.17 In the secondmeasure for every agentwe calculate the distance to every other agent, creating a fully connected
undirected graph. For each agent, a, we can then order every other agent by its suitability as a partner to a. The
ranking of a pairing for a given agent is its partner’s place in this ordering. If an agent chooses its ideal partner
the rank is 0. If it chooses the least desirable partner, the rank is n − 2, where n is the number of agents being
matched. We can then calculate the mean ranking over all the agents being matched for a single execution of
an algorithm. We compare the algorithms by calculating the mean of its mean rankings over many executions.
The lower the mean of mean ranking the better the algorithm has done.

3.18 E�ectiveness is calculated analogously to the way it is done for the mean of mean distances measurement.
Likewise with 5,000 agents e�ectiveness is establishedwith Blossom V (although Blossom V guarantees lowest
mean distance and not lowest mean ranking, in practice it generally returns the lowest ranking). With 20,000
agents, the method of assigning 1 to the e�ectiveness of the best algorithm is used.

Results

Speed tests

4.1 Table 2a lists the results of the speed tests. The fastest algorithm, RPM, has an average speed more than 5,700
times faster than the slowest algorithm, BFPM. The former completes the entire pair-matching event (i.e. match
every agent for an iteration) in less than a millisecond on average, while the latter takes over three seconds
on average. CSPM, RKPM, WSPM and DCPM have a mean speed between 27 and 39 milliseconds, and are all
approximately an order of twomagnitudes faster than BFPM.

Algorithm Mean speed Speedup
(ms) (BFPM ref)

RPM 0.6 5,715
RKPM 27 115
CSPM 29 109
WSPM 29 109
DCPM 39 81
BFPM 3,143 1

(a) Comparison of algorithms by speed. Each
algorithm was executed 20 times per simula-
tion, and each simulation was run 10 times.
Each simulation consisted of 20,000 agents.
For algorithms that take a k parameter, k was
set to 200. For CSPM, cwas set to 100.

Number of agents Mean speed
(ms)

20,000 29
50,000 53
100,000 109
500,000 608
1,000,000 1,263
5,000,000 6,842

(b) Speed of CSPM with increase in
agents. The algorithm was executed
once per simulation, and each simula-
tion was run 10 times. The k parameter
was set to 200, and cwas set to 100.

k Mean speed
(ms)

50 301
100 410
200 606
300 808
400 1,006
500 1,230

(c) Change of speed of CSPM
as k increases. The algorithm
was executed once per simula-
tion, and each simulation was
run 10 times. 500,000 agents
were used.

Table 2: Speed comparisons of algorithms
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Distance Rank Speed

Algorithm Mean SD Median [IQR] E�ectiv. Mean SD Median [IQR] E�ect. Time

Blossom V 2.7 14.3 0.32 [0.27;0.41] 1.00 40 225 1.7 [0;5.4] 1.00 6.5 minutes
BFPM 2.8 19.2 0.32 [0.26;0.44] 1.03 63 328 1.6 [0.0;6.7] 1.6 345 ms
CSPM 3.3 17.1 0.46 [0.34;0.84] 1.21 138 507 15.6 [3.1;74.9] 3.5 15 ms
WSPM 3.4 18.3 0.79 [0.48;1.38] 1.25 180 361 64.7 [20.1;187.6] 4.6 14 ms
RKPM 3.4 18.3 0.79 [0.48;1.39] 1.25 181 362 65.5 [20.4;188.7] 4.6 14 ms
DCPM 3.8 20.5 0.57 [0.37;0.98] 1.40 125 347 29.7 [9.4;91.2] 3.2 17 ms
RPM 105.6 93.1 104.17 [4.99;203.29] 38.6 2501 1444 2503.4 [1251.7;3752.2] 63 0.3 ms

Table 3: Distance and rank results on 5,000 agents for STIMOD. Themean, standard deviation, median, IQR and
time columns are themeans of these values over all executions. The e�ectiveness is the ratio of the algorithm’s
mean distance to Blossom V’s.

4.2 As the number of iterations increases, thereby creating more previous partners, the mean speed of the algo-
rithms (except RPM) increases slightly, because the distance calculation has to search for more previous part-
ners. For example BFPM increased from a mean of over 2 seconds on the first iteration of a simulation to 4.6
seconds on the 20th, and CSPM increased from 19 to 43 milliseconds.

4.3 The speed of the CSPM algorithm increased linearly with the number of agents, as Table 2b indicates. This
is expected because even though our analysis above shows that its speed increases linearithmically with the
number of agents beingmatched, this is due to its sorting operation, which is a small contributor to the overall
time of the algorithmwith these small numbers of agents.

4.4 Modifying the number of clusters also shows a linear e�ect on the speed of the algorithm. This is expected
because modifying the value of c in Algorithm 7 increases the number of iterations of the for loop at line 8
although it correspondingly decreases the number of agents to be shu�led at line 11.

4.5 The speed of the CSPM algorithm also increased linearly with the size of k, as Table 2c indicates. This too is
expected as increasing k proportionately increases the number of comparisonsmade for each agent awith the
following agents in the array.

E�ectiveness tests

4.6 Table 3 shows the results of the comparison of the algorithms on the STIMODmicrosimulation for 5,000 agents.
With this few agents, it is still feasible to identify the theoretically lowestmean distance using the Blossom V al-
gorithm. In these tests CSPM, followed by DCPM algorithm, o�ers the best trade-o� of speed and e�ectiveness.
Nevertheless RKPM andWSPM have similar e�ectiveness and speeds.

4.7 Table 4 shows thedistanceand ranking results respectively of theATTRACTREJECTmicrosimulation. In contrast
to the STIMODmicrosimulation the DCPM algorithm is entirely unsuited to this distance function and performs
poorly, although much better than RPM. The remaining algorithms improve their relative e�ectiveness as AT-
TRACTOR_FACTOR rises to 1 and REJECTOR_FACTOR declines to 0.

4.8 Interestingly CSPM exceeds the e�ectiveness of BFPM for higher values of ATTRACTOR_FACTOR. A possible ex-
planation for this is that agents at the front of the array processed by BFPM will be well-matched, but agents
nearer the back of the array have fewer partner options that give low distance measurements. CSPM, on the
other hand, by first clustering, ensures the agents at the back of the array are nearer likely partners.

4.9 This raises a key weakness of BFPM, CSPM, WSPM, RKPM and possibly even DCPM: the distribution of their
matches varies greatly in quality between the front and back of their arrays, and there is room for further re-
search as to how they can be adapted to have a more equal distribution of quality.

4.10 Consider Table 6 which shows the mean median ranking, mean interquartile range (IQR) and mean standard
deviation across the ATTRACTREJECT simulations with ATTRACTOR_FACTOR set to 0.5. The median ranking
for BFPM is much lower than the mean ranking shown in Table 4. It is even better than the median ranking of
Blossom V. In fact at least 75% of the rankings are better than the mean ranking, implying that some very poor
rankings toward thebackof the agent arraybringdown themean ranking. This skewedquality is also aproblem
for CSPMbut, as shown by its smaller standard deviation andmedian ranking closer to itsmean ranking, not as
profoundly as it is for BFPM, WSPM, RKPM and DCPM (see also Figure 2).
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Figure 2: Distribution of rankings for single execution of each algorithm
This figure shows the partner rank for a single run of each algorithm (except RPM). Notice how Blossom V’s poorly ranked
agents are distributed uniformly across the array, but the poorly ranked agents for the other algorithms are distributed
towards the back of the array.

Attractor: 0 0.25 0.5 0.75 1
Rejector: 1 0.75 0.5 0.25 0

Algorithm Mean (ratio to best)

Di
st
an
ce

Blossom V 0.006 (1) 0.009 (1) 0.010 (1) 0.008 (1) 0.0002 (1)
BFPM 0.008 (1.3) 0.015 (1.6) 0.016 (1.6) 0.012 (1.6) 0.0007 (3.5)
CSPM 0.016 (2.6) 0.018 (1.9) 0.018 (1.8) 0.015 (1.9) 0.0004 (2.0)
WSPM 0.016 (2.6) 0.032 (3.3) 0.033 (3.4) 0.026 (3.3) 0.0025 (12.2)
RKPM 0.015 (2.5) 0.036 (3.8) 0.037 (3.9) 0.030 (3.8) 0.0032 (15.8)
DCPM 0.018 (2.9) 0.041 (4.3) 0.044 (4.6) 0.039 (4.9) 0.0135 (65.9)
RPM 0.334 (53.6) 0.334 (35.3) 0.334 (34.3) 0.334 (42.3) 0.3337 (1,633)

Ra
nk

Blossom V 61 (1) 8 (1) 5 (1) 4 (1) 1 (1)
BFPM 63 (1.1) 47 (6.1) 37 (7) 25 (5.8) 5 (5.4)
CSPM 148 (2.4) 39 (5.1) 22 (4) 15 (3.5) 3 (2.9)
WSPM 147 (2.4) 82 (10.5) 64 (12) 52 (12.2) 23 (23.3)
RKPM 139 (2.3) 93 (12) 76 (14) 60 (14.2) 30 (30.5)
DCPM 161 (2.7) 129 (16.5) 112 (21) 112 (26.4) 127 (127.4)
RPM 2501 (41) 2502 (321) 2502 (472) 2501 (588) 2499 (2499)

Table 4: Distance and rank results for 5,000 agents for ATTRACTREJECT. Ranks and ratios are rounded.

4.11 Table 4 also shows that when REJECTOR_FACTOR is much larger than ATTRACTOR_FACTOR, then as expected
RKPM is as e�ective as CSPM, DCPM andWSPM.

4.12 Whenthenumberofagents in theSTIMODmodel is increased to20,000wedonot seeanysubstantial changes in
e�ectiveness across the algorithms compared towhen 5,000 agents are used, except that CSPM clearly outper-
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Distance Rank Speed

Algorithm Mean SD Median [IQR] E�ect. Mean SD Median [IQR] E�ect. Time

BFPM 1.7 14.9 0.2 [0.2;0.3] 1 130 971 1.5 [0;6] 1 7 seconds
CSPM 2.0 15.3 0.3 [0.2;0.4] 1.2 276 1,315 14.6 [3.6;62.7] 2.1 51 ms
DCPM 2.7 15.2 0.6 [0.4;1.1] 1.6 520 1,207 141 [44.6;448.9] 4 61 ms
RKPM 2.8 13.6 0.8 [0.5;1.5] 1.7 865 1,504 312 [96.3;910] 6.7 47 ms
WSPM 2.8 13.7 0.8 [0.5;1.5] 1.7 869 1,508 312.6 [95.6;916.9] 6.7 51 ms
RPM 104.7 91.3 104.08 [5;203] 63 10,000 5,773 10,001 [5,002;14,999] 77 2 ms

Table 5: Distance and rank results for 20,000 agents for STIMOD.

ATTRACTREJECT STIMOD

Algorithm Median rank [IQR] SD Rankings
Mean Best Worst SD

Blossom V 1.4 [0;5.1] 17 – – – –
BFPM 1 [0;5.3] 225 130 43 254 51
CSPM 7.4 [2.7;16.1] 14 276 66 537 107
WSPM 22.9 [7.2;62.3] 165 869 354 1684 276
RKPM 36 [13.8;80] 190 865 345 1673 275
DCPM 44 [15.5;112] 250 520 283 957 113
RPM 2,502 [1,259;3,746] 1,440 10,000 9,797 10,192 56

Table 6: Selected statistics for 5,000 agents for ATTRACTREJECT with attractor and rejector set to 0.5, and
volatility of the results as demonstrated for STIMOD with 20,000 agents

Figure 3: Finding the ideal number of neighbours to minimize distance and rank (displayed on the respective
y-axes).

forms DCPMon bothmean distance andmean ranking. Whether this is due to something qualitatively di�erent
happening as the number of agents increases or due to random fluctuations of the results is unclear. The results
from simulation to simulation are indeed volatile as Table 6 shows, with BFPM being themost stable algorithm
followed by CSPM.

4.13 We also attempted to find the ideal values of k, the number of neighbours, and c, the number of clusters for
the CSPM algorithm. As Figure 3 shows, the relationship between the value of k and e�ectiveness is unclear for
this application. For k = 50, the lowest value of k we tried, themean of themean rankings over 40 simulations
was 370. For k = 1, 000, the highest value of k we used, themean ranking was 167, the lowest, but as the graph
shows for all values in between, there is no discernible pattern. Onother test runswe got di�erent resultswhere
k = 1000 was not the best and k = 50 was not the worst. Results are domain dependent, and modellers who
use CSPMwill have to experiment to find the best value of k.

4.14 We are unsure what the relationship between c and e�ectiveness is as Figure 4 shows. For c = 1 (essentially an
array sorted on the cluster function), themean of themean rankings is poor: 791. For all values of c tested from
50 to 1,000 we were unable to identify a discernable di�erence in e�ectiveness across the simulations. As with
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Figure 4: Finding the ideal number of clusters to minimize distance and rank (displayed on the respective y-
axes).

the ideal value of kmodellers who use CSPMwill have to experiment to find the best value of c.

Discussion

5.1 We have used two microsimulations to show how four algorithms CSPM, DCPM, WSPM and RKPM can match
agents much better than chance (RPM) yet much faster than the BFPM algorithm and Blossom V—which finds
a perfect set of pairs without desired stochasticism.

5.2 CSPM performed consistently well across our tests. For example in the STIMOD microsimulation it only had a
mean ranking four timesworse thanBlossomV,whereas randommatchingwasmore than61 timesworse. When
the number of agents was increased to 20,000, a number beyondwhich it is practical, at least on our hardware,
to check e�ectiveness against Blossom V, CSPM’s mean ranking was only half as poor as that of BFPM, more
than double that of the next best algorithm DCPM and 45 times better than randommatching. Yet it executed
on average in just over 50 milliseconds versus 7 seconds for BFPM.

5.3 However, while CSPM has done well here, it is likely that there are other applications where the other fast ap-
proximation algorithms, DCPM, WSPM and RKPM, will be equally good or better choices. We are currently ex-
ploring an application where DCPM appears to be better. In this application, the agents fall neatly into a pre-
specified set of buckets, which is ideal for DCPM.

5.4 As the tests with the ATTRACTREJECTmicrosimulation show, when rejector attributes of agents dominate, the
RKPM algorithmmight as well be used: it is faster than CSPM, trivial to implement andwill produce results that
are at least as good as CSPM because clustering achieves nothing in such pair-matching scenarios.

5.5 CSPM requires the user to decide the values of two parameters, k and c. We cannot currently o�er good heuris-
tics for choosing these values other than to suggest preliminary empirical tests for the specificmicrosimulation
being used.

5.6 We have not yet found a situation where WSPM outperforms all of CSPM, DCPM and RKPM. It is possible that
it is simply an inferior algorithm, but it is not inconceivable that a useful microsimulation application exists in
which WSPMmakes sense as the pair-matching algorithm.

5.7 One serious limitation of BFPM, CSPM, RKPM andWSPM, at least in the applications considered here, is that the
quality of their matches are skewed to the front of the array of agents that they process. A�er shu�ling, agents
near the front of the array will tend to be matched with partners with smaller distances than the agents at the
back of the array. This is reflected in the fact that themean of themedian rankings— and even the 75%quartile
— is smaller than the mean of the mean rankings in the simulations where we examined this. Further research
is required to improve one or more of CSPM, RKPM or WSPM to reduce this skewedmatching.

5.8 While we are interested in microsimulations that simulate sexual pairing, it is possible there are uses of these
algorithms in othermicrosimulationswhich require agent interaction. However, for such applications the algo-
rithms would need to be evaluated to see if they produce results that compare well to observed data.

5.9 Further research is also needed to see how useful an algorithm such as CSPM is in the context of modelling sex-
ually transmitted infections. For example, the most cited model of the South African HIV epidemic is a deter-
ministic equation-based one that implicitly assumes people are randomlymatched (Granich et al. 2009). Other
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deterministic models of the epidemic make more complex assumptions, e.g. by dividing the population into a
small number of sexual groups (Johnson 2014). It would be interesting to compare the outputs of a full-fledged
microsimulation of an STI epidemic using randommatching versus CSPM. If the results of such a microsimula-
tion are similar irrespective of the pair-matching algorithm then the speed of randommatchingmeans it is the
better choice. If however, the results are vastly di�erent, it has implications for how we model, not only using
agents, but also with deterministic di�erential-equation models.
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Chapter 6

Comparison of pair-matching

algorithms in a model

6.1 Foreword

The following article, The influence of design decisions on incidence in mi-

crosimulations of sexually transmitted infections (currently under peer re-

view), extends the work of the previous chapter by comparing the pair-

matching algorithms in a microsimulation of a fictitious STI.

We analysed how incidence changed when different pair-matching algo-

rithms were used, as well as the effect of the algorithms on the speed of the

microsimulation.

We also varied various aspects of the model, such as population size, risk

of infection, and heterogeneity of sexual behaviour, to see how these in con-

junction with the pair-matching algorithms affected incidence. Surprisingly,

we found that for pair-matching algorithms that account for heterogeneity,
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incidence decreased with a rise in population size. The more infectious the

STI the more profound this effect.

This is counter-intuitive and also somewhat concerning. If this finding

is not simply an artefact of our methodology, i.e. it is an effect present in

the natural world, it suggests that agent-based epidemic models may behave

differently under different population sizes. 1 Ideally then, the population

size should be set to the size of the population being studied. However if that

results in a computationally-infeasible model, sensitivity analysis should be

conducted to investigate the impact of the assumed population size on the

conclusions.

This finding was the impetus for an afterword to this chapter that con-

siders the question: Does STI modelling increase our knowledge?

1A modellers the author has communicated with stated that it is commonly known
by most modellers who work with stochastic agent-based models that results differ with
different population sizes.
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Abstract

Objective: Microsimulations are increasingly used to estimate the
prevalence of sexually transmitted infections (STIs). These models
consist of agents that represent a sexually active population. Match-
ing agents into sexual relationships is computationally intensive and
presents modellers with difficult design decisions: how to select which
partnerships between agents break up, which agents enter a mating
pool, and how to pair agents in the mating pool. The aim of this study
was to analyse the effect of these design decision on STI prevalence.

Methods: We compared two strategies for selecting which agents
enter a daily mating pool and which agent partnerships break up:
random selection in which agents are treated homogenously versus
selection based on data from a large German longitudinal data set that
accounts for sex, sexual orientation and age heterogeneity. We also
coupled each of these strategies with one of several recently described
algorithms for pairing agents and compared their speed and outcomes.
Additional design considerations were also considered, such as the
number of agents used in the model, increasing heterogeneity of agents’
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sexual behaviour, and the proportion of relationships that are casual
sex encounters.

Results: Approaches that account for agent heterogeneity esti-
mated lower prevalence than less sophisticated approaches that treat
agents homogeneously. Also, in simulations that accounted for hetero-
geneous pairing of agents, as the risk of infection increased, incidence
declined as the number of agents increased. Our algorithms facilitate
the execution of thousands of simulations with large numbers of agents
quickly.

Conclusion: Fast pair-matching algorithms provide a practical way
for microsimulation modellers to account for sexual behaviour hetero-
geneity. For STIs with high infection rates modellers may need to
experiment with different population sizes.

Introduction

Microsimulations or agent-based models (ABMs) are increasingly used to
simulate incidence and prevalence of STIs as well as to identify the costs
and benefits of strategies to contain them. Diseases modelled using this ap-
proach include HIV [4, 7, 13], syphilis [12], gonorrhoea [9], HPV [11],
herpes, chlamydia and trichomoniasis [16]. The popularity of such stochas-
tic microsimulations may lie in the easier implementation of complex, het-
erogeneous sexual behaviour when compared to traditional equation-based
(compartmental) models.

However, there are many design decisions that must be made for mi-
crosimulations, with respect to sexual behaviour modelling. For example,
which agents should be considered for relationships (i.e. placed in a mating
pool), how agents in the mating pool should be paired with one another,
and which relationships should terminate (break up). These decisions may
be informed by agent characteristics, such as age, sex and sexual orientation,
but also by individual variations from the average behaviour, e.g. sexual risk
taking and propensity to remain in relationships. 1

It is well understood how the design decisions for differential equation
models affect outcomes [19], including for specific diseases [15], but much

1This has similarities with regression analysis for longitudinal data: Some variation
of the dependent variable can be explained by observable, group-level characteristics like
age, sex, and sexual orientation., but adding a random effect for unobservable, individual
characteristics may explain additional variation.
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less so for STI microsimulations. The aim of our research is to fill this gap
and to understand how the above-mentioned design decisions affect estimates
of disease incidence and prevalence. Specifically we want to analyse the
effect of different algorithms for matching and unmatching agents and their
interaction with (I) the probability of transmission, (II) the size of the model
population and (III) heterogeneity in agent behavior.

To do this we built a microsimulation model with behaviour based on
data drawn from the German population, and that simulates the spread of
a generic, fictitious STI in a fixed cohort. To isolate the effects of different
approaches to partner matching and breakups, and to ensure that prevalence
is always cumulative incidence, the STI has no healing rate, births, deaths
or migration. The prevalence estimated at the end of our simulations is a
function of the risk of infection in serodiscordant partnerships, the number
of partnerships over time, and the distribution of partnerships over time.
The last of these is especially affected by how the mating pool is chosen,
the algorithm that pairs agents in the mating pool, and how breakups are
modelled. Moreover the number and distribution of partnerships can also be
affected by the likelihood of casual sex encounters (modelled as partnerships
lasting one day in our simulations), and the heterogeneity of agent sexual
behaviour.2

The microsimulation had to be fast and capable of handling large numbers
of agents in order to carry out this research. Appendix 1 therefore discusses
the implementation details of the microsimulation.

2Note on terminology: We use microsimulation and agent based model synonymously.
A single execution of a microsimulation model, usually but not always 10 years in our
experiments, is called a simulation or run. A time-step is a single iteration of a simulation,
which happens to always be one day in the experiments described here. A mating pool is
a subset of agents on each day that must be paired into relationships. We use partner-
ship, relationship and pair synonymously. The terms breakup and unmatch describe the
termination of a relationship.
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Materials and methods

General structure of the model

We implemented a discrete time-step microsimulation which has the structure
of Algorithm 1. 3

Users can specify the number of agents, the time period for which to
run the simulation, and the daily risk of infection for a seronegative agent
in a serodiscordant partnership. This risk is specified based on the sex of
the uninfected agent and whether it is an opposite- or same-sex relationship.
The time step of the model is one day in all the experiments described in
this paper. On each day a series of events is executed on all or a subset of
agents. These events, executed in the following order, are:

Age Each agent becomes a day older.

Infect Each uninfected agent in a relationship with an infected one may
become infected.

Breakup All the relationships are traversed and some of them are termi-
nated.

Select A subset of unpaired agents is selected to enter a mating pool. If
there’s an odd number of agents in the mating pool, a randomly chosen
one is removed.

Match Agents in the mating pool are matched with each other.

An exception to this is when the model is running in stabilisation mode.
This is sometimes done at the beginning of a simulation to stabilise the
number of daily breakups and pairings. During this phase neither the age
nor infect events are executed. 4

3The code is available under the GNU General Public License Version 3. It is written
in C++ and available on Github at: https://github.com/nathangeffen/faststi.

4It is often hard in microsimulations to start the model with roughly the same number
of breakups and pairings in each time step. The initial number of relationships in the
model may be unknown or may need to be determined empirically. So, for example, a
simulation may be initialised to have no pairs, or too few pairs, to start with. During the
stabilisation period the number of pairings increases on each time step, until, hopefully,
the simulation reaches a stage where the pairings and breakups roughly match on each
time step.
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Algorithm 1 Structure of a discrete microsimulation from [10]

1: for each time step do
2: for each event e do
3: for each agent a do
4: if e has to be applied to a then
5: Apply e to a
6: end if
7: end for
8: end for
9: end for

Each agent has a sex, sexual orientation and age which can be used to
identify the corresponding characteristics of its preferred partner. An agent’s
sex and age determines its daily risk of entering the mating pool if it is single,
or breaking up if it is in a relationship.

Population characteristics and agent behavior

All singles agents were initialized to between 12 and 50 years old, proportion-
ate to the German population. The vast majority of agents in partnerships
were initialised to between 12 and 50. 5

The behavior of the agents includes probabilities for breakups, entering
the mating pool for long-term relationships and casual sex encounters. Casual
sex encounters last one time step, which corresponds to one day. Only agents
not currently in a relationship can enter a casual relationship, a limitation
of our model. To model heterogeneous versus homogeneous behavior, two
different strategies, called RANDOM and DATA, were implemented.

• The RANDOM strategy contains no heterogeneous behavior as it ran-
domly selects a set of partnerships to break up and a set of agents to
enter the mating pool. On average the same number of agents break
up that enter the mating pool each day.

• The DATA strategy estimates daily, group-level (i.e., age- and sex-
specific) probabilities for breakups, partnership formation and casual

5The initialization routine sometimes creates agents outside this age range to be part-
ners of agents in the 12 to 50 age range.
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sex contacts from The German Family Panel (PAIRFAM) [22, 14].
This longitudinal dataset provides information about the complete re-
lationship history of the study participants before the beginning of the
survey as well as during the survey period. For the latter, informa-
tion about the frequency of sexual intercourse is provided for the three
months preceeding the interview date of each wave of the survey. To
determine the probabilities of breakups and entering a new long-term
relationship, the beginnings and ends of partnerships were extracted
for each study participant for all the relationships and these data were
summarised for all study participants by each age year. The probabil-
ities were then calculated by dividing the number of breakups by the
number of relationships at each age and the number of new relation-
ships by the number of single persons at each age. To estimate the
probability of casual sex contacts the number of sexual intercourses in
the three months before the survey were converted to daily probabili-
ties for people who indicated that they had not been in a relationship
during that period. When calculating the risk of a breakup, the sum
of the agents’ breakup probabilities are averaged.

As men-who-have-sex-with-men (MSM) or women-who-have-sex-with-
women (WSW) are not represented well in the data set, the probabil-
ities have been estimated irrespective of sexual orientation. The esti-
mates of the age-specific model parameters can be found in Appendix
2. Agents older than the highest age — 50 years — for which data is
available, are treated the same as 50-year-olds.

By default the DATA strategy models group-level heterogeneity: differ-
ences in sexual behaviour by sex and age. The implementation is as follows:
Consider how an agent enters the mating pool (i.e. the Select event). A uni-
form random number between 0 and 1 is generated. If the agent’s probability,
p, of entering the mating pool, calculated based on sex and age, is less than
this number, the agent enters the mating pool. Analogous mechanisms are
used for determining whether the agent will have a casual relationship, and
whether a relationship breaks up (in this case the mean of the probabilities
of the two agents is used).

To additionally model unobservable, individual-level heterogeneity, p is
multiplied by a factor with normal distribution of mean 1 and standard
deviation 0.3. This factor is set individually for each agent at the beginning of
the simulation and does not change over time. There are actually three such
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factors: one for entering the mating pool in search of a casual sex relationship,
one for entering the mating pool for a non-casual sex relationship, and one
for breaking up, thereby generating a wide variety of individual behaviour.
However, except for one set of experiments, this individual-level heterogeneity
is deactivated.

While some of the parameters chosen to do these simulations are arbitrary
(such as the standard deviation of 0.3 in the above paragraph), our aim is
proof of concept. Modelling specific diseases will require choosing appropriate
parameters, ideally informed by data.

Matching procedures and algorithms

By default the simulation matches all agents in the mating pool. 6 The
matching algorithms have been described and their performances analysed
in [10]. They depend on the existence of a distance function that measures
the suitability of two agents for matching based on sex, sexual orientation
and age according to the distribution of relationships in the population. The
smaller the distance the more suitable are the agents for matching. All but
one of the algorithms attempt to minimise the sum of the distances of all
matches.

Using distance to measure the suitability of a match has advantages: (1)
the algorithms can be kept generic with domain specific details confined to
the distance function, (2) category mismatches (such as agents with different
sexual orientations) can be dealt with by the distance function returning
very large values rendering such matches unlikely or even impossible if the
penalization is higher than a maximal distance threshold for matching, and
(3) it provides a measurement for comparing how closely algorithms estimate
the underlying distribution. Algorithm 2 provides the distance function we
used.

Two algorithms serve as upper and lower boundaries of the quality of
matches. Random-pair matching (RPM), in which agents in the mating pool
are paired randomly, sets the lower limit on quality. The average distance
between paired agents in the mating pool that the other algorithms generate
should be much smaller than that of RPM.

On the other end of the scale, the Blossom algorithm, first described by
[8], finds the minimum sum of the distances of pairs of vertices in a graph.

6If the number of agents in the market is odd, one is randomly removed.
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Algorithm 2 Distance function used in simulations

Parameters:
a, b: agents between whom to measure distance
Return value: real number that determines how likely a part-
nership is between a and b according to the distribution of
partnerships in the population being studied.
0 is a good match, while 50 or more is a poor one.
A modification in some simulations we ran was to remove the
previous partnership penalty.

1: function distance(a, b)
2: ageProb← lookup probability of matching a with b based on ages.
3: agePenalty ← (1− ageProb) ∗ 50
4: if mismatch on sex based on sexual orientation then
5: orientationPenalty ← 50
6: end if
7: if a and b have been partners previously then
8: prevPenalty ← 50
9: end if

10: Return agePenalty + orientationPenalty + PrevPenalty
11: end function
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We use it by first generating a fully connected undirected graph in which each
vertex represents an agent in the mating pool and each edge represents the
distance between two agents. The Blossom algorithm finds the theoretically
closest set of pairs to the distribution of relationships in the population being
studied within the constraints of (1) our methodology that uses a distance
function to assess the suitability of a relationship, and (2) the quality of the
data on those relationships.

The problem however with Blossom is that it is impractically slow when
there are a large number of agents in the mating pool, even when using a
highly optimised recent implementation called Blossom V [18]. The time
to create the graph increases quadratically with the number of agents in the
mating pool, and the time for the Blossom V algorithm increases approx-
imately cubicly with the number of agents in the mating pool. Generally,
algorithms in a simulation whose execution time increases more than lin-
earithmically (n log n) with the number of agents are impractical if modellers
wish to do sensitivity analysis, calibrate parameters, or build stochastic error
(or confidence) intervals (see Appendix 1). Furthermore it is not a stochastic
algorithm which is often a desired feature of pair-matching.

Between the high and low precision of Blossom and RPM respectively are
algorithms that approximate the minimum sum of distances:

• Random-K Pair-Matching (RKPM) is similar to RPM. For each agent
a in the mating pool that still needs to be matched, it examines up
to k adjacent neighbouring agents in the mating pool — where k is a
user-defined constant positive integer that is usually much smaller than
the number of agents in the mating pool — and matches a with the
agent with the lowest distance to it. RPM is essentially RKPM with
k = 1.

• Brute-force pair matching (BFPM) is similar to RKPM except that k is
set to a value equal to or greater than the maximum number of agents
in the mating pool. This means that for each agent a that still needs to
be matched, it will be partnered with the remaining unmatched agent
that has the shortest distance to it.

• Cluster Shuffle Pair-Matching (CSPM) relies on the existence of a clus-
ter function as described by [10]. It sorts the agents by the value
returned by the cluster function. The sorted agents are divided into a
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user-specified number of clusters. Each cluster is then shuffled to intro-
duce stochasticism. Next, as with RKPM, for each unmatched agent
a, it examines the k adjacent neighbouring agents in the mating pool,
choosing the one with the lowest distance to a. Since it is more complex
than the above two algorithms, pseudocode for the CSPM algorithm is
presented in Algorithm 3.

[10] discuss the selection of values of k in the CSPM and RKPM algo-
rithms, and the number of clusters in the CSPM algorithm. In this work
we varied k between 30 and 300, and we varied the number of clusters be-
tween 10 and 100, depending on the number of agents in the simulation’s
population.

In summary, a simulation therefore has a breakup and mating pool strat-
egy (DATA vs RANDOM) coupled with a pair-matching algorithm (Blossom
vs BFPM vs CSPM vs RKPM vs RPM). 7 The DATA strategy coupled with
Blossom, BFPM, CSPM or RKPM accounts for the heterogeneity of agents,
while the RANDOM strategy coupled with RPM treats all agents homoge-
neously. DATA coupled with RPM, and RANDOM coupled with Blossom,
BFPM, CSPM or RKPM represent compromises between treating agents
heterogeneously and homogeneously.

Accounting for group-level heterogeneity makes matches more represen-
tative of the population being studied, and prevents the model from over-
estimating the spread of the STI. However, all the algorithms generate at
least some poor matches, i.e. matching agents across vastly different age
groups or with differing sexual orientations. These “mismatches”, provided
they are not too frequent, actually assist the simulation by ensuring the STIs
eventually cross into different subgroups. It is possible to set the model to
ignore poor matches, but this comes with severe disadvantages: (a) the num-
ber of matches, especially with the RANDOM strategy or RPM algorithm,
would be too few, and (b) we would in essence have several entirely indepen-
dent STIs in subgroups such as as MSM and men who have sex with women
(MSW) having no effect on each other, which is not realistic and defeats the
purpose of using a microsimulation as opposed to an equation-based model
with multiple compartments.

7We use “strategy” to describe the Select and Breakup events, and “algorithm” for
the Match event so as to keep RANDOM and DATA differentiated from Blossom, BFPM,
CSPM, RKPM and RPM in the reader’s mind.
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Algorithm 3 Cluster shuffle pair-matching (CSPM)

Parameters:
Agents, an array of agents, with subscripts 0..n − 1, where n is the
number of agents. For simplicity assume n is even.
c, the number of clusters to divide the agents into. For simplicity
assume c divides into n.
k, the number of adjacent agents to consider when finding a
suitable partner.

1: function clusterShuffleMatch(Agents, c, k)
2: for each agent, a, in Agents do
3: a.weight← cluster(a)
4: end for
5: sort Agents by weight
6: clusterSize← n/c
7: i← 0
8: for each cluster do
9: first← i ∗ clusterSize

10: last← first + clusterSize
11: shuffle Agents[first...last− 1] . to introduce stochasticism
12: i← i + 1
13: end for
14: for each unmatched agent a in Agents do
15: best←∞
16: for each unmatched agent b in one of up to k positions

in the array after a do
17: d← distance(a, b)
18: if d < best then
19: best← d
20: bestPartner ← b
21: end if
22: end for
23: Make a and bestPartner partners
24: end for
25: end function

11



Simulation set-up

General set-up

Our aim is to show the qualitative effects of design decisions on prevalence.
Hence, the results presented here should be seen as illustrative; their precise
impact will be a function of the particular disease, setting and time being
modelled.

In these experiments, the group of MSM between the ages of 15 and 20
are initiated to an infected state in the initial population. The generic STI
spreads out from this group across the population. This results in about 1 in
1,000 agents being infected in the initial population. (We also re-ran several
simulations which, instead, distributed the initial infections across various
demographic groups. There was no qualitative difference in the results.)

Experiment set-ups

To determine the effect of the different pair-matching algorithms on preva-
lence under different risk of transmission scenarios (research question I), we
ran the algorithms in simulations of 20,000 and one million agents for ten
years with a time step of one day. It was only feasible to execute the Blossom
algorithm with 20,000 agents as it is simply too slow on a population of 1
million agents. For this experiment we chose different transmission proba-
bility scenarios (low, medium and high risk of infection as given in Table 1).
Since the model is stochastic, we generally repeated each simulation 30 times
to build mean final prevalence and stochastic error intervals.

A second experiment was set up to further analyse the effect of the differ-
ent algorithms in combination with various different population sizes, ranging
from from 10,000 to 1 million agents, answering research question II.

To analyse the effect of agent heterogeneity a two-step experiment was
conducted (research question III). First, the effect of group-level heterogene-
ity was analysed by comparing the RANDOM and DATA strategy for agent
behavior. To stabilise the number of daily breakups and mating pool entrants
in the DATA strategy, the stabilisation period was set to 60 days (i.e. no
ageing or infections occur in this period). To avoid bias in our comparison of
strategies, the stabilisation period was also run with the RANDOM strategy.

12



Risk Scenario
Low Medium High

Male Female Male Female Male Female

Male 0.002 0.001 0.02 0.01 0.2 0.1
Female 0.002 0.001 0.02 0.01 0.2 0.1

Table 1: Daily risk of infection for sero-negative agent in sero-discordant
relationship

Relevance to various STIs

Table 2 summarises estimated transmission probabilities for various STIs.
These data suggest our findings are particularly relevant to models of HPV
and gonorrhea where transmission risk is very high. However, even the trans-
mission risks of chlamydia, HIV and syphilis may be high enough to render
microsimulations of these infections sensitive to the number of agents.

An alternative explanation is that the effect of declining prevalence with
increasing number of agents is a consequence of the distance-based method-
ology to do pair-matching that accounts for heterogeneous sexual behaviour.
This would mean what we are seeing is merely an artefact of a computer
algorithm, and that this is not how STIs work in the real-world. While we
cannot rule out this possibility, at present we do not see why this should be
the case.

Results

Effect of pair matching algorithms and transmission prob-
ability

Table 3 shows the results of the first experiment. In the low-risk scenario,
there was no significant difference in prevalence by algorithm, irrespective
of whether a small (20,000) or large (1 million) number of agents was used.
But as the risk increased RKPM, CSPM, BFPM and Blossom showed a trend
towards lower prevalence compared to RPM, and this trend was significant
for simulations with 1 million agents. Moreover, all the algorithms, except
RPM, calculated lower prevalence with a higher number of agents. The
higher the risk of transmission the more sensitive the final prevalence was to

13



STI Unit Tranmission probability Comment Source

HIV
act 0.014 [95%CI 0.002;0.025] URAI

[2]partner 0.404 [95%CI 0.060;0.749] URAI
partner 0.217 [95%CI 0.160;0.429] UIAI

Syphilis
act 0.014 UAI [12]
partner 0.627 [1]

HPV
act 0.400 (range 0.050–1.000) Simulated [6]
partner 0.270 [95%CI 0.210;0.350] MtoF [5]
partner 0.310 [95%CI 0.240;0.400] FtoM [5]

Gonorrhea
day 0.150/0.600 (steady/casual) MtoF

[20]
day 0.063/0.250 (steady/casual) FtoM

Chlamydia
day 0.039/0.154 (steady/casual) MtoF

[20]
day 0.305/0.122 (steady/casual) FtoM

Table 2: Probabilities of infection for different STIs. (URAI = Unprotected,
receptive anal intercourse; UIAI = Unprotected, insertive anal intercourse;
MtoF = male to female transmission; FtoM = female to male transmission)

the number of agents in the simulation. Also, the stochastic error intervals
were narrower for 1 million versus 20,000 agents for all algorithms.

Except for RPM, all the pair-matching algorithms in the high-risk sce-
nario — and to a lesser extent with the medium-risk scenario — resulted in
lower prevalence in the population with 1 million agents. By contrast, RPM
generated the same prevalence, irrespective of the population size.

Blossom is too slow to run with 1 million agents, but with 100,000 agents
the mean final prevalence over 12 runs was 42%, compared to 47.7% with
20,000 agents (see Table 4).

Effect of population size

To follow up the different results for the different population sizes, we ran
further simulations in the high-transmission risk scenario for 10,000, 50,000
and 100,000 agents for all algorithms, and 300,000 and 600,000 agents for
all algorithms except Blossom. As figure 1 shows, the simulations reveal a
pattern of lower prevalence after 10 years for a higher number of agents and
for the more complex algorithms.
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Infection risk scenario
N Algorithm Low Medium High

20
,0

00

RPM 0.3% [0.2;0.4] 1.1% [0.7;1.8] 50.8% [47.9;52.0]
RKPM 0.3% [0.2;0.4] 1.1% [0.8;1.5] 48.9% [46.5;51.6]
BFPM 0.3% [0.2;0.4] 1.0% [0.6;1.4] 49.3% [47.7;51.4]
CSPM 0.4% [0.2;0.5] 1.0% [0.5;1.5] 48.2% [45.3;49.8]

BLOSSOM 0.3% [0.2;0.4] 1.0% [0.8;1.4] 47.7% [46.5;48.9]

1,
00

0,
00

0

RPM 0.3% [0.3;0.3] 1.1% [1.0;1.1] 51.1% [50.9;51.3]
RKPM 0.3% [0.3;0.3] 0.8% [0.8;0.8] 46.2% [46.0;46.5]
BFPM 0.3% [0.2;0.3] 0.5% [0.4;0.5] 43.8% [43.4;44.4]
CSPM 0.3% [0.3;0.3] 0.8% [0.7;0.8] 37.7% [36.3;39.2]

Blossom NA NA NA

Table 3: Prevalence after 10 years of low, medium and high infection risk
scenarios for pair-matching algorithms, sorted by prevalence of high risk sce-
nario. Each entry in the Low, Medium and High columns is the mean and
95% stochastic error interval of 30 runs.

Population CSPM Blossom

10,000 47.9% 48.7%
50,000 45.5% 44.3%

100,000 43.9% 42.0%

Table 4: Comparison of prevalence for CSPM against Blossom for three
different population sizes. Each entry in the CSPM and Blossom columns is
the mean of 12 runs.
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Figure 1: Disease prevalence by population
Mean disease prevalence after 10 years of 30 simulation runs for different
population sizes of 10,000, to 600,000 agents.

We also examined the behavior of the CSPM algorithm for different pop-
ulation sizes (10,000, 20,000, 50,000, 100,000, 500,000 and 1 million) to ex-
plore if the effect of decreasing prevalence with increasing number of agents
tapers off. Figure 2 depicts this visually, showing that reduced prevalence is
much greater moving from 100,000 to 500,000 agents, than from 500,000 to
1 million agents.

Running the medium-risk scenario for long enough demonstrated that
the effect of declining prevalence as the number of agents increases that we
saw with the high risk scenario was still present, but took longer to be as
noticeable. Average final prevalence for 10,000 agents for a 100 years using
CSPM was 81.7% [95%CI: 65.4;90.2 over 200 runs] for 10,000 agents versus
74.1% [95%CI 73.2;74.9 over 16 runs] for 1 million agents.
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Figure 2: DATA/CSPM simulations for different population sizes.
DATA/CSPM simulations run for ten years (3,650 days) on 20,000, 300,000,
500,000 and 1 million agents. The lower prevalence with higher number of
agents appears to be a consequence of the longer time that the STI takes to
begin growing rapidly in its early stage.

Heterogeneity of agents entering the mating pool and
breaking up

Effect of group-level heterogeneity

We used a similar methodology to compare the DATA and RANDOM strate-
gies (using only CSPM and RPM as the pair-matching algorithms). The daily
number of breakups and agents entering the mating pool in the RANDOM
strategy was set to closely match (less than 0.2% difference) the daily average
for the DATA strategy. The results are presented in Table 5.

The DATA strategy coupled with CSPM resulted in the lowest estimates
of prevalence in all risk scenarios, followed by RANDOM coupled with CSPM.
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The approach that treats agents entirely homogeneously, RANDOM coupled
with RPM, estimated the highest prevalence.

A further finding, one that’s expected, is that in simulations using the
DATA strategy and non-random pair-matching algorithms sub-groups of
agents at higher risk (e.g. MSM or younger adults) have a relatively higher
prevalence, and lower risk agents, such as older adults have relatively lower
prevalence than random approaches. For example if we set the initial infec-
tion rates uniformly to 1% across the population, the final prevalence in a
10-year simulation using DATA strategy coupled with CSPM shows much
higher prevalence at younger, higher risk age groups, and lower prevalence
at older age groups. With a RANDOM strategy coupled with RPM, the
distribution across age groups is more uniform.
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Infection risk scenario

Low Medium High

D
A

T
A

C
S

P
M 1,000,000 0.3% [0.3;0.3] 0.8% [0.7;0.8] 37.7% [36.3;39.2]

20,000 0.4% [0.2;0.5] 1.0% [0.5;1.5] 48.2% [45.3;49.8]

R
A

N
D

O
M

C
S

P
M 1,000,000 0.9% [0.8;0.9] 39.0% [37.8;40.2] 81.7% [78.3;88.1]

20,000 3.2% [2.1;4.0] 100% [99.9;100] 100% [100;100]

R
P

M 1,000,000 3.5% [2.9;3.9] 100% [100;100] 100% [100;100]
20,000 3.4% [1.3;4.8] 100% [100;100] 100% [100;100]

Table 5: Prevalence after 10 years of low, medium and high infection risk
scenarios for breakup and mating pool strategies, sorted by prevalence of
high risk scenario. Each entry in the Low, Mean and High columns is the
mean and 95% stochastic error interval of 30 runs.

Effect of individual-level heterogeneity

To test individual-level heterogeneity we ran 30 simulations each with DATA
coupled with CSPM for 10,000, 50,000, 100,000, and 500,000 agents over 10
years with the high risk scenario with individual-level heterogeneity switched
on and then switched off. The results are presented in Table 6. There were
no significant differences in mean final prevalence. Stochastic error intervals
were also roughly the same width.
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Increasing heterogeneity from group- to individual-level in this way and
to this extent does not appear to affect overall prevalence. However, we do
not rule out the possibility that a more in-depth analysis may revise this
finding.

Agents Group Individual

10,000 48.5% [45.8;51.0] 47.8% [42.2;51.9]
50,000 45.9% [44.5;47.4] 46.3% [44.4;48.1]

100,000 43.9% [41.6;45.5] 44.4% [43.1;45.8]
500,000 38.6% [37.5;39.7] 40.2% [38.5;41.9]

Table 6: Mean prevalence and 95% stochastic error interval over 30 runs
comparing group- (age, sex and sexual orientation) versus individual-level
heterogeneity (age, sex and sexual orientation modified by factors set for
each agent).

Effects of other design decisions

We explored several other issues that may effect incidence and prevalence
estimates.

Changing the number of partnerships

In the default data set we used, the average number of partners per agent
per year was 2.9. 98% of these are casual interactions. To see the effect
of reducing partnerships across the model, for the DATA strategy coupled
with CSPM, we compared the effect on prevalence of reducing the casual
partnerships by 50%, 75% and 90%.

Table 7 presents the results of these simulations, showing that even af-
ter massively reducing the partnerships the prevalence still declines with an
increase in the number of agents for the medium- and high-risk scenarios.
However, the effect becomes less pronounced as the number of partnerships
declines.
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20
,0

00

50 0.4% [0.2;0.5] 0.7% [0.4;1.1] 29% [24.1;32.8]
25 0.3% [0.2;0.4] 0.6% [0.4;0.8] 6.1% [3.8;8.1]
10 0.3% [0.2;0.4] 0.5% [0.3;0.7] 1.1% [0.6;1.6]

1,
00

0,
00

0 50 0.3% [0.3;0.3] 0.5% [0.5;0.6] 16.7% [16.1;17.7]
25 0.3% [0.3;0.3] 0.5% [0.4;0.5] 2.8% [2.6;3]
10 0.3% [0.3;0.3] 0.4% [0.4;0.4] 0.8% [0.8;0.9]

Table 7: Results of simulations with reduced number of casual partnerships.
Each entry in the Low, Medium and High is the mean and 95% stochastic
error interval over 30 runs.

Discouraging previous partnerships

A dilemma we had was how to deal with a potential new partnership between
agents who had previously been partners. We implemented two variations of
the distance function, one that keeps track of all partnerships and penalises
potential pairings between agents who have previously been in a relationship,
and one that does not keep track of partnerships at all. We found no material
difference in results using these two methods.

There are practical implementation consequences of this finding. Our
largest simulations (40 million agents, see Appendix 1) use a large amount
of memory. The number of simulations we could run in parallel was limited
by the available memory on our machine. The largest data structure by
far in our simulations, despite extensive optimisation, is the one that keeps
track of previous partnerships. With the finding that penalising previous
partnerships made no difference to the results, this data structure could be
disabled on large simulations, allowing more simulations to be run in parallel.

Discussion

Our experiments found the following:

• Random mating of agents in an STI microsimulation leads to higher
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infection incidence. This is unsurprising and a consequence of not ac-
counting for heterogeneous sexual behaviour.

With less randomness in pair-matching, the STI is more confined to
subgroups that have riskier sexual behaviour profiles. While when
mating and breaking up randomly (i.e. ignoring heterogeneity), the
infection spreads uniformly through the population.

• Stochastic error intervals narrow as the number of agents in the simu-
lation population increases.

• The incidence and prevalence that microsimulations using sophisticated
pair-matching algorithms estimate are sensitive to the number of agents
in the model. As the risk of infection for the sero-negative partner in
a sero-discordant partnership increases, or as the frequency of part-
nership formation and breakups in the population increases, the more
sensitive to the number of agents the model becomes.

• CSPM is a pair-matching algorithm that (1) appears to produce results
comparable to the Blossom algorithm (which optimally approximates
the distribution of partnerships in a mating pool), (2) is practical to
use in microsimulations with very large numbers of agents, and (3) is
practical to use when many thousands of simulations need to be run in
a reasonable amount of time.

Effect of population size

The finding that incidence declines as population increases when heterogene-
ity is accounted for is surprising.

This does not appear to be explained by the increasing quality of matches
as the mating pool increased. The average distance between the agents in
partnerships in the algorithms is approximately 14, 20.5, 26.5, 29.5 and 61
for Blossom, BFPM, CSPM, RKPM and RPM respectively (higher scores
mean worse matches). These values do not change much as the number of
agents increases. In fact, CSPM has a slightly lower average score for 20,000
agents than 1 million agents. If the larger mating pools resulted in better
quality matches, we would expect the average distance to decrease. Nor is
it explained by the number of partnerships, which are proportional to the
population size.
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Figure 2 depicts what is occurring. During the early stages of the epidemic
incidence is lower for a longer period of time, resulting in lower prevalence
at any given time in the ten year period of the simulation. When we started
simulations in an already mature epidemic (e.g. 10% prevalence), the effect
of prevalence being lower with higher numbers of agents disappeared.

A possible explanation for what is happening is that as the number of
agents decreases, an infection occurring in a relatively low-risk subgroup of
agents (e.g. WSW aged between 45 and 50 years old) has a disproportionately
greater effect on the number of infections that will subsequently occur in
that subgroup. For example, if there are only 10 WSW aged 45 to 50 in a
simulation and one of them, via a poor match or stochastic variation, becomes
infected, then 10% of the subgroup is immediately infected. However if in a
much bigger population there are 100 agents in this subgroup, then only 1%
of this low-risk subgroup is infected. On consequent time-steps, the risk of
prevalence increasing substantially in this subgroup is much higher for the
smaller population. This is particularly the case for Blossom by virtue of the
fact that it generally makes better matches than the other algorithms. For
CSPM the effect may be due to it clustering agents that are more likely to
be paired; even poor matches will be in neighbouring or nearby clusters, and
partnering within clusters is accentuated as the population grows.

A similar explanation suggested to the authors is that the greater assor-
tativity — the propensity with which agents are more likely to be matched
with agents similar to themselves — associated with the non-random pair-
matching algorithms is affected by population size. Perhaps this creates net-
works of agents who by change are more isolated from the other agents. Con-
sequently, while infections may spread rapidly in some of these sub-networks,
they don’t easily cross into the main network of agents. Alternately, in some
of these sub-networks, infections may never seed. Both of these possibilities
may result in lower prevalence.

These explanations are currently fuzzy and insufficiently compelling as
they stand. Further research is needed to understand this phenomenon prop-
erly and offer an explanation with confidence.

The heterogeneity-dilemma

Our results raise a dilemma for STI microsimulation modellers. The advan-
tage of microsimulations over equation-based models is that the former can
practically account for greater heterogeneity. However, a pair-matching algo-
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rithm such as Blossom that best accounts for this heterogeneity is extremely
slow. It can be used effectively only with smaller population sizes or choosing
small subgroups of a population (e.g.,[3]). However, when the risk of infec-
tion is high — e.g. for HPV and gonorrhea —, the time horizon is long or
the turnover of partnerships is high, modelling with an agent population that
is much lower than the real-world population of interest may considerably
underestimate incidence and prevalence. Although in practice this would be
corrected by calibrating the model to real-world data points, the calibration
process may in turn result in parameter values (i.e., for infection rates) be-
ing set far off their real-world values, so that the further into the future the
model projects the greater will be the error in its estimates.

Modellers may wish to consider using an algorithm such as CSPM that
usually offers a good trade-off between speed and approximation of the distri-
bution of relationships in the population being studied. Ideally a simulation
should have a similar number of agents as the population being studied. This
is often impractical though, and even where it is practical, the poor quality of
data on the distribution of partnerships based on sex, age, sexual orientation
and even the role of geographical location, is a much bigger problem.

Of course, if the risk of infection per serodiscordant partnership is low
then using a large population for the microsimulation may be unnecessary.
The same is true if the simulation begins when an epidemic that is already
mature.

Limitations

Our analysis has several limitations:

• The DATA strategy is based on sex survey data, with the well-documented
problems that this presents [23].

• Our modelling of casual relationships is unsophisticated, and possibly
overstates casual sex as one-night stands and understates short-term
relationships involving a few sexual encounters. However, our results
appear to be robust when accounting for this by greatly reducing the
number of casual partnerships.

• We did not model varying the risk of transmission over the course of
an infection, for example, the higher transmission risk of HIV during
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primary infection. This would be particularly interesting to examine
in research that extends our work.

• We did not model concurrent relationships, although they might play
a significant role in the spread of STIs [21]. This too would be an
interesting way to extend our research.

• As noted in the introduction, we did not model death, healing, condom
use, circumcision and other factors, as including these would confuse
the analysis and make it difficult to isolate the role of the mating pool
and breakup strategy, and pair-matching algorithm.

• We have not done systematic subgroup analysis, e.g. the effect of the
different algorithms on a particular 5-year age group or sexual orienta-
tion.

In preparing this paper we ran tens of thousands of simulations with
the number of agents ranging from 10,000 to as high as 40 million using
affordable consumer hardware. The feasibility of this is likely of interest to
other modellers; Appendix 1 contains further notes on our implementation.

Further research needs to be done refining the cluster function of CSPM,
as well as identifying ideal values of k (for RKPM as well) and the number of
clusters. A deeper analysis of poor matches, and how frequently to block or
allow them is also needed. We also recommend examining the effect of using
the CSPM algorithm to model HPV or gonorrhoea in real-world populations,
using different numbers of agents in the model.

Conclusion

Microsimulations have become a popular method for the analysis of the
spread of STIs and for the evaluation of interventions to alleviate them.
While the effects of structural assumptions about pair formation and infec-
tivity are well known for the classical method of differential equations, the
analysis of design decisions of microsimulations are less well understood.

Our findings contribute to closing this gap by providing insights into the
effect of different matching algorithms for various infection rates. Addition-
ally, we found that there exist fast pair-matching algorithms that provide a
practical way for microsimulation modellers to account for heterogeneity in
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sexual behaviour and without limiting the population to a small subgroup.
Our findings may also inform reviewers of STI microsimulations about the
extent to which the pair matching methodology can influence the results of
a model.

Supporting information

S1 Appendix. This appendix aims to provide a few pointers to implement-
ing fast microsimulations that can accommodate large numbers of agents. It
is mainly aimed at microsimulation modellers who do not have a formal
computer science background.

Our model is capable of doing large microsimulations fast. For example,
running single-threaded, it can match nearly 600,000 agents per second in
a mating pool using the CSPM algorithm on a laptop with an i5 processor
running at 2.5GHz. With the agent population set to 40 million, it takes
approximately 5.2 hours to run five 10-year simulations in parallel, updated
daily, on an Intel Xeon with 20 cores at 2.3Ghz, with 32GB RAM (the RAM
was the limiting factor; we could not use more than 5 or 6 threads at a time
without running out of memory). Once birth, death, healing, and migration
events, as well as a concurrency feature are added, this will slow down, but
not substantially, because we expect the time taken for all of these events
to increase linearly with the number of agents. On the same machine, using
multithreading, we also ran 20,000 simulations of 10,000 agents (10 years,
time step equal to a day) in a little more than 6 hours. This is a mean of
just over 22 seconds per simulation. Running multiple threads in parallel
slows down the execution of a single run because of resource contention. A
single-threaded run takes about two seconds.

In a discrete microsimulation of the form described by Algorithm 1, it is
the events that consume the most time. The time taken for most events to
complete increases linearly with the number of agents. These include ageing,
death, healing, select, and breakup events. However, pair-matching requires
interaction between agents. The time to run BFPM increases quadratically
with the size of the mating pool. The time taken to run the Blossom algo-
rithm is worse: approximately cubic with the number of agents. It takes over
2 hours to match 5,000 agents in a mating pool on an i5 processor running
at 2.5GHz (using our default data that would be a simulation containing
approximately 1.4 million agents). So simulating 10 years with a 60 day sta-
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Figure 3: Algorithm execution times
Average execution time in seconds for each algorithm (except Blossom) when
30 simulations are run in parallel. Note that there are other time-consuming
events in a simulation other than pair-matching, and that times are approx-
imate.

bilisation period would take about 7,420 hours, or over 300 days. Perhaps
waiting this long for the outcome of a physics or chemistry experiment with
precise inputs and outputs may be worth it, but waiting more than a day
or two for results of a single simulation in the world of STI modelling where
nearly every input is a rough approximation seems pointless to us.

Table 8 and Figure 3 present execution times of simulations using the
different pair-matching algorithms.

RPM’s time increases linearly, but it does very poor matching. The time
for CSPM and RKPM increases loglinearly (n log n, where n is the size of
the mating pool) with the number of agents in the mating pool. For a large
simulation of 40 million agents to be done in a practical amount of time, it
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is vital to use an algorithm whose time efficiency is loglinear or better.
Also it is vital to put agents who need to be paired on a particularly time

step into a mating pool. This pool is almost always a small fraction of the
total number of agents. Determining which agents enter the mating pool
requires an algorithm with linear efficiency. Pairing the agents intelligently
requires an algorithm with at least loglinear efficiency (as far as we can tell).
Skipping the mating pool creation, and subsuming it into the pair-matching
algorithm is false efficiency, because instead of the pair-matching algorithm
executing in time that increases loglinearly with the number of agents in
the mating pool, it will execute with time that increases loglinearly with the
total number of agents in the simulation, a much larger number.

In computer science, we describe algorithms whose efficiency increases lin-
early, loglinearly, quadratically and cubicly with a dataset with n elements as
O(n), O(n log n), O(n2) and O(n3) respectively. We call this Big O notation
and the preceding list is ordered from fastest to slowest efficiency 8. When
optimising code, changing a time-consuming algorithm to one whose Big O
efficiency is better is usually more productive than tinkering with the imple-
mentation details of a fundamentally inefficient algorithm. For example, no
matter how much we optimise our implementation of the BFPM algorithm
it will not be as fast as an unoptimised competent implementation of the
CSPM algorithm. This is a necessarily simplified discussion of Big O. For
further details see one of many textbooks on the subject, eg. [17].

From our knowledge of the field and discussions with other modellers,
it appears some leading microsimulation models are coded in interpreted
languages such as R, Visual Basic or Python. While microsimulations coded
in these languages have many uses, there is unfortunately little prospect that
these languages can develop microsimulations that can manage the kind of
loads described in this paper. For heavy-duty simulation it is vital to use a
programming language that is either compiled directly into native machine
code (e.g. C, C++, Rust, Fortran, Common Lisp, Swift, Go) or the byte
code of a virtual machine (e.g. Java, Clojure, Scala).

Our microsimulation, which we call FastSTI, is open source and, we hope,
well commented and easy to read. Modellers are encouraged to download it,
adapt it for their needs, report bugs to us, and send us queries.

8This is a very simplified discussion and intentionally omits the point that Big O
notation are sets to which algorithms belong, or that a less efficient set includes all the
algorithms in more efficient sets. These details are simply unnecessary here.
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Agents Blossom BFPM CSPM RKPM RPM
10,000 23 2 2 2 1

100,000 2,960 81 43 42 12
1,000,000 N/A 8,810 633 601 218

Table 8: Time in seconds for a single execution on an Intel Xeon i7 2.3GHZ
without any other significant load on the machine. Note that there are other
time-consuming events in a simulation other than pair-matching, and that
times are approximate.

S2 Appendix. As stated in the Materials and Methods section, the input
parameters have been derived from the PAIRFAM study. The data includes
eight waves of observations from 2008 to 2016 for three age cohorts born
1971-73, 1981-83 and 1991-93. The data is freely available at http://www.

pairfam.de/ after becoming a registered user.
While the probabilities for breakups and entering the mating pool were

calulated directly from the data, the probability of casual sex was smoothed
using a cubic-spline regression with age as the only explanatory variable and
using the predicted values for the complete age-range of 12 to 50.
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Figure 4: Mating pool probabilities
Daily probabilities (by age and sex) of entering the mating pool for agents
who are single, or breaking up for agents in relationships.
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Casual Sex Long-term relationships

Age
Enter mating pool Enter mating pool Breakup
Female Male Male Female Male Female

12 0.00914 0.00000 0.00002 0.00003 0.00069 0.00044
13 0.01194 0.00000 0.00011 0.00015 0.00097 0.00067
14 0.01474 0.00453 0.00024 0.00035 0.00122 0.00085
15 0.01753 0.01432 0.00040 0.00063 0.00139 0.00093
16 0.02030 0.02418 0.00055 0.00089 0.00136 0.00090
17 0.02302 0.03392 0.00066 0.00106 0.00117 0.00079
18 0.02564 0.04307 0.00072 0.00115 0.00095 0.00066
19 0.02814 0.05110 0.00075 0.00118 0.00078 0.00055
20 0.03056 0.05744 0.00076 0.00116 0.00065 0.00045
21 0.03291 0.06168 0.00076 0.00112 0.00055 0.00038
22 0.03519 0.06356 0.00076 0.00106 0.00048 0.00032
23 0.03741 0.06327 0.00077 0.00102 0.00042 0.00027
24 0.03956 0.06130 0.00079 0.00103 0.00039 0.00025
25 0.04160 0.05818 0.00081 0.00107 0.00037 0.00025
26 0.04349 0.05447 0.00083 0.00110 0.00035 0.00024
27 0.04517 0.05077 0.00083 0.00111 0.00031 0.00023
28 0.04658 0.04765 0.00083 0.00108 0.00026 0.00020
29 0.04773 0.04543 0.00081 0.00101 0.00022 0.00017
30 0.04859 0.04426 0.00078 0.00093 0.00020 0.00015
31 0.04907 0.04389 0.00074 0.00084 0.00018 0.00014
32 0.04905 0.04400 0.00068 0.00076 0.00015 0.00012
33 0.04846 0.04436 0.00062 0.00069 0.00013 0.00011
34 0.04725 0.04484 0.00057 0.00064 0.00012 0.00011
35 0.04555 0.04538 0.00056 0.00061 0.00012 0.00012
36 0.04352 0.04595 0.00056 0.00061 0.00014 0.00012
37 0.04132 0.04646 0.00057 0.00061 0.00014 0.00012
38 0.03910 0.04681 0.00059 0.00060 0.00013 0.00011
39 0.03696 0.04677 0.00060 0.00059 0.00012 0.00010
40 0.03496 0.04616 0.00061 0.00058 0.00012 0.00010
41 0.03315 0.04487 0.00062 0.00059 0.00012 0.00011
42 0.03153 0.04289 0.00064 0.00062 0.00013 0.00012
43 0.03005 0.04036 0.00067 0.00065 0.00014 0.00012
44 0.02865 0.03745 0.00071 0.00069 0.00015 0.00013
45 0.02728 0.03439 0.00075 0.00073 0.00016 0.00013
46 0.02593 0.03130 0.00078 0.00077 0.00016 0.00014
47 0.02458 0.02820 0.00082 0.00081 0.00017 0.00015
48 0.02323 0.02511 0.00087 0.00084 0.00018 0.00015
49 0.02188 0.02201 0.00091 0.00088 0.00018 0.00016
50 0.02053 0.01891 0.00095 0.00093 0.00019 0.00016

Table 9: Daily probabilities of entering the mating pool for agents who are
single, or breaking up for agents in relationships.
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6.2 Does STI modelling increase our knowl-

edge?

The article in this chapter has shown that with different design decisions a

model can estimate markedly different outcomes. This finding presents an

opportunity to consider in more depth the question of what knowledge, if

any, models actually provide.

Here are examples of models giving inconsistent results, either with other

models or with direct measurements of the natural population being mod-

elled:

• In the last two articles of this work we showed how using different

algorithms for matching agents results in different outcomes. And in

the final article, we found that incidence drops as the number of agents

in the microsimulation increases, meaning that the same model can

give different results simply by changing the number of agents . Of

course models will be calibrated so that incidence or prevalence matches

estimates of the natural population being studied, but that does not

inspire confidence in projections beyond the calibrated data.

• Eaton et al. (2015) assessed ten models of the South African HIV epi-

demic against survey data. All the models estimated lower prevalence

for 2012 than a survey estimate, with eight estimating below the sur-

vey’s 95% confidence interval. Eight models estimated that prevalence

would stay the same or decline between 2008 and 2012 whereas it in-

creased across two surveys. The models’ estimates also differed sig-
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nificantly from each other on some outputs, though they did match

survey data in some respects, including predicting approximately the

same number of people on ART. Also, it is possible that the survey

data was inconsistent and perhaps faultier than some of the models.

• As explained in the introduction to this dissertation, Johnson et al.

(2016) compared a microsimulation and a deterministic compartmental

model on six STIs, with the latter model always estimating greater

prevalence.

Do these contradictory results mean that modelling is presently at best

an immature field that fails to increase our knowledge of epidemics? The

question may be asked of non-STI disease models too. Butler (2014) dis-

cussed the fact that Ebola models overestimated the the number of cases

in Liberia during the 2014 epidemic. The article was subtitled “Rate of

infection in Liberia seems to plateau, raising questions over the usefulness

of models in an outbreak”, sparking a strongly worded response by Rivers

(2014) who wrote: “Your assertion that models of the Ebola epidemic have

failed to project its course misrepresents their aims ... They helped to inspire

and inform the strong international response that may at last be slowing the

epidemic”. The letter concluded “Epidemics are affected by countless vari-

ables, so uncertainty is a given. Models synthesize available information.

Without them, there is little to guide decision-makers during an outbreak.

Their importance goes beyond providing forecasts.”

Perhaps this is the best we can hope for with STI models too. After all,

even for the most sophisticated microsimulations, the assumptions of how
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sexual behaviour occurs are highly idealised. Sexual partnership formation

and dissolution in the natural world, as well as the risk of infection per

partnership, is extremely complicated and impossible to capture precisely in

models.

Yet models have had a crucial role in HIV-related debates as the first three

articles of this dissertation show. Models cannot be expected to be precise,

but they can be expected to give broadly accurate answers to the questions

they try to answer 2. So the first models of HIV in South Africa in the early

1990s, such as Doyle et al. (1991), accurately showed that a large epidemic

was underway and that it would become massive, but they could not predict

the size of the epidemic with much precision. In the early 2000s, the ASSA

models and subsequent work were accurate in that they showed that ART

would save many lives and that implementing it would be affordable (Geffen

et al., 2003). But they could not precisely predict how many lives would

be saved, how much life-expectancy would increase, or exactly how much

it would cost. In the late 2000s, the Granich model showed — hopefully

accurately; it’s too early to tell — that a policy of universal ART would

prevent many new infections in South Africa, but its projections will almost

certainly be imprecise (Granich et al., 2009).

Meticulously constructed models have made plausible estimates of preva-

lence and life-expectancy. They did not precisely match subsequent survey

data, but they were often close enough for practical purposes, e.g. increasing

2Accuracy in this context means providing an answer that is true, even if the range
of the answer is wide, Precision in this context means providing an exact answer. e.g.
“Prevalence is between 8% and 10%.” may be accurate, while “Prevalence is 8.23%”
is precise, but almost certainly inaccurate. This differentiation between precision and
accuracy was once related to the author by Edwin Cameron.
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public awareness of the seriousness of HIV (Doyle, 1993), influencing pol-

icy debates and court cases (Dorrington et al., 2001; Dorrington, 2002), and

helping to assess the current state of the epidemic (Johnson, 2014).

Furthermore, as discussed in Chapter 1 and 4.2, adding complexity to

models, such as by using microsimulations rather than deterministic equation-

based ones, has potential pitfalls. In the attempt to create more realism with

complex microsimulations (or even complex deterministic equation-based

models) modellers sometimes produces results that are difficult to explain

or even counter-intuitive, such as those in this chapter’s paper. Simple mod-

els may, in some cases, produce results are easier to explain and are more

consistent with theory, even if they sacrifice realism.

There is much research to be done to improve STI modelling. We have

shown how design and methodological difference between models produce

different results. We have barely considered how in addition to this, models

can reach dramatically different — and often wrong — conclusions because

of methodological differences in, or problems with, data collection, such as

sex surveys, prevalence surveys and death registration. Nevertheless, despite

considerable concerns, models have their place in clarifying our knowledge of

STIs and, in particular, the South African HIV epidemic.
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Chapter 7

Conclusions

In this work, we have considered models of STIs from their role in policy

making about the South African HIV epidemic through to technical consid-

erations about how to match individuals in sexual relationships.

The first publication of this dissertation provides an overview of HIV

modelling. The second described modelling controversies with respect to

policy-making. The third examined the debate on when to start ART, which

was informed by modelling. Moreover, after interest receded in this debate

for some years, the work of Granich et al. (2009) reignited interest.

The next two publications presented technical work. The first described

and analysed algorithms that pair agents in microsimulations of STI epi-

demics, while the final article compared these algorithms in an actual mi-

crosimulation.

The relevance of mathematical or computer models of diseases can only

be understood if the needs of society emanating from the disease are under-

stood. The first three articles provide the background to this, culminating
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in a detailed analysis of what was one of the most difficult questions of the

HIV epidemic: when to start treatment. Other vital questions have also been

asked of models: What are the costs and benefits of providing antiretrovi-

rals? How will providing circumcision in public health facilities change HIV

incidence? How effective must a microbicide or vaccine be to have an ef-

fect on incidence? How many orphans has the South African HIV epidemic

produced? What role do sexual behaviours such as concurrent relationships

or wide age-gap relationships have, if any, in the spread of HIV? Why have

some countries had large HIV epidemics, while other comparatively small

ones? How long will it take for a policy of universal treatment to virtually

eliminate the epidemic? And many more.

How then do the final two technical articles help answer such questions?

First, the fundamental way in which models of STIs differ from other

diseases is in partnership formation and dissolution. If a model assumes

that people randomly match into partnerships it overestimates incidence,

unless the model only accounts for a subset of individuals with similar sexual

behaviour. The challenge of pair-matching is to account for heterogeneous

sexual behaviour and, consequently, heterogeneous risk. Deterministic com-

partmental models account for heterogeneity by dividing the population into

compartments, but this has practical limits; the number of compartments

needs to be manageable and it is difficult to model the borders between

compartments in which there is crossover pairing. Heterogeneity is easier to

account for in agent-based models, and the pair-matching algorithm is key

to this. The presentation and analysis of the pair-matching algorithms, we

hope, adds to the understanding of this subject, and will make it easier for
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modellers to implement microsimulations that better account for heterogene-

ity of sexual behaviour.

Second, we have found that as the agent population increases, incidence

decreases, and that this is particularly apparent if the risk of infection is

high. This finding is troubling and interesting. It occurs with all the pair-

matching algorithms except random-pair matching, which means it occurs

when heterogeneity is taken into account. We are unsure if it is an artefact

of our methodology which is based on assigning a distance between agents

to compare their suitability for matching.

If this phenomenon is not an algorithmic artefact — and there is no

compelling reason to believe it is — then it appears to follow that setting

the agent population to approximately the same size as the population being

studied will yield more accurate estimates of incidence and prevalence. This

is a hard task when it comes to large populations, even with highly optimised

programming on high-end hardware. Of course, models are usually calibrated

so that the prevalence they estimate matches multiple known data points.

However, this in turn results in adjusting model parameters, e.g. infection

rates, such that they may no longer match what is actually happening in

the natural world STI. Nevertheless, the data, such as sex surveys, used to

model STIs is quite possibly a greater source of error than this phenomenon.

Several research questions follow from our research:

• What is the cause of incidence decreasing as the agent population rises

with the pair-matching algorithms presented here? The final article

hypothesises an answer, but we have neither proven it, nor are we
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confident of it. It is also unclear how to answer it. The number of

agents we deal with, from 10,000 to 40 million, is so large that ways of

visualising or manually analysing the phenomenon are not obvious.

• Is it possible to test whether in natural populations, incidence decreases

for high-transmission rate STIs as population increases? There are so

many variables involved in STI transmission that it is not obvious how

to do this.

• If population size does affect STI incidence, can studying smaller sub-

populations within a larger population produce more relevant results

than studying the entire population. For example, in studying HIV

incidence in the South African population, under what circumstances

does it make sense for a model to consider only a subset of the popu-

lation (e.g. men who have sex with men)?

• How do Blossom V, BFPM and CSPM affect the outcomes of microsim-

ulations of actual, as opposed to fictitious, STIs? In particular, we are

interested in testing our algorithms in microsimulations of HIV, gonor-

rhoea and HPV. The latter two are of interest because of the high risk

of infection in serodiscordant partnerships.

• Can microsimulations that do pair-matching, perhaps using the algo-

rithms described in this dissertation, be used to identify groups of peo-

ple who should be prioritised for ART or other STI treatments?

In addition to these questions, there is a need to examine, analyse and

compare other pair-matching methodologies that are not based on a distance
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function with our algorithms. This will consolidate the theoretical under-

standing of pair-matching.

There are fascinating research questions that need to be considered to

better understand and improve mathematical models of STIs. Answering

them will improve our understanding of natural world STIs, and potentially

improve our policy responses.
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