Available online at www.sciencedirect.com

ScienceDirect

Cognitive Systems
RESEARCH

CrossMark

DR - IR X L ﬁﬁ
ELSEVIER Cognitive Systems Research 43 (2017) 1-20

www.elsevier.com/locate/cogsys

A hybrid POMDP-BDI agent architecture with online
stochastic planning and plan caching

Action editor: Rajiv Khosla

Gavin Rens *“*, Deshendran Moodley "

4 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa
® Department of Computer Science, University of Cape Town, South Africa
€ Centre for Artificial Intelligence Research, CSIR Meraka, South Africa

Received 22 May 2016; received in revised form 15 October 2016; accepted 5 December 2016
Available online 21 December 2016

Abstract

This article presents an agent architecture for controlling an autonomous agent in stochastic, noisy environments. The architecture
combines the partially observable Markov decision process (POMDP) model with the belief-desire-intention (BDI) framework. The
Hybrid POMDP-BDI agent architecture takes the best features from the two approaches, that is, the online generation of reward-
maximizing courses of action from POMDP theory, and sophisticated multiple goal management from BDI theory. We introduce the
advances made since the introduction of the basic architecture, including (i) the ability to pursue and manage multiple goals simultane-
ously and (ii) a plan library for storing pre-written plans and for storing recently generated plans for future reuse. A version of the archi-
tecture is implemented and is evaluated in a simulated environment. The results of the experiments show that the improved hybrid
architecture outperforms the standard POMDP architecture and the previous basic hybrid architecture for both processing speed and

effectiveness of the agent in reaching its goals.
© 2016 Elsevier B.V. All rights reserved.

Keywords: Autonomous agents; POMDP; BDI; Satisfaction; Planning; Memory

1. Introduction

Imagine a scenario where a planetary rover has five
tasks of varying importance. The tasks could be, for
instance, collecting gas (for industrial use) from a natural
vent at the base of a hill, taking a temperature measure-
ment at the top of the hill, performing self-diagnostics
and repairs, reloading its batteries at the solar charging sta-
tion and collect soil samples wherever the rover is. The
rover is programmed to know the relative importance of
collecting soil samples. The rover also has a model of the

* Corresponding author at: Department of Computer Science,
University of Cape Town, South Africa.
E-mail address: gavinrens@gmail.com (G. Rens).

http://dx.doi.org/10.1016/j.cogsys.2016.12.002
1389-0417/© 2016 Elsevier B.V. All rights reserved.

probabilities with which its various actuators fail and the
probabilistic noise-profile of its various sensors. The rover
must be able to reason (plan) in real-time to pursue the
right task at the right time while considering its resources
and dealing with various events, all while considering the
uncertainties about its actions (actuators) and perceptions
(sensors).

We propose an architecture for the proper control of an
agent in a complex environment such as the scenario
described above. The architecture combines belief-desire-
intention (BDI) theory (Bratman, 1987; Rao & Georgeff,
1995) and partially observable Markov decision processes
(POMDPs) (Lovejoy, 1991; Monahan, 1982). Traditional
BDI architectures (BDIAs) cannot deal with probabilistic
uncertainties and they do not generate plans in real-time.

http://dx.doi.org/10.1016/j.cogsys.2016.12.002
mailto:gavinrens@gmail.com
http://dx.doi.org/10.1016/j.cogsys.2016.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogsys.2016.12.002&domain=pdf

2 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

A traditional POMDP cannot manage goals (major and
minor tasks) as well as BDIAs can. Next, we analyse the
POMDPs and BDIAs in a little more detail.

One of the benefits of agents based on BDI theory, is
that they need not generate plans from scratch; their plans
are already (partially) compiled, and they can act quickly
once a goal is focused on. Furthermore, the BDI frame-
work can deal with multiple goals. However, their plans
are usually not optimal, and it may be difficult to find a
plan which is applicable to the current situation. That is,
the agent may not have a plan in its library which exactly
‘matches’ what it ideally wants to achieve. On the other
hand, POMDPs can generate optimal policies on the spot
to be highly applicable to the current situation. Moreover,
policies account for stochastic actions in partially observ-
able environments. Unfortunately, generating optimal
POMDP policies is usually intractable. One solution to
the intractability of POMDP policy generation is to
employ a continuous planning strategy, or agent-centred
search (Koenig, 2001). Aligned with agent-centred search
is the forward-search approach or online planning approach
in POMDPs (Ross, Pineau, Paquet, & Chaib-draa, 2008).

The traditional BDIA maintains goals as desires; there is
no reward for performing some action in some state. The
reward function provided by POMDP theory is useful for
modeling certain kinds of behavior or preferences. For
instance, an agent based on a POMDP may want to avoid
moist areas to prevent its parts becoming rusty. Moreover,
a POMDP agent can generate plans which can optimally
avoid moist areas. But one would not say that avoiding
moist areas is the agent’s task. And POMDP theory main-
tains a single reward function; there is no possibility of
weighing alternative reward functions and pursuing one
at a time for a fixed period—all objectives must be consid-
ered simultaneously, in one reward function. Reasoning
about objectives in POMDP theory is not as sophisticated
as in BDI theory. A BDI agent cannot, however, simulta-
neously avoid moist areas and collect gas; it has to switch
between the two or combine the desire to avoid moist areas
with every other goal.

The Hybrid POMDP-BDI agent architecture (or HPB
architecture, for short) has recently been introduced
(Rens & Meyer, 2015). It combines the advantages of
POMDP theoretic reasoning and the potentially sophisti-
cated means-ends reasoning of BDI theory in a coherent
agent architecture. In this paper, we generalize the manage-
ment of goals by allowing for each goal to be pursued with
different intensities, yet concurrently.

Typically, BDI agents do not deal with stochastic uncer-
tainty. Integrating POMDP notions into a BDIA addresses
this. For instance, an HPB agent will maintain a (subjec-
tive) belief state representing its probabilistic (uncertain)
belief about its current state. Planning with models of
stochastic actions and perceptions is possible in the HPB
architecture. The tight integration of POMDPs and BDIAs
is novel to this architecture, especially in combination with
desires with changing intensity levels.

This article serves to introduce two significant exten-
sions to the first iteration (Rens & Meyer, 2015) of the
HPB architecture. The first extension allows for multiple
intentions to be pursued simultaneously, instead of one at
a time. In the previous architecture, only one intention
was actively pursued at any moment. In the new version,
one agent action can take an agent closer to more than
one goal at the moment the action is performed — the result
of a new approach to planning. As a consequence of allow-
ing multiple intentions, the policy generation module (Sec-
tion 4.3), the desire function and the method of focusing on
intentions (Section 4.2) had to be adapted. The second
extension is the addition of a plan library. Previously, a pol-
icy (conditional plan) would have to be generated periodi-
cally and regularly to supply the agent with the
recommendations of actions it needs to take. Although
one of the strengths of traditional BDI theory is the avail-
ability of a plan library with pre-written plans for quick
use, a plan library was excluded from the HPB architecture
so as to simplify the architecture’s introduction. Now we
propose a framework where an agent designer can store
hand-written policies in a library of plans and where gener-
ated policies are stored for later reuse. Every policy in the
library is stored together with a ‘context’ in which it will be
applicable and the set of intentions which it is meant to sat-
isfy. There are two advantages of introducing a plan
library: (i) policies can be tailored by experts to achieve
specific goals in particular contexts, giving the agent imme-
diate access to recommended courses of action in those sit-
uations and (ii) providing a means for policies, once
generated, to be stored for later reuse so that the agent
can take advantage of past ‘experience’ — saving time and
computation.

In Section 2, we review the necessary theory, including
POMDP and BDI theory. In Section 3, we describe the
basic HPB architecture. The extensions to the basic archi-
tecture are presented in Section 4. Section 5 describes sim-
ulation experiments in one domain in which the proposed
architecture is extensively tested, evaluating the perfor-
mance on various dimensions. The results of the experi-
ments confirm that the approach may be useful in some
domains. In the last two sections, we discuss related work,
points out some future directions for research in this area,
and draw final conclusions.

2. Preliminaries

The basic components of a BDI architecture
(Wooldridge, 1999, chap. 1; Wooldridge, 2002) are

e a set or knowledge-base B of beliefs;

e an option generation function wish, generating the
objectives the agent would ideally like to pursue (its
desires);

e a set of desires D (goals to be achieved);

e a ‘focus’ function which selects intentions from the set of
desires;

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20 3

e a structure of intentions 7 of the most desirable options/

desires returned by the focus function;

a library of plans and subplans;

e a ‘reconsideration’ function which decides whether to
call the focus function;

e an execution procedure, which affects the world accord-

ing to the plan associated with the intention;

a sensing or perception procedure, which gathers infor-

mation about the state of the environment; and

a belief update function, which updates the agent’s

beliefs according to its latest observations and actions.

Exactly how these components are implemented result
in a particular BDI architecture.

Algorithm 1. Basic BDI agent control loop

Algorithm 1: Basic BDI agent control loop
Input: By: initial beliefs
Input: Ij: initial intentions

1 B« By;

2 [— Iy

3 m«— null ;

4 while alive do

p «— getPercept();
B «— update(B, p);
D «— wish(B, I);

I — focus(B, D, I);
7w« plan(B, I);

10 execute(r);

© o N o o

Algorithm 1 (adapted from Wooldridge (2000, Fig. 2.3))
is a basic BDI agent control loop. « is the current plan to
be executed. getPercept(-) senses the environment and
returns a percept (processed sensor data) which is an input
to wupdate(-), which updates the agent’s beliefs.
wish : Bx 1 — D generates a set of desires, given the
agent’s beliefs, current intentions and possibly its innate
motives. It is usually impractical for an agent to pursue
the achievement of all its desires. It must thus filter out
the most valuable and achievable desires. This is the func-
tion of focus:B x D x I — I, taking beliefs, desires and
current intentions as parameters. Together, the processes
performed by wish and focus may be called deliberation,
formally encapsulated by the deliberate procedure. plan(-)
returns a plan from the plan library to achieve the agent’s
current intentions.

A more sophisticated controller would have the agent
consider whether to re-deliberate, with a reconsider func-
tion placed just before deliberation would take place. The
agent could also test at every iteration through the main
loop whether the currently pursued intention is still possi-
bly achievable. Serendipity could also be taken advantage
of by periodically testing whether the intention has been
achieved, without the plan being fully executed. Such an

agent is considered ‘reactive’ because it executes one action
per loop iteration; this allows for deliberation between exe-
cutions. There are various mechanisms which an agent
might use to decide when to reconsider its intentions.
See, for instance, Bratman (1987), Pollack and Ringuette
(1990), Kinny and Georgeff (1991), Kinny and Georgeff

(1992), Schut and Wooldridge (2000), Schut and
Wooldridge (2001), Schut, Wooldridge, and Parsons
(2004).

In a partially observable Markov decision process
(POMDP), the actions the agent performs have non-
deterministic effects in the sense that the agent can only
predict with a likelihood in which state it will end up after
performing an action. Furthermore, its perception is noisy.
That is, when the agent uses its sensors to determine in
which state it is, it will have a probability distribution over
a set of possible states to reflect its conviction for being in
each state.

Formally (Kaelbling, Littman, & Cassandra, 1998), a
POMDP is a tuple (S,4,T,R,Z,P,b") with

e S, a finite set of states of the world (that the agent can be
in),

e A a finite set of actions (that the agent can choose to
execute),

e a transition function 7'(s,a,s’), the probability of being
in 5" after performing action « in state s,

e R(a,s), the immediate reward gained for executing
action a while in state s,

e Z, a finite set of observations the agent can perceive in
its world,

e a perception function P(s',a,z), the probability of
observing z in state s’ resulting from performing action
a in some other state, and

e 5" the initial probability distribution over all states in S.

In general, we regard an observation as the signal recog-
nized by a sensor; the signal is generated by some event
which is not directly perceivable.

A belief state b is a set of pairs (s, p) where each state s in
b is associated with a probability p. All probabilities must
sum up to one, hence, b forms a probability distribution
over the set S of all states. To update the agent’s beliefs
about the world, a special function SE(z,a,b) =b, is
defined as

P(Slv a, Z)ZseST(Sv a, S,)b(S)
Pr(zla,b) ’

bn(sl) = (1)

where a is an action performed in ‘current’ belief state b, z is
the resultant observation and b,(s") denotes the probability
of the agent being in state s’ in ‘new’ belief state b,. Note
that Pr(z|a,b) is a normalizing constant.

Let the planning horizon h (also called the look-ahead
depth) be the number of future steps the agent plans ahead
each time it plans. V*(b,h) is the optimal value of future

4 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

courses of actions the agent can take with respect to a finite
horizon £ starting in belief state b. This function assumes
that at each step the action that will maximize the state’s
value will be selected.

Because the reward function R(a,s) provides feedback
about the utility of a particular state s (due to a executed
in it), an agent who does not know in which state it is in
cannot use this reward function directly. The agent must
consider, for each state s, the probability b(s) of being in
s, according to its current belief state 5. Hence, the believed
reward for a in bis) _cR(a,s)b(s).

The optimal state-value function is define by

V*(b,h) : = max ZRas

-/
ac seS

+'))ZPI"(Z|G,Z7)V*(SE(Z7G7Z7)7h - 1))

zeZ

where 0 < y < 1 is a factor to discount the value of future
rewards and Pr(z|a, b) denotes the probability of reaching
belief state b, = SE(z,a,b). While V" denotes the optimal
value of a belief state, function Q" denotes the optimal
action-value:

(a,b,h) ZR a,s)b +yZPr(z|a,b)V*(SE(z,a,b),h— 1)

SES zeZ

is the value of executing « in the current belief state, plus
the total expected value of belief states reached thereafter.

3. The basic HPB architecture

In BDI theory, one of the big challenges is to know when
the agent should switch its current goal and what its new
goal should be (Schut et al., 2004). To address this chal-
lenge, we propose that an agent should maintain intensity
levels of desire for every goal. This intensity of desire could
be interpreted as a kind of emotion. The goals most inten-
sely desired should be the goals sought (the agent’s inten-
tions). We also define the notion of how much an
intention is satisfied in the agent’s current belief state.
For instance, suppose that out of five possible goals, the
agent currently most desires to watch a film and to eat a
snack. Then these two goals become the agent’s intentions.
However, eating is not allowed inside the film-theatre, and
if the agent were to go buy a snack it would miss the begin-
ning of the film. So the total reward for first watching the
film then buying and eating a snack is higher than first eat-
ing then watching. As soon as the film-watching goal is sat-
isfied, it is no longer an intention. But while the agent was
watching the film, the desire-level of the (non-intention)
goal of being at home has been increasing. However, it can-
not become an intention because snack-eating has not yet
been satisfied. Going home cannot simply become an inten-
tion and dominate snack-eating, because the architecture is
designed so that current intentions have precedence over

non-intention goals, else there is a danger that the agent
will vacillate between which goals to pursue. Nonetheless,
snack-eating may be ejected from the set of intentions
under the special condition that the agent is having an
unusually hard time achieving it. For instance, if someone
stole its wallet in the theatre, the agent can no longer have
the current intention (i.e., actively pursue) eating a snack.
Hence, in our architecture, if an intention takes ‘too long’
to satisfy, it is removed from the set of intentions. As soon
as the agent gets home or is close to home, the snack-cating
goal will probably become an intention again and the agent
will start making plans to satisfy eating a snack. Moreover,
the desire-level of snack-eating will now be very high (it has
been steadily increasing) and the agent’s actions will be
biased towards satisfying this intention over other current
intentions (e.g., over getting home, if it is not yet there).
A Hybrid POMDP-BDI (HPB) agent (Rens & Meyer,
2015) maintains (i) a belief state which is periodically
updated, (ii) a mapping from goals to numbers represent-
ing the level of desire to achieve the goals, and (iii) the cur-
rent set of intentions, the goals with the highest desire levels
(roughly speaking). As the agent acts, its desire levels are
updated and it may consider choosing new intentions and
discard others based on new desire levels. Refer to Fig. 1
for an overview of the operational semantics. The figure
refers to concepts defined in the following subsection.

3.1. Declarative semantics

The state of an HPB agent is defined by the tuple
(B,D,I), where B is the agent’s current belief state (i.e., a
probability distribution over the states S, defined below),
D is the agent’s current desire function and [/ is the agent’s
current intention. More will be said about D and [a little
later.

An HPB agent could be
(Atrb, G, A,Z, T, P, Util), where

defined by the tuple

e Atrb is a set of attribute-sort pairs (for short, the
attribute set). For every (atrb:sort) € Atrb,atrb is
the name or identifier of an attribute of interest in the
domain of interest, like BatryLevel or Direction,
and sort is the set from which atrb can take a value,
for instance, real numbers in the range [0,55] or a
list of wvalues like {North,East,West,South}.
So {(BatryLevel: [0,55]),(Direction: {North,
East, West, South})} could be an attribute set.

A state s is induced from Atrb as one possible way of
assigning values to attributes: s = {(atrb:v)|(atrb :
sort) € Atrb,v € sort, if (atrb:v),(atrb' : V') €s and
atrb = atrb’, then v = v'}. The set of all possible states is
denoted S.

e Gis a set of goals. A goal is a subset of some state s € S.
For instance, {(BatryLevel:13),(Direction:
South)} is a goal, and so are {(BatryLevel:33)}

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

information flow

---->
——3 control flow
4
_____________ >
Focus -
UL ~
- ~
-
/”’ \\
’ \\
e N\
d N\
’ N
4 N\
4 N
N
N
\\
Replan \
\\
Ay
\ \\
7/
/I \‘\ \\\
’ \ X
/ AN X
’ N, "\
/ \\ \
/ ~, \
3 S \\
/ Freeeeal Pan 777701 --< \
1 — \
! S \‘
1
\
/ N - \
/ N \
] \ \
/ \ \\
/ v N -~ \
! 1 \ PRd \
H action €=--==y-===--1 JPtis \
' Execute _Pe \
l, ,/ \\\ .'
] ’l \]
] , \]
] ’ .]
1 ! v \ !
] 1 \ !
] / \)
i ion ==-=-- , Sense \ '
! observation ! \ |
: ' . \ !
) \\ \\ \ !
\ \ \ \‘ H
) \ !
\ ‘\) \‘ H
i R v \ !
\ AN . a9, !
\ 2| Belief Update |€---f------- ;
\ /
\ e !
\ a"’ I‘ ,I
\ v - L /
\\ & '/ Il
\ Desire Update L
\ . oreeman
\
\
\
\
\
\
\
\
\
\
\
\
\
Ay
\
\

Fig. 1. Operational semantics of the basic HPB architecture. SL stands for Satf_levels. Note that Satf _levels depends on the current belief state and not
on desire levels. Planning is also independent of desire levels. The focus function depends on desire levels and on satisfaction levels. In the case of plans
consisting of a single action, the Replan decision node always returns ‘yes’.

and {(Direction:West)}. The set of goals is given
by the agent designer as ‘instructions’ about the agent’s
tasks.

e A is a finite set of actions.

e Z is a finite set of observations.

e T is the transition function of POMDPs.

e P is the perception function of POMDPs.

e Util consists of two functions Pref and Satf which allow
an agent to determine the utilities of alternative
sequences of actions. Util = (Pref, Satf’).Pref is the pref-
erence function with a range in RN [0, 1]. It takes an
action ¢ and a state s, and returns the preference (any

real number) for performing ¢ in s. That is,
Pref(a,s) € [0,1]. Numbers closer to 1 imply greater
preference and numbers closer to 0 imply less prefer-
ence. Except for the range restriction of [0, 1], it has
the same definition as a POMDP reward function, but
its name indicates that it models the agent’s preferences
and not what is typically thought of as rewards. An
HPB agent gets ‘rewarded’ by achieving its goals. The
preference function is especially important to model
action costs; the agent should prefer ‘inexpensive’
actions. Pref has a local flavor. Designing the preference
function to have a value lying in [0,1] may sometimes be

6 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

challenging, but we believe it is always possible.Satf is
the satisfaction function with a range in RNJ[0,1]. It
takes a state s and an intention 7, and returns a value
representing the degree to which the state satisfies the
intention. That is, Satf (I,s) € [0, 1]. Tt is completely up
to the agent designer to decide how the satisfaction func-
tion is defined, as long as numbers closer to 1 mean
more satisfaction and numbers closer to 0 mean less sat-
isfaction. Sazf has a global flavor.

Fig. 1 shows a flow diagram representing the opera-
tional semantics of the basic HPB architecture.

3.2. The desire function

The desire function D is a total function from goals in G
into the positive real numbers R*. The real number repre-
sents the intensity or level of desire of the goal. For
instance, ({(BatryLevel : 13), (WeekDay : Tue)},2.2) could
be in D, meaning that the goal of having the battery level
at 13 and the week-day Tuesday is desired with a level of
2.2. ({(BatryLevel : 33)},56) and ({(WeekDay : Wed)},444)
are also examples of desires in D.

I is the agent’s current intention; an element of G; the
goal with the highest desire level. This goal will be actively
pursued by the agent, shifting the importance of the other
goals to the background. The fact that only one intention is
maintained makes the HPB agent architecture quite differ-
ent to standard BDIAs.

We propose the following desire update rule.

D(g) — D(g) + 1 — Satfy(g, B) (2)

Rule 2 is defined so that as Satfs(g, B) tends to one (total
satisfaction), the intensity with which the incumbent goal
is desired does not increase. On the other hand, as
Satfs(g,B) becomes smaller (more dissatisfaction), the
goal’s intensity is incremented. The rule transforms D with
respect to B and g. A goal’s intensity should drop the more
it is being satisfied. The update rule thus defines how a
goal’s intensity changes over time with respect to
satisfaction.

Note that desire levels never decrease. This does not
reflect reality. It is however convenient to represent the
intensity of desires like this: only relative differences in
desire levels matter in our approach and we want to avoid
unnecessarily complicating the architecture.

3.3. Focusing and satisfaction levels

Focus is a function which returns one member of G
called the (current) intention /. In the initial version of
the architecture, the goal selected is the one with the high-
est desire level. After every execution of an action in the
real-world, Refocus is called to decide whether to call
Focus to select a new intention. Refocus is a meta-
reasoning function analogous to the reconsider function
mentioned in Section 2. It is important to keep the agent

focused on one goal long enough to give it a reasonable
chance of achieving it. It is the job of Refocus to recognize
when the current intention seems impossible or too expen-
sive to achieve.

Let Satf _levels be the sequence of satisfaction levels of the
current intention since it became active and let MRY be a
designer-specified number representing the length of a sub-
sequence of Satf _levels—the MRY last satisfaction levels.

One possible definition of Refocus is

‘no’ if |Satf_levels| < MRY
if c<6
‘no” otherwise,

Refocus(c, 6) “ ‘yes’

where c is the average change from one satisfaction level to
the next in the agent’s ‘memory’ MRY, and 0 is some
threshold, for instance, 0.05. If the agent is expected to
increase its satisfaction by at least, say, 0.1 on average
for the current intention, then 0 should be set to 0.1. With
this approach, if the agent ‘gets stuck’ trying to achieve its
current intention, it will not blindly keep on trying to
achieve it, but will start pursuing another goal (with the
highest desire level). Some experimentation will likely be
necessary for the agent designer to determine a good value
for 6 in the application domain.

Note that if an intention was not well satisfied, its desire
level still increases at a relatively high rate. So whenever the
agent focuses again, a goal not well satisfied in the past will
be a top contender to become the intention (again).

3.4. Planning for the next action

A basic HPB agent controls its behavior according to
the policies it generates. Plan is a procedure which gener-
ates a POMDP policy = of depth /. Essentially, we want
to consider all action sequences of length /# and the belief
states in which the agent would find itself if it followed
the sequences. Then we want to choose the sequence (or
at least its first action) which yields the least cost and which
ends in the belief state most satisfying with respect to the
intention.

Planning occurs over an agents belief states. The satis-
faction and preference functions thus need to be defined
for belief states: The satisfaction an agent gets for an inten-
tion in its current belief state is defined as

ZSatf I,s)B

seS

Satfﬂl B

where Satf (I, s) is defined above and B(s) is the probability
of being in state s. The definition of Pref; has the same
form as the reward function p over belief states in POMDP

theory:
ZPref a,s)B

seS

Prej/; a, B

where Pref'(a,s) was discussed above.

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20 7

During planning, preferences and intention satisfaction
must be maximized. The main function used in the Plan
procedure is the HPB action-state value function Q},,,, giv-
ing the value of some action «a, conditioned on the current
belief state B, intention [and look-ahead depth /:

Oppg(a,B,1,h) == aSatfp(I,B) + (1 — a)Prefy(a, B)
R * Y _
+ /ZPr(z|a,B)1}}?j(QHPB(a B I h—1),

zeZ

Q;IPB(avala 1) = foatf/;(I,B) + (1 - oc)Pref,;(a,B),

where B’ = SE(a,z,B),0 <« <1 1is the goal/preference
‘trade-off’ factor, y is the normal POMDP discount factor
and SE is the normal POMDP state estimation function.
Plan returns arg max Qj,pz(a, B, 1, h), the trivial policy of
acA

a single action.
4. The extended HPB architecture

The operational semantics of the extended architecture
is similar to the first version, except that each goal is now
given its own weight of importance, and a plan library is
now involved. The agent starts off with an initial set of
intentions, a subset of its goals. For the current set of inten-
tions, it must either select a plan from the plan library or
generate a plan to pursue all its intentions. At every itera-
tion of the agent’s control loop, an action is performed, an
observation is made, the belief state is updated, and a deci-
sion is made whether to modify the set of intentions. After
several actions of the current policy (conditional plan) are
executed, the agent seeks a new policy by consulting its
plan library, and if an adequate policy is not found, gener-
ating one.

In the next subsection, we introduce some new notation
and changes made to the architecture. Section 4.2 discusses
how the focussing procedure must change to accommodate
the changes. Section 4.3 explains how policies are gener-
ated for simultaneous pursuit of multiple goals. Finally,
Section 4.4 presents the plan library, which was previously
unavailable, and how the agent and agent designer can use
it to their benefit.

4.1. Prologue

The HPB agent model gets a few new components — a
goal weight function W, a compatibility function Cpbl,
the plan library Lbry and a set of thresholds Tlds. It can
thus be defined by the tuple

(Atrb, G, W ,Cpbl, A, Z, T, P, Util, Lbry, Tlds).

In the previous version, satisfaction and preference were
traded-off by a “trade-off factor” which was not explicitly
mentioned in the agent model. Actually the trade-off factor
should have been part of the model, because it must be pro-

vided by the agent designer, and it directly affects the
agent’s behavior. In the new version, every goal g € G will
be weighted by W (g) according to the importance of g to
the agent. Goal weights are constrained such that
W(g)>0forallgeG, and) W(g) =1

A fundamental extension is that / becomes a set of inten-
tions. In this way, an HPB agent may actively pursue sev-
eral goals simultaneously. For example, a planetary rover
may want to travel to its recharging station and simultane-
ously make same atmospheric measurements en route.

The first version has also been changed so that the set of
goals G is simply a set of names, rather than restricting a
goal to be a set of attribute values, as was previously done.
Goals are defined by how they are used in the architecture,
particularly by their involvement in the definition of satis-
faction and reward functions.

In the extended architecture, Uti/ is more expressive. It
will also be convenient to use more compact notation. Here
we let Util = (x, p, o), where « is the same as Pref, ¢ is the
same as Satf and p is the reward function. To clarify:

e We move away from a preference function, and rather
think of a cost function k. Preferences will be captured
by the set of satisfaction functions.

e p:4xGxS8—0,1] replaces the use of Satf in the
value function (for planning), but p has access to
actions, which makes reward specification easier. In
other words, p(a,g,s) is the reward for performing a
in s towards achieving g.

e In the original version, Satf was used both in the value
function and in tracking the agent’s overall progress
towards a goal. Now, Satf (aka o) is used only for the
latter. p cannot be used for satisfaction tracking because
when overall goal satisfaction must be measured, there is
no access to a particular action. In other words, while an
agent thinks about its satisfaction for a goal between
planning sessions, it does not think in terms of satisfac-
tion with respect to particular actions.

As a consequence of being able to pursue several goals at
the same time, there exists a danger that the agent will pur-
sue one intention when it necessarily causes another inten-
tion to become less satisfied. For instance, visiting the
USA regional headquarters is diametrically opposite to vis-
iting the China regional headquarters at the same time.
Other examples of goals which should be ‘disjoint’ are
work — in — garden and have — lunch, and
recharge — battery and replace —battery. The
solution we use is to list, for each goal g € G, all other goals
which are compatible with it, in the sense that their simulta-
neous pursuit ‘effective’ (defined by the agent designer). Let
Cpbl(g) denote the set of goals compatible with g. It is
mandatory that g € Cpbl(g). Two goals g and g’ are called
incompatible if and only if ¢’ ¢ Cpbl(g) or g ¢ Cpbl(g').

Suppose G = {visit — USA —HQ,visit — China—
HQ,work — in — garden,have — lunch, recharge—

8 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

battery,replace — battery}. Then an agent designer
may specify

Cpbl(visit — USA — HQ) = {visit — USA — HQ, have
— lunch}

and
Cpbl(recharge —battery)
= {recharge —battery,work — in
— garden,have — lunch}.

Note that work — in — garden and have — lunch are
incompatible.

Lbry is a set of plans, where each plan is a policy and a
context in which that policy is recommended. The details
are given in Section 4.4. As will be seen, periodically, an
agent needs to check whether its current context matches
one of these policy contexts to decide whether to adopt said
policy. A ‘match’ depends on one or two designer-defined
thresholds 6; and 0,. These two thresholds plus the thresh-
old 0, used in the intention focusing strategy (see Sec-
tion 4.2) are specified in Tlds := {0;,0;,0,}.

4.2. A new approach to focusing

Given that [/ is a set of intentions, ensuring that the ‘cor-
rect’ goals are intentions at the ‘right’ time to ensure that
the agent behaves as desired, requires some careful
thought. It is still important to keep the agent focused on
one intention long enough to give it a reasonable chance
of achieving it, temporarily stop pursuing intentions it is
struggling to achieve.

The HPB architecture does not have a focus function
which returns a subset of G of intentions /. Rather, we have
a set of procedures which decide at each iteration which
intention to remove from 7 (if any) and which goal to
add to 7 (if any). Incompatibility must also be dealt with.

Let Satf _levels(g) be the sequence of satisfaction levels
of some goal g € I since g became active (i.e., was added
to I) and let MRY be a number representing the length of
a sub-sequence of Satf _levels(g)—the MRY last satisfac-
tion levels of goal g. Remove is defined exactly like Refocus:

‘no’ if |Satf _levels(g)| < MRY(g)
Remove(g,I) := { ‘yes’ if o(g) < 0,

3

no’ otherwise,

where d(g) is the average change from one satisfaction level
of g to the next in the agent’s ‘memory’, and 0, is the
threshold above which d(g) must be for g to remain an
intention.

Let MI be the currently most intense goal defined as
MI := arg max D(g).

geG

We define two focusing strategies for sets of intentions:

the over-optimistic strategy and the compatibility strategy.

4.2.1. QOver-optimistic strategy

This strategy ignores compatibility issues between goals.
In this sense, the agent is (over) optimistic that it can suc-
cessfully simultaneously pursue goals which are
incompatible.

Add MI to I only if MI ¢ I. If MI is added to I, clear
MI’s record of satisfaction levels, that is, let
Satf _levels(MI) be the empty sequence.

Next: For every g € I, if |I| > 1 and Remove(g,I) returns
‘yes’, then remove g from 1.

4.2.2. Compatibility strategy

Add MI to I only if MI ¢ I and there does not exists a
g €1 such that g ¢ Cpbl(MI). If MI is added to I,
clear MI’s record of satisfaction levels, that is, let
Satf _levels(MI) be the empty sequence.

Next: For every g € [, if |I| > 1 and Remove(g,I) returns
‘yes’, then remove g from 1.

There is one case which must still be dealt with in the
compatibility strategy: Suppose for some
g€ G,g ¢ Cpbl(g). Further suppose that I ={g} (i.e.,
|I| = 1) and g is and remains the most intensely desired
goal. Now, g may not be added to I because it is incompat-
ible with g, no other goal will be attempted to be added to 7
and g may not be removed while it is the only intention,
even if Remove(g, I) returns ‘yes’. What could easily happen
in this case is that g will continually increase in desire level,
g’s average satisfaction level will remain below the change
threshold (ie., 6(g) < 0, remains true), and the agent
continues to pursue only g. To remedy this ‘locked’
situation, the following procedure is run after the previous
‘add” and ‘remove’ procedures are attempted. If
I1={g},g ¢ Cpbl(MI) and Remove(g,I) returns ‘yes’, then
remove g from I, add MI to I and clear MI’s record of
satisfaction levels.

4.2.3. A new desire function
The old rule (in new notation) is still available:

D(g) — D(g) + W(g)(1 — a4(g, B)), 3)

where the satisfaction an agent gets for a goal g at its cur-
rent belief state is defined as

O-/i(gaB) = Zo-(ga S)B(S)a

ses
where (g, s) is defined above and B(s) is the probability of
being in state s.

We have found through experimentation that when an
intention-goal’s desire levels are updated, non-intention-
goals may not get the opportunity to become intentions.
In other words, it may happen that whenever new non-
intention-goals are considered to become intentions, they
are always ‘dominated’ by goals with higher levels of desire
which are already intentions. By disallowing intentions’
desire levels to increase, non-intentions get the opportunity
to ‘catch up’ with their desire levels. A new form of the

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20 9

desire update rule is thus proposed for this version of the
architecture:

D(g) — D(g) + (1 —i(l,2))W(g)(1 — a(g, B)) (4)

The term (1 — i(Z, g)) in (4) ensures that a goal’s desire level
changes if and only if the goal is not an intention.

Both rules (3) and (4) have the effect that as o4(g, B)
tends to one (total satisfaction), the intensity with which
the incumbent goal is desired does not increase. On the
other hand, as gg(g,B) becomes smaller (more dissatisfac-
tion), the goal’s intensity is incremented—by at most its
weight of importance W (g). A goal’s intensity should drop
the more it is being satisfied.

However, update rule (3) which is independent of
whether a goal is an intention may still result in better per-
formance in particular domains. (This question needs more
research.) It is thus left up to the agent designer to define
which form of the rule better suits the application domain.

4.3. Planning by policy generation

In this section, we shall see how the planner can be
extended to compute a policy which pursues several goals
simultaneously. Goal weights are also incorporated into
the action-state value function.

The main function used in the Plan procedure is the
HPB action-state value function Oy, giving the value of
some action a, conditioned on the current belief state B
and look-ahead depth /:

Opps(a, B, 1, k) - = i(1,8,)W(g)ps(a,g,B) +---
+i(Z,8,)W(g,)pp(a, g, B) — kp(a,B)
+])ZPF(Z‘CI,B)I{I)’/I?}QHPB(LI B 1,k —1),

zeZ

Q;IPB(aanla 1) = i(lvgl)W(gl)pﬁ(aaglvB) +e
+i(1,8,)W(g,)pp(a, &, B) — Kp(a, B),

where

ei(l,g)=1ifg, €l elsei(l,g)=0ifg; ¢ I,

e W(g) is the weight for achieving g,

e (g,,...,g,) is an ordering of the goals in G,

® ps(-) and xp(-) are the expected (w.r.t. a belief state)
values of p(-), resp., x(-),

e B = SE(a,z,B),

e 7 is the normal POMDP discount factor and

e SE is the normal POMDP state estimation function.

Now, instead of Plan returning a single action (assuming
h > 1), Plan generates a tree-structures plan of depth #,
conditioned on observations, that is, a policy. With a policy
of depth &, an agent can execute a sequence of up to /&
actions, where the choice of exactly which action to take
at each step depends on the observation received just prior.

arg max Q;ps(a, B, 1, h) is used at every choice point to con-
acA

struct the policy.

Fig. 2 is a graphical example of a policy with two actions
and two observations. The agent is assumed to be in belief
state B when the policy is generated. At every belief state
node (triangles), the optimal action is recommended. After
an action is performed, all/both observations are possible
and thus considered. There is thus a choice at every o node;
however, it is not a choice for the agent, rather, it is a
choice for the environment which observation to send to
the agent. Given the action performed, for every possible
observation, a different belief state is generated. At every

> node (belief state), arg max Ojp,(a,>,1,h) is applied to
acA

obs1 D
yO<:

obs2 D

act2 obs1 D

\Oﬁp

obs1 D

obs?2 D

D act2

obs1

obs2

obs1

obs2 D

\Y4

Fig. 2. An example policy of depth 3.

10 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

determine the action to perform there. (In theory, the agent
can choose to perform any action at these > nodes, but our
agent will take the recommendations of POMDP theory
for optimal behavior.) The agent will perform act2 first,
then depending on whether obs1l or obs2 in sensed, the
agent should next (according to the policy) perform act? ,
respectively, actl . Then a third action will be performed
according to the policy and conditional on which observa-
tion is sensed.

4.4. Introducing a plan library

Another extension of the basic architecture is that a lan-
guage based on the attributes is introduced. The language
L is the set of all sentences. Let ¢ and y be sentences. Then
the following are also sentences.

e true,

e (atrb : v), i.e., an attribute-value pair,
« pAY,

e PV,

[] —|(f),

If a sentence ¢ is satisfied or true in a state s, we write
slk¢. The semantics of L is defined by

e slFtrue always,

o sl-(atrb : v) <= (atrb : v) € s,
e sl ANy <= slk¢ and slky,
o slFp V) <= slk¢ or sk,

e slF-¢ <= not slk¢.

Let @ be a sentence in L. When a sentence in L appears
in a written policy (see below), it is called a context.

We define two kinds of plans: an attribute condition plan
isatriple I : @ : w, and a belief state condition plan is a triple
I: B : 7, where [is a set of intentions, n is a POMDP pol-
icy, @ is a context and B is a belief state. All plans are
stored in a plan library.

The idea is that attribute condition plans (abbreviation:
a-plans) are written by agent designers and are available
for use when the agent is deployed. Roughly speaking,
belief state condition plans (abbreviation: b-plans) are
automatically generated by a POMDP planner and stored
when no a-plan is found which ‘matches’ the agent’s cur-
rent belief state and intention set.

4.4.1. Attribute condition plans
Policies in a-plans are of two kinds:

Definition 1 (Most likely context). An a-plan most-likely-
context policy is either an action or has the form

a:{(®,m),.... (D, 7))},

where «a is an action, the @; are contexts, and each of the 7«;
is one of the two kinds of a-plan policies.

At belief state B, the degree of belief of @ is
Degree(®,B) := Z B(s).

seS. sl

We abbreviate “most-likely-context” as ‘ml’. If an ml
policy © = a : ML is adopted for execution and it is not sim-
ply an action, then a is executed, an observation is received,
the current belief state is updated to B’ and finally the pol-
icy which is paired with the most likely context is executed
— that is,

arg max Degree(®' B')

s (¥n)eML
is executed.

Definition 2 (First applicable context). An a-plan first-
applicable-context policy is either an action or has the form
a: (& ><p,m),..., (P, <p,, 7)),

where a is an action, the @; are contexts, b<:= {<, >}, the
p; are probabilities, and each of the n; is one of the two
kinds of a-plan policies.

We abbreviate “first-applicable-context” as ‘fa’. If an fa
policy &= = a : FA is adopted for execution and it is not sim-
ply an action, then «a is executed, an observation is received,
the current belief state is updated to B’ and finally the pol-
icy which is paired with the first context which satisfies its
probability inequality is executed - that is, 7; is executed
such that Degree(®;,B') <ip, and (®; < p, ;) € FA and
there is no (®;><p;,n;) € FA such that j <i for which
Degree(®;,B') < p;. If no context in the sequence
((Py>apy,m),..., (P, p,,m,)) satisfies its inequality,
the a-plan of which the policy is a part is regarded as hav-
ing finished, that is, the control loop is then in a position
where a fresh plan in the plan library is sought.

In the following example a-plan policy, an agent must
move around in a six-by-six grid world to collect items.
Suppose the plan selected from the library is /: @ : & with
I being {six — one,collect}, ® being

((direction:North)V (direction
:West)) A—(x — coord
:6) A=(y — coord: 1)
and 7 being
move — forward : {
((item — here : yes), take — item),
((item — here : no),move — forward : (
((x — coord : 6),(direction: North)
> 0.9, turn — left),
((y — coord:1),(direction: West)
> 0.9, turn — right),

(true < 1),move — forward))}

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20 11

One can see that =« itself is an ml policy, but embedded
inside it is an fa policy.

Algorithm 2. FindPolicy

impractical for pursuing /. The measure of similarity will
be the sum of differences between satisfaction levels. Note
that an intention’s satisfaction levels can only be compared
if the intention appears in both intention sets under consid-
eration. We denote the similarity between two intention

Algorithm 2: FindPolicy

Input: B current belief state

Input: 7" current intention set

Input: 6;: intention-set threshold

Input: 6,: belief state threshold

Input: PlanLib: the plan library

Input: h: planning horizon / policy depth
Output: A POMDP policy of depth h

1 ApplicablePlans < {1 : & : 7' € PlanLib | IS(I°, ") > 6,};

2 if ApplicablePlans # () then

3 L return arg max, i, qiib.g.rlive ApplicablePlans Degree(®, B);

4 if ApplicablePlans = () then

| ApplicablePlans — {I"* : B" : 7" € PlanLib | BS(I®", 1", B, B'*) > 6,};

6 if ApplicablePlans # () then

L ApplicablePlans « {1 : B : 7 € ApplicablePlans | Simg(B'™®, B®") > 6,};

s if ApplicablePlans # () then

| return argmax,u, s, piiv.piive Applicabiepians Simp(B, B);

10 if ApplicablePlans = () then
11 T «— Policy(B*, 1" h);
12 Add Iev" . B % to PlanLib;

cur.

13 return 7"

With respect to a-plans, whether two intention sets
match will be determined by how many goals they have
in common. Thus, the similarity between I and I'® can
be determined as follows.

deGﬁgel"“’ml"bl

[S([C‘W”Iﬁb) = |Icur U [lib|

IS(-) lies in [0, 1]. I and 1" need not have equal cardinal-
ity. Larger values of IS(-) mean more similarity/ closer
match. The agent designer can decide what value of
IS(1,1') constitutes a ‘match’ between 7 and I’ (see the dis-
cussion on ‘“‘thresholds” below).

4.4.2. Belief state condition plans

Recall that b-plans have the form 7: B : m, where [is a
set of intentions, B is a belief state, and = is a POMDP pol-
icy. What constitutes a match between intention sets with
respect to b-plans is different: Policies generated at two
times ¢ and ¢ might be significantly different for the same
(similar) context(s) if the satisfaction levels of the inten-
tions are significantly different at the two times. This is
an important insight because policies of b-plans are gener-
ated, not written. Even though IS(/", I'*) may constitute a
‘match’ (with I'® in a b-plan), n'” might be completely

sets 7" and I'® as BS(I*,1'"", B*",B") and define it as
follows.

BS(I°" I B B'"*) .= Pecagerrnyn] — llop(g, B*") — ap(g, B™)]|

|[cur U [Iibl

where ||x|| denotes the absolute value of x. BS() lies in
[0,1]. I and I"” need not have equal cardinality. Larger
values of BS(-) mean more similarity/ closer match. The
agent designer can decide what value of BS(Z,1’, B, B") con-
stitutes a ‘match’ between I and I'.

For a fixed pair of intention sets, BS(I°", 1" B*" B"") <
IS(I°" I'"). That is, BS(-) is a stronger measure of similar-
ity than IS(-). This is because with BS(-), intention satisfac-
tion levels must also be similar. The stronger measure is
required to filter out b-plans that seem similar when judged
only on the commonality of their intentions, but not on
their satisfaction levels. And there may be several b-plans
in the library which would be judged similar by IS(-), but
they have been added to the library exactly because they
are indeed different when their satisfaction levels are taken
into account. The following example should make this
clear. Suppose that the following two b-plans are in the
library: {gl,g4}:B;:m and {gl,g4}:B,:m, where
B] = {(Sl, 095), (SQ, 005), (S3, 0), (S4, O)} and B2 = {(Sl, O),

12 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

(82,0), (53,0.05), (54,0.95)}. And suppose gl is most satis-
fied when the agent is in sy, and g4 is most satisfied when
the agent is in s4. A policy to pursue {gl, g4} when starting
in By would rather suggest actions to move towards sy,
while a policy to pursue {g1, g4} when starting in B, would
rather suggest actions to move towards s;. The point is that
although the two b-plans are identical with respect to the
intention set, they have very different policies, due to their
different belief states (and thus satisfaction levels).

The concept of KL divergence or cross-entropy
(Kullback, 1968; Csiszar, 1975) could be used as a measure
of similarity between two belief states. Although not as well
supported by information theory as cross entropy, we use a
simpler (more intuitive) definition of similarity and easier
to implement. Also, the measure presented and used here
is symmetrical and always defined, whereas cross-entropy
may give different values for the similarity of B from B,
and of B’ from B, and may be undefined in some cases.
We define the similarity function for belief states as

Simy(B,B') =1 — %ZHB(S) —B(s)||.

seS

4.4.3. Summary

To “execute policy n” (where m has horizon/depth #)
means to perform up to / actions as recommended by 7.
‘Exhausting’ a policy, that is, using all /z actions per policy,
may be inadvisable in many domains, because actions dee-
per in a policy will be less optimal. Suppose 1 < A~ < & is
the agent-designer-defined number of actions the agent will
execute per policy. No policy will be sought in the library,
nor will a new policy be generated until the first 4~ action
recommendations of the current policy have been executed.
One may ask, If only #° actions are executed per policy,
why not simply generate policies only to depth A< and
exhaust those shorter policies? The answer is because then
all actions executed will be worse estimates of what good
actions are; the search depth beyond A~ provides
information which improves recommendations before and
up to h*.

One may be concerned that a policy becomes ‘stale’ or
inapplicable while being executed, and that seeking or gen-
erating ‘fresh’ policies at every iteration keeps action selec-
tion relevant in a dynamic world. However, written policies
(in a-plans) should preferably have the form of generated
policies, and generated policies (in b-plans) can deal with
all situations understood by the agent: It is assumed that
each observation distinguishable by the agent, identifies a
particular state of the world, as far as the agent’s sensors
allow. Hence, if a policy considers every observation at
its choice nodes, the policy will have a recommended (for
written policies) or optimal (for generated policies) action,
no matter the state of the world. However, writing or
generating policies with far horizons (e.g., &> 7) is
impractical. With large /4, an agent will take relatively long
to generate a policy and thus lose its reactiveness.

Reactiveness is especially important in highly dynamic
environments.

Suppose that the agent currently has a belief state B
and an intention set /. First, the agent will scan through
all a-plans, selecting all those which ‘match’ /. From this
set, the agent will execute the policy 7 of the a-plan/: & : «
whose attribute condition has the highest degree of belief at
B 1f the set of a-plans matching /" is empty, the agent
will scan through all b-plans, selecting all those which
‘match’ 7. From this set, the agent will execute the policy
7 of the b-plan 7 : B : © whose belief state is ‘most similar’
to B*". If the set of b-plans matching /" is empty, or there
is no b-plan with belief state similar to B, then the agent
will generate policy n°, execute it and store /" : B : "
in the plan library for possible reuse later. The high-level
planning process is depicted by the diagram in Fig. 3.

Two thresholds are involved with determining when
library plans are applicable and how plans are dealt with:
the intention-set threshold (abbreviation: 0;) and the
belief-state threshold (abbreviation: 0,). The former is
involved in both a-plans and b-plans, and the latter is
involved only in b-plans.

The FindPolicy procedure (Algo. 2) formally defines
what policy the agent will execute whenever the agent seeks
a policy, and the procedure defines when and how new
plans are added to the plan library.

5. Evaluation of HPB agent performance

The vanilla POMDP planner is used as a baseline.’ A set
of experiments was run on the original HPB architecture
for comparison with the extended version and with the
vanilla POMDP planner.

First, the simulated domain is explained and specified,
including the parameters for each of the three controllers
(planners/architectures). Second, the results of the three
controllers deployed in the domain are presented and ana-
lyzed for various parameter settings.

5.1. Simulation

We performed tests with a six-by-six (columns-by-rows)
grid-world simulation, where the agent’s task is to visit
each of the four corners, and to collect twelve items ran-
domly scattered. The architecture and domain are coded
in Python; no agent programming language was used. Each
of the three controllers was optimized to perform as well as
possible (given the time constraints for this research).
Before giving the details for each case, we present the
details which are common to all.

States are quadruples (x,y,d,i), with x,y € {1,...,6}
being the coordinates of the agent’s position in the world,
d € {North,East,West,South} the direction it is fac-
ing, and i € {0,1},i = 1 if an item is present in the cell with

! Except for the mean-as-threshold method mentioned below.

G. Rens, D. Moodley ! Cognitive Systems Research 43 (2017) 1-20 13

Plan Library
a-plans
Reached end -
f policy Execute next action
Lo @ m o . .
I: @im in policy
Loy d;m: T
b-plans
LBy
LBy 1,
H Applicable
I:Ba m _Cl_lec_k_ _ plan e>'<1sts in Adopt policy
plan library
A
1
1
1
1
1
1
! Add Generate policy with
o e e e o o e o o

POMDP planner

Fig. 3. A flow diagram of the planning process in the new version of the HPB agent architecture.

the agent, else i = 0. The agent can perform five actions
{left,right, forward, see, take}, meaning, turn left,
turn right, move one cell forward, see whether an item is
present and take an item. The only observation possible
when executing one of the physical actions is obsNil,
the null observation, and see has possible observations
from the set {0, 1} for whether the agent sees the presence
of an item (1) or not (0).

Next, we define the possible outcomes for each action:
When the agent turns left or right, it can get stuck in the
same direction, turn 90° or overshoots by 90°. When the
agent moves forward, it moves one cell in the direction it
is facing or it gets stuck and does not move. The agent
can see an item or see nothing (no item in the cell), and tak-
ing is deterministic (if there is an item present, it will be col-
lected with certainty, if the agent executes take). All
actions except take are designed so that the correct out-
come is achieved 95% of the time and incorrect outcomes
are achieved 5% of the time.

The agent looks four steps into the future while planning
(h = 4), unless stated otherwise. The discount factor is set
to 0.9. Desire update rule (3) is used.

For each experiment, 30 trials were run and averages are
reported. For each trial, the agent starts in a random loca-
tion and performs between 100 and 400 actions. In order to
make planning more efficient, all belief states were com-
pressed using the mean-as-threshold method (Rens &
Ferrein, 2013). The experiments were performed on a PC
with an Intel® Core ™ i7-2630QM CPU @ 2.0 GHz and
8 GB RAM.

5.1.1. Vanilla POMDP planner
The reward function R(a,s) returns

o(1 = Cuise /10) + (1 — &) (5(1 — Tyt /10 + E + 5)/11) — FimInd(x,y)/5.

Let’s break it down:

e C,y 1s the Manhattan distance between the cell repre-
sented by s and the closest corner cell.

e 10 is the maximum Manhattan distance between any
two cells, for instance, moving from corner (0,0) to cor-
ner (6,6) requires ten forward actions.

e 1 — Cyy/10 is the normalized inverse Manhattan dis-
tance between the cell represented by s and the closest
corner cell.

e Similarly, 1 — Ty, /10 is the normalized inverse Manhat-
tan distance between the cell represented by s and the
cell containing the closest item.

e o trades off the importance of visiting corners and col-
lecting items.

e In 5(1 — Ty /10 + E+ 5)/11, the first 5 was found to
improve performance in general. The second 5, the E
and the 11 are used in an attempt to normalize the term
to the unit range so that the trade-off factor can be
applied more reasonably.

e Fimind(x,y) is the familiarity index of cell (x,y). It is
incremented by 1 each time cell (x, y) is visited. Division
by 5 was found to improve general performance. It has a
similar motivation as the satisfaction function in the
extended HPB architecture, but cruder.

14 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

e Term —Fimind(x,y)/5 thus steers the agent away from
cells visited often. This is especially useful to stop the
agent from getting stuck in corners.

The reader should notice the effort to optimize the
agent’s performance as much as possible while staying
within the definition of regular POMDP theory: Many dif-
ferent parameters were tried and several hours spent on
optimization. The reader’s attention is also drawn to the
ad hocness and complexity of the reward function.

5.1.2. Original HPB architecture

The goals are G={(1,1),(1,6),(6,1),(6,6),
collect}. The satisfaction function is designed to pursue
corner visiting:

Satf (g,s) = 1 — dist/10,

where 10 is the maximum Manhattan distance between two
cells in the world and dist is the Manhattan distance
between the cells represented by g and s. The preference
function is designed to make the agent collect items:

Pref(a,s) = (1 — dist/10 + E) /6,

where £ =0 unless a is the take action and there is
(believed to be) an item in the cell corresponding to state
s, in which case, £ =5. The threshold 0, — amount of
change in satisfaction levels, involved in determining the
intention set at each iteration — is set to 0.05, MRY is set
to 5. These two parameters are the same for the extended
version. Desire levels are initially set to zero for all goals.

5.1.3. Extended HPB architecture

The goals are still {(1,1),(1,6),(6,1),(6,6),
collect}, and the corner goals are marked mutually
incompatible. That is,

e Cpbl((1,1))={(1,1),collect},
e Cpbl((1,6)) ={(1,6),collect},
e Cpbl((6,1)) ={(6,1),collect},
e Cpbl((6,6)) ={(6,6),collect},
e Cpbl(collect)={collect,(1,1),(1,6),(6,1),(6,6)}.

Experiments were performed with different weight-
combinations (W (g)) assigned for each experiment. When
g €{(1,1),(1,6),(6, 1), (6, 6)}, we let

pla,g,s) =1 —dist/10,

where dist is the Manhattan distance between the cells rep-
resented by g and s — the action « is ignored when
g €{(1,1).(1,6),(6,1),(6, 6)}. And we let

pla,collect,s) = (1 —dist/10 + E 4+ 5)/6,

where dist is the Manhattan distance between the cell rep-
resented by s and the closest cell containing an item, and
E =0 unless a is the take action and there is (believed
to be) an item in the cell corresponding to state s. The cost
function k always returns 0 for this domain. The satisfac-
tion function a(g, s) is defined similarly to the reward func-

tion: it returns (1 — dist/10 + E + 5)/11, E = 5 if there is no
item in s, else £ = —5. In the reward function, the agent is
rewarded for taking an item when there is one to take,
whereas in the satisfaction function, the agent is more sat-
isfied when there is no item in the cell, that is, when the
environment is cleaner. Note that the values returned by
p, k and o as defined here are in [0, 1]. Otherwise, the speci-
fic design of p and ¢ are to maximize performance, that is,
item collection and corner visiting.

The plan library only stored and reused b-plans; a-plans
were not made use of. 0; and 0, were both set to 0.9.

5.2. Results

5.2.1. High-level comparison of the three controllers

Table 1 shows the results of the agent controlled by the
vanilla POMDP planner. Recall that o is not formally a
part of a POMDP model, but is used in order to compare
vanilla POMDP planning to the other controllers in this
grid-world simulation. « trades corner visiting off with item
collection, “IC” indicates the average number of items col-
lected, “(x,y)” indicated the average number of times cor-
ner (x,y) was visited and “Duration” is the average
duration (in seconds) of the thirty trials for each of the a
values. A single trial is 100 actions. Note that as the
trade-off factor favours corner visiting, items collected
decreases. However, corners visited does not change with
o. There is thus difficulty in directing a POMDP planner
to pursue particular tasks or goals without re-defining the
reward function for each new task. That is, using a trade-
off factor is insufficient. Moreover, focusing on individual
corners would complicate the reward function even more
than it already is. We shall refer to these results again in
comparison to the two other controllers below.

Table 2 shows the results of the agent controlled by the
original HPB architecture. Note that as the trade-off factor
favours corner visiting, items collected decreases and cor-
ners visited increases. So this is an improvement on the
vanilla POMDP controller. However, focusing on individ-
ual corners is still not possible in this architecture. The rea-
son why the total number of corners visited does not
increase (proportionally to o) for « > 0.5 is because the
agent is limited to 100 actions. Also note that trials take
approximately half as long as with the vanilla POMDP
controller. This must be due to a combination of the more
modular definition of rewards in the HPB architecture and
only one goal being pursued at a time. A more detailed
analysis for the improvement in running time is beyond
the scope of this work.

Table 3 shows the results of the agent controlled by the
extended HPB architecture. The agent thus has a plan
library with the ability to store policies and reuse them
when appropriate. In this particular experiment, the agent
performs two actions for every policy generated or reused,
and the goals of visiting corners are marked as disjoint (see
next subsection). Note that, in Table 3, the weight of
importance for collecting items (W (collect)) is

Table 1
Performance of vanilla POMDP planner; 100 actions per trial.
o IC (L1 (1,6) (6,1) (6,6) Duration
0 9.5 1.0 1.0 1.0 1.1 240
0.25 8.4 1.2 1.1 1.5 1.2 281
0.5 49 1.7 1.5 1.6 1.5 272
0.75 2.1 1.6 1.7 1.8 1.8 284
1 0.1 1.8 1.8 2.0 1.9 278
Table 2
Performance of original HPB architecture; 100 actions per trial.
o 1C (L, (1,6) (6,1) (6,6) Duration
0 9.7 0.2 0.3 0.2 0.1 162
0.25 7.0 1.2 1.3 1.1 1.4 150
0.5 2.6 2.2 2.3 1.9 2.4 125
0.75 1.3 3.0 2.5 2.4 2.5 121
1 0.3 2.3 2.3 23 2.5 130
Table 3
Performance of extended HPB architecture; 100 actions per trial.
W(collect) 1C (L1 (1,6) (6,1) (6,6) Duration
1 9.7 0.4 0.4 0.4 0.5 41
0.75 9.5 0.9 0.8 1.0 0.6 72
0.5 6.6 1.2 1.2 0.9 1.2 122
0.25 2.6 2.6 22 22 2.2 58
0 0.2 34 3.2 34 33 88

analogous in meaning to 1 — o with reference to the exper-
iments reported in Tables 1 and 2. In the case of Table 3,
corner
(1 —=W(collect))/4. Note that task duration improves

the

significantly (on average) while overall

weights

visiting

are

to

performance

remains the same as with the original HPB architecture
(Table 2) or improves. The overall average task/trial dura-

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20 15

tions are 271 (vanilla POMDP), 138 (original HPB) and 76
(extended HPB).

5.2.2. Goal compatibility

Next, we investigate whether making goals disjoint
(when appropriate) actually improves performance. Tables
4 and 5 report on the same set of experiment designs, dif-
fering only on whether corner visiting is not disjoint (no
joint goal pursuit restrictions), respectively, disjoint (as
specified by the compatibility sets Cpb/(-) in Section 5.1.3).
Weight assignments appear in columns with header “Wi”,
and the column just to the right — with header “Res.” —
gives the result for the goal in the corresponding row.
Task/trial duration is essentially the same in both tables/-
cases. We see from Table 5 that when it is specified that
two or more corners may not be pursued simultaneously,
the agent’s behavior is more or less as desired, with one
exception. In the case of the third weight assignment
(W3), the agent hardly visits corners (1,6) and (6,1). This
is likely because they are relatively far apart; in the case
of W6, for instance, corners (1,1) and (1,6) are visited at
a relatively high frequency. In the case where corner visit-
ing is unrestricted, performance breaks down. For instance,
in Table 4, only cases W1, W4 and W5 seem to have satis-
factory performance. In summary, allowing for the specifi-
cation of compatible/incompatible goals seems like a useful
feature in an agent architecture with multiple goals. In the
rest of the experiments, agents are specified to allow the
pursuit of only a single corner at a time.

5.2.3. Effects of the plan library

In the previous experiments, a plan library was not used.
In the rest of the experiments, a plan library is always used.
However, the library contains no (written) a-plans, only
(generated) b-plans are stored and reused. In the tables,
“PL size” refers to the number of plans stored in the plan

Table 4

Performance of extended HPB architecture with unrestricted corner visiting, without a plan library; 100 actions per trial.
Goal Wi Res. w2 Res. W3 Res. w4 Res. W5 Res. W6 Res \\i Res.
(1,1) .0625 0.5 1875 0.4 0 0.2 0 0.2 0 0.0 .5 0.8 .333 3.8
(1,6) .0625 0.3 1875 0.3 .5 0.1 3 1.6 i 6.8 .5 0.5 .333 0.1
(6,1) .0625 0.5 1875 0.2 .5 0.0 0 0.0 0 0.0 0 0.0 .333 0.0
(6,6) .0625 0.2 1875 0.2 0 1.3 0 0.0 0 0.0 0 0.0 0 0.0

collect 5 9.7 25 6.1 0 2.8 7 5.2 3 1.8 0 0.5 0 1.1
Dur. 131 137 141 123 127 136 142

Table 5

Performance of extended HPB architecture with disjoint corner visiting, without a plan library; 100 actions per trial.
Goal W1 Res. w2 Res. W3 Res. w4 Res. W5 Res. Woé Res w7 Res.
(1,1) .0625 1.0 1875 3.0 0 1.0 0 0.1 0 0.1 .5 34 .333 3.9
(1,6) .0625 0.8 1875 2.4 .5 0.8 3 2.0 i 3.8 .5 3.8 .333 2.6
(6,1) .0625 0.4 1875 2.6 .5 0.6 0 0.0 0 0.0 0 0.0 .333 2.3
(6,6) .0625 0.4 1875 2.5 0 0.9 0 0.9 0 0.1 0 0.0 0 1.8

collect 5 9.2 .25 2.1 0 0.6 7 4.7 3 1.3 0 0.1 0 0.0
Dur. 131 132 154 130 129 146 140

16 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

library at the end of a trial, and “# Reu.” refers to the
number of times any stored plan was retrieved (and reused)
per trial. Recall that the look-ahead depth is by default
h = 4 in our experiments. Table 6 reports on results where
only the first action of a policy, whether freshly generated
or retrieved from the library, is executed. After every single
action, a new policy of depth 4 is generated or retrieved
and only the first action executed. Table 7 reports on
results where the only difference is that the first rwo actions
are executed for every policy. We compare results in Table 5
(no library) with Table 7 (library; one action) with Table 8
(library; two actions).

The first thing to notice is that when policies are reused
and single actions executed (Table 6) approximately 1/3 to
1/2 of cached plans are retrieved and reused, and a corre-

Table 6
Performance of extended HPB architecture; single action execution per
policy; 100 actions per trial.

W1 Res. W2 Res. W3 Res. W4 Res.

(1,1) .0625 0.6 1875 3.0 0 0.2 0 0.3
(1,6) .0625 0.5 1875 2.3 1 1.0 0 0.2
(6,1) .0625 0.8 1875 2.4 0 0.0 0 0.4
(6,6) .0625 0.7 1875 2.6 0 0.0 0 0.2
collect 75 8.7 25 1.9 0 0.3 1 8.1
Dur. 116 109 16 72
PL size 87 78 12 50
Reu. 13 22 88 50
W5 Res. W6 Res. W7 Res. W8 Res.
(1,1) 0 1.5 0 1.5 0 0.2 0 0.2
(1,6) .5 1.1 3 0.1 3 2.6 i 2.0
(6,1) 5 1.2 i 34 0 0.0 0 0.0
(6,6) 0 1.3 0 1.9 0 0.0 0 0.0
collect 0 0.1 0 0.3 i 3.8 3 0.9
Dur. 112 79 93 42
PL size 75 53 69 27
Reu. 25 47 31 73
Table 7

Performance of extended HPB architecture; two actions executed per
policy; 100 actions per trial.

W1 Res. W2 Res. W3 Res. W4 Res.

(1,1) .0625 0.9 1875 2.6 0 0.2 0 0.4
(1,6) 0625 0.8 1875 2.2 1 0.8 0 0.4
(6,1) .0625 1.0 1875 2.2 0 0.0 0 0.4
(6,6) 0625 0.6 1875 2.2 0 0.0 0 0.5
collect 75 9.5 25 2.6 0 0.3 1 9.7
Dur. 72 58 9 41
PL size 47 44 7 33
Reu. 3 6 43 17
W5 Res. W6 Res. W7 Res. W8 Res.
(1,1) 0 1.6 0 1.3 0 0.2 0 0.3
(1,6) 5 0.6 3 0.2 3 2.5 i 2.9
(6,1) .5 0.6 i 32 0 0.1 0 0.0
(6,6) 0 1.1 0 1.6 0 0.1 0 0.0
collect 0 0.2 0 0.5 i 4.8 3 0.9
Dur. 55 47 65 37
PL size 40 35 39 22
Reu. 10 15 11 28

sponding saving in task duration is accomplished over task
duration when no plans are stored (Table 5). Also notice
that there is no significant difference in task quality. Weight
assignment 3 (W3) in Table 6 produces undesired perfor-
mance. This seems to be due to how corner visiting is
defined: a corner is visited if at the previous iteration, the
agent was not in the particular corner. So if there is no rea-
son for the agent to move away from the corner (to pursue
other goals), then it will not move out of the corner to
allow it to gain a reward for revisiting. This “undesirable’

behavior might actually be acceptable with a different def-

inition of the goal, or should be solved with a more sophis-
ticated reward function definition.

When the agent uses one action per policy (Table 6), on
average, trial duration is 80 s, library size is 56 and the
number of reused plans is 44. When the agent uses two
actions per policy (Table 7), on average, trial duration is
48 s, library size is 33 and the number of reused plans is
17. Hence, one can observe that increasing the number of
actions used per policy decreases the number of policies
which must be generated and thus decreases the task dura-
tion, while task quality seems unaffected (e.g., avg. items
collected: 3.01 using one action per policy vs. 3.56 using
two actions per policy). Although we did not investigate
in detail the effect of using more/all /& actions per policy,
it is inadvisable to use more than, say, half the policy depth
because actions deeper in a policy will be less optimal.

5.2.4. Further insights

To gain a better understanding of how look-ahead
depth affects agent behavior, we performed a set of exper-
iments with # = 5. (This is the only time when 4 # 4.) Two
actions per policy were used, so these results (Table 8)
should be compared with the results in Table 7. As
expected, task quality improves at the cost of a significant
increase in task duration.

To gain a deeper sense for the behavior of agents based
on the extended HPD architecture, we performed a set of
experiments where the agent is allowed to perform 200
actions. One action per policy was used, so these results
(Table 9) should be compared with the results in Table 6.
As would be expected, trial duration approximately dou-
bles. Corners visited also doubles, but because there is a

Table 8
Performance of extended HPB architecture; 4 = 5; two actions executed
per policy; 100 actions per trial.

W1 Res. W2 Res. W7 Res. W8 Res.

(LD .0625 0.9 1875 2.8 0 0.2 0 0.1
(1,6) 0625 0.7 1875 2.3 3 2.7 7 39
(6,1) .0625 0.8 1875 2.4 0 0.1 0 0.0
(6,6) 0625 04 1875 2.6 0 0.1 0 0.0
collect 75 10.1 25 33 i 5.1 3 1.4
Dur. 350 338 232 161
PL size 48 44 38 25

Reu. 2 6 12 25

G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20 17

Table 9
Performance of extended HPB architecture; single action execution per
policy; 200 actions per trial.

Wi Res. W2 Res. W7 Res. W8 Res.

(1,1) .0625 1.7 1875 5.8 0 0.2 0 0.1
(1,6) .0625 1.5 875 55 3 3.5 7 5.0
(6,1) .0625 1.3 A875 5.5 0 0.0 0 0.0
(6,6) .0625 1.3 875 59 0 0.0 0 0.0
collect 75 9.2 25 2.2 7 4.6 3 1.8
Dur. 191 156 178 114
PL size 161 130 109 68
Reu. 39 70 91 132

limited number of items to collect (12 items), the number of
items collected does not significantly increase. What is per-
haps more interesting is that in the results of Table 6, the
average percentage of plans reused is 79, whereas when
double the amount of actions are performed (Table 9),
the average percentage of plans reused is 71. Our intuition
was that the percentage of reuse would increase monoton-
ically with an increase in actions performed. However, it
seems that the agent continued to find itself in unfamiliar
situations. Percentage plan reuse does increase to 114 when
400 actions are allowed per trial; see Table 10. However,
the variance in percentage per weight assignment case is
large (Table 9). Although in W7 (Table 9), visiting corner
(1,6) has weight 0.3, whereas in W8 it has a weight of
0.7, the corner is visited approximately 5.2 times in both
cases. This can be explained by noting that the ‘pathologi-
cal’ behavior the agent displays when only one corner has
non-zero weight is independent of the number of actions
performed by the agent.

5.2.5. Summary

These experiments highlight some important features of
the (latest) HPB architecture: It can be seen quite clearly
that the agent can be directed to certain corners and to col-
lect items with a dedication proportional to the weights
chosen by the agent designer for the respective goals. Each
of several goals can be pursued individually until satisfac-
torily achieved. Goals can be satisfied even while dealing
with stochastic actions and perceptions. Policy reuse effec-
tively reduces the time it takes to complete a task without
affecting task quality. There are still some cases when the

Table 10
Performance of extended HPB architecture; single action execution per
policy; 400 actions per trial.

W1 Res. W2 Res. W7 Res. W8 Res.

(1,1) 0625 2.7 1875 114 0 0.2 0 0.2
(1,6) .0625 3.1 1875 11.0 3 5.3 i 5.1
(6,1) .0625 2.3 1875 11.3 0 0.0 0 0.0
(6,6) .0625 2.9 1875 114 0 0.1 0 0.0
collect 75 10.8 .25 3.5 v 5.3 3 1.7
Dur. 400 262 171 114
PL size 315 205 144 82
Reu. 85 195 256 318

agent performs poorly, although the performance in these
cases might be improved by more careful engineering.

6. Related work

AgentSpeak " (Bauters et al., 2015) extends the BDI lan-
guage AgentSpeak (Rao, 1996) with on-demand proba-
bilistic planning in uncertain environments. AgentSpeak
has a plan library of plans, each plan being of the form

e:byN---ANb, —cy1; ;¢

where e is a triggering event, by, . . ., b, are belief literals and
c1,...,c, are actions or goals. Goals may become (internal)
triggering events. Events in the (external) environment may
also be perceived as triggering events. As triggering events
occur, they are placed in a set and periodically selected for
processing. An event is ‘processed’ by selecting an appro-
priate plan from the plan library with a matching triggering
event. A plan is appropriate if its context by A--- A b, 13 a
logical consequence of the agent’s set of base beliefs. The
goals and/or actions c;;---;c, of the selected appropriate
plan will be processed in sequence. If ¢; is an action, it is
executed; if it is a goal, it becomes an internal event which
may trigger the selection and execution of further plans. An
AgentSpeak agent maintains a set of intentions and each
intention is a stack of plans. Please refer to (Rao, 1996)
for details. When considering HPB plans, e is roughly anal-
ogous to I,b; A\ --- A b, 1s roughly analogous to @ or B and
c1;- -+ ; ¢, 18 roughly analogous to 7.

The contribution of AgentSpeak ™ is to allow a POMDP
planner to suggest the optimal action at a point in a (writ-
ten) plan where the agent designer feels that an optimal
action is required at that point, or that there is insufficient
information at the time of writing the plan to suggest a rea-
sonable action. In other words, there might be points in a
plan when actions are best chosen just before execution
so that they can be determined appropriately for the
agent’s current context.

Bauters et al. (2015) make use of only the first action of
any POMDP policy. Online POMDP planners do forward-
search to a given depth / (number of future actions). The
deeper the look-ahead depth, the more optimal the actions
in the policy. It might actually be a waste of computational
resources to discard the whole policy of depth / once it is
available. An agent could use its whole policy-tree and only
generate a new policy after it has finished using the current
policy to execute / actions. However, the actions closer to
the end of the policy tree will tend to be farther from opti-
mal than those closer to the tree’s root. In future work, we
would like to find ways to balance out the myopic take-
first-action approach and the over-optimistic take-all-
actions approach.

AgentSpeak ™’ does not have a mechanism for storing
and reusing generated policies.

An advantage of AgentSpeak " is that their written plans
can be more expressive than HPB plans: elements of their
plans are written in a language based on a fragment of

18 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

first-order logic, including n-ary predicates and variable
terms. Nonetheless, even though an HPB a-plan is propo-
sitional in nature (not relational), a policy has a reasonably
expressive tree structure with branching conditional on
observations of context sentences. A desirable feature that
AgentSpeak plans have that HPB plans lack is the ability
to call plans from within plans.

Some slightly less related work will now be reviewed.

Walczak, Braubach, Pokahr, and Lamersdorf (2007)
and Meneguzzi, Zorzo, Méra, and Luck (2007) have incor-
porated online plan generation into BDI systems, however
the planners deal only with deterministic actions and
observations.

Nair and Tambe (2005) use POMDP theory to coordi-
nate teams of agents. However, their framework is very dif-
ferent to our architecture. They use POMDP theory to
determine good role assignments of team members, not
for generating policies online.

Lim, Dias, Aylett, and Paiva (2008) provide a rather
sophisticated architecture for controlling the behavior of
an emotional agent. Their agents reason with several
classes of emotion and their agents are supposed to portray
emotional behavior, not simply to solve problems, but to
look believable to humans. Their architecture has a “con-
tinuous planner [...] that is capable of partial order plan-
ning and includes emotion-focused coping [...]” Their
work has a different application to ours, however, we could
take inspiration from them to improve the HPB
architecture.

Pereira, Gongalves, Dimuro, and Costa (2008) take a
different approach to use POMDPs to improve BDI agents.
By leveraging the relationship between POMDP and BDI
models, as discussed by Simari and Parsons (2006), they
devised an algorithm to extract BDI plans from optimal
POMDP policies. The main difference to our work is that
their policies are pre-generated and BDI-style rules are
extracted for all contingencies. The advantage is that no
(time-consuming) online plan/policy generation is neces-
sary. The disadvantage of their approach is that all the
BDI plans must be stores and every time the domain model
changes, a new POMDP must be solved and the policy-to-
BDI-plan algorithm must be run. It is not exactly clear
from their paper (Pereira et al., 2008) how or when inten-
tions are chosen. Although it is interesting to know the
relationship between POMDPs and BDI models (Simari
& Parsons,2006, 2011), we did not use any of these insights
in developing our architecture. However, the fact that the
HPB architecture does integrate the two frameworks, is
probably due to the existence of the relationship.

Rens, Ferrein, and Van der Poel (2009) also introduced
a hybrid POMDP-BDI architecture, but without a notion
of desire levels or satisfaction levels. Although their basic
approaches to combine the POMDP and BDI frameworks
is the same as ours, there are at least three major
differences: Firstly, they define their architecture in terms
of the GOLOG agent language (Boutilier, Reiter,
Soutchanski, & Thrun, 2000). Secondly, their approach

uses a computationally intensive method for deciding
whether to refocus; performing short policy look-aheads
to ascertain the most valuable goal to pursue.” Our
approach seems much more efficient. Thirdly, in their
approach, the agent cannot pursue several goals
concurrently.

Chen et al. (2013) incorporate probabilistic graphical
models into the BDI framework for plan selection in
stochastic environments. An agent maintains epistemic
states (with random variables) to model the uncertainty
about the stochastic environment, and corresponding belief
sets of the epistemic state are defined. The possible states of
the environment, according to sensory observations, and
their relationships are modeled using probabilistic graphi-
cal models: The uncertainty propagation is carried out by
Bayesian Networks and belief sets derived from the epis-
temic states trigger the selection of relevant plans from a
plan library. For cases when more than one plan is applica-
ble due to uncertainty in an agent’s beliefs, they propose a
utility-driven approach for plan selection, where utilities of
actions are modeled in influence diagrams. Our
architecture is different in that it does not have a library
of pre-supplied plans; in our architecture, policies (plans)
are generated online.

Although Nair and Tambe (2005) and Chen et al. (2013)
call their approaches hybrid, our architecture can arguably
more confidently be called hybrid because of its more
intimate integration of POMDP and BDI concepts.

None of the approaches mentioned maintain desire
levels for selecting intentions. The benefit of maintaining
desire levels is that intentions are not selected only accord-
ing what they offer with respect to their current expected
reward, but also according to when last they were achieved.

7. Conclusion

Our work focuses on providing high-level decision-
making capabilities for robots and agents who live in
stochastic, noisy environments, where multiple goals and
goal types must be pursued. We introduced a hybrid
POMDP-BDI agent architecture, which may display emer-
gent behavior, driven by the intensities of goal desires. In
the past decade, several BDIAs have been augmented with
capabilities to deal with uncertainty. The HPB architecture
is novel in that it can pursue multiple goals concurrently.
Goals must periodically be re-achieved, depending on the
goals’ desire levels, which change over time and in propor-
tion to how close the goals are to being satisfied.

A major benefit of the HPB architecture is that every
action recommended by a generated policy simultaneously
maximizes the agent’s reward with respect to pursuit of a//
the current intentions. As far as the authors are aware, no
other agent architecture does this.

2 Essentially, the goals in G are stacked in descending order of the value
of Vips(B,g,h™), where h~ < i and B is the current belief state. The goal
on top of the stack becomes the intention.

G. Rens, D. Moodley ! Cognitive Systems Research 43 (2017) 1-20 19

In previous work (Rens & Meyer, 2015), we argued that
maintenance goals like avoiding moist areas (or collecting
soil samples) should rather be viewed as a preference and
modeled as a POMDP reward function. And specific tasks
to complete (like collecting gas or keeping its battery
charged) should be modeled as BDI desires. The idea is
that while the agent is pursuing goals, it can concurrently
perform rewarding actions not directly related to its goals.
The architecture reported about in this paper does not
make a clear distinction between overt and maintenance
goals. In the new version of the architecture, that distinc-
tion can be simulated, however, now goals can be pursued
in a much more fine-grained way via the choice of goal-
weights (W (g)).

Another important feature brought into the new version
is the ability to mark sets of goals as disjoint thereby forc-
ing the agent to never pursue these goals concurrently, that
is, disjoint goals will never be in [simultaneously. We
showed that there are instances when specifying certain
goals as being incompatible improves performance. It
would be interesting to investigate whether and valuable
if the agent could determine on its own which goals should
not be pursued simultaneously.

Caching and reusing policies is an effective way of saving
plan generation time. We saw in the experiments that our
agent could perform actions up to 1.7 times faster (execut-
ing only the first action of a policy) with equivalent perfor-
mance by reusing policies. And we also saw that policies
are reused more, the more time the agent spends in the
domain, resulting in more computation/time saving for
longer tasks (in a local area).

Policies returned by Plan as defined in this paper are
optimal (for finite horizon planning). A major benefit of
a POMDP-based architecture is that the literature on
POMDP planning optimization (Cai, Liao, & Carin,
2009; Li, Cheung, & Liu, 2005; Murphy, 2000; Paquet,
Tobin, & Chaib-draa, 2005; Ross et al., 2008; Roy,
Gordon, & Thrun, 2005; Shani, Brafman, & Shimony,
2007; Shani, Pineau, & Kaplow, 2013) (for instance) can
be drawn upon to improve the speed with which policies
can be generated.

The expressivity of the language we use for describing
goals and for writing conditions in a-plans is relatively
low. AgentSpeak, for instance, has a richer language. The
language’s expressivity is mostly independent of the archi-
tecture. We thus chose to use a simple language to better
focus on the components we want to discuss.

In particular, HPB agents with (pre-written) a-plans
included in the plan library must still be assessed. There
is also scope for improving the focussing procedure. And
analyzing under what conditions the two forms of desire
update rule produce better performance must be investi-
gated. We could take some advice from Antos and Pfeffer
(2011). They provide a systematic methodology to incorpo-
rate emotion into a decision-theoretic framework, and also
provide ““a principled, domain-independent methodology
for generating heuristics in novel situations”.

There may be better methods for learning than policy
reuse. Policy reuse has its place when reasoning time or
power is limited, but given the time and power, more
sophisticated techniques could perhaps generate and store
shorter, more effective plans. For instance, when an agent
encounters a landmark with relatively high certainty, the
landmark’s location can be stored. The agent could then
augment its sensor readings with the stored location data
to reach the landmark more easily in future. Some objects
in the environment might not be stable, and their location
data should ‘degrade’ over time in proportion to the envi-
ronment’s dynamism.

Singh, Sardina, Padgham, and James (2011) provide a
method for learning which (pre-written) plans in a BDI sys-
tem should be executed in which contexts (given a selection
of context-applicable plans). Their approach can also
relearn context-plan matches as conditions change in
dynamic environments. Future versions of the HPB archi-
tecture could benefit from ideas in their work.

Prediction is an inherent part of POMDP planning, but
we would like our agents to predict much farther into the
future, and recognize critical events which it should deal
with or avoid. POMDP policies and pre-written plans are
more for local ‘tactical’ control. We need to bring in tech-
niques for the agent to think globally or ‘strategically’.

The set of intentions might change while executing a
policy. If the current set of intentions changes a lot, the cur-
rent policy might become inapplicable. This is a typical
BDI reconsideration issue. However, an HPB agent will
usually only perform very few actions before seeking a
new plan. Just as in the case with humans, our agent should
normally not get in trouble by assuming that things have
not changed significantly in the last few steps. If the envi-
ronment is so dynamic that relatively short plans can
become inappropriate before completion of the plans, then
the agent should have some more low-level, reactive sys-
tems to deal with the changes. In highly dynamical environ-
ments, the HPB ‘agent’ is better suited to being the high-
level reasoning module of a larger system.

The design of the HPB agent architecture is a medium-
to-long-term programme. We would like to keep improving
its capabilities to deal with unforeseen, complex events in a
changing, noisy environment. The next step is to rigorously
test the architecture using an HPB agent in more complex
simulated worlds.

References

Antos, D., & Pfeffer, A. (2011). Using emotions to enhance decision-
making. In T. Walsh (Ed.), Proceedings of the twenty-second Intl. Joint
Conf. on Artif. Intell. (IJCAI-11) (pp. 24-30). Menlo Park, CA: AAAI
Press.

Bauters, K., McAreavey, K., Hong, J., Chen, Y., Liu, W., Godo, L., &
Sierra, C. (2015). Probabilistic planning in agentspeak using the
pomdp framework. In 1. Hatzilygeroudis, V. Palade, & J. Prentzas
(Eds.), Combinations of intelligent methods and applications: Proceed-
ings of the fourth intl. Workshop, CIMA 2014. Smart innovation,
systems and technologies (Vol. 46). Springer.

http://refhub.elsevier.com/S1389-0417(16)30087-0/h0005
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0005
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0005
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0005
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0005
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0010

20 G. Rens, D. Moodley | Cognitive Systems Research 43 (2017) 1-20

Boutilier, C., Reiter, R., Soutchanski, M., & Thrun, S. (2000). Decision-
theoretic, high-level agent programming in the situation calculus. In
Proceedings of the seventeenth natl. conf. on artif. intell. (AAAI-00) and
of the twelfth conf. on innovative applications of artif. intell. (IAAI-00)
(pp. 355-362). Menlo Park, CA: AAAI Press.

Bratman, M. (1987). Intention, plans, and practical reason. Mas-
sachusetts/England: Harvard University Press.

Cai, C., Liao, X., & Carin, L. (2009). Learning to explore and exploit in
POMDPs. In NIPS (pp. 198-206).

Chen, Y., Hong, J., Liu, W., Godo, L., Sierra, C., & Loughlin, M. (2013).
Incorporating PGMs into a BDI architecture. In G. Boella, E. Elkind,
B. Savarimuthu, F. Dignum, & M. Purvis (Eds.), PRIMA 2013:
Principles and practice of multi-agent systems. Lecture notes in computer
science (Vol. 8291, pp. 54-69). Berlin/Heidelberg: Springer.

Csiszar, 1. (1975). I-divergence geometry of probability distributions and
minimization problems. Annals of Probability, 3, 146-158.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting
in partially observable stochastic domains. Artificial intelligence, 101
(1-2), 99-134.

Kinny, D., & Georgeff, M. (1991). Commitment and effectiveness of
situated agents. In Proceedings of the 12th Intl. Jconf. on Artif. Intell.
(IJCAI-91) (pp. 82-88).

Kinny, D., & Georgeff, M. (1992). Experiments in optimal sensing for
situated agents. In Proceedings of the second Pacific Rim Intl. Conf. on
Artif. Intell. (PRICAI-92). .

Koenig, S. (2001). Agent-centered search. Artificial intelligence Magazine,
22, 109-131.

Kullback, S. (1968) (2nd ed.). Information theory and statistics (Vol. 1).
New York: Dover.

Li, X., Cheung, W., & Liu, J. (2005). Towards solving large-scale POMDP
problems via spatio-temporal belief state clustering. In Proceedings of
1JCAI-05 workshop on Reasoning with Uncertainty in Robotics (RUR-
05). .

Lim, M., Dias, J., Aylett, R., & Paiva, A. (2008). Improving adaptiveness
in autonomous characters. In J. Lester, H. Prendinger, & M. Ishizuka
(Eds.), Intelligent virtual agents. Lecture notes in computer science (Vol.
5208, pp. 348-355). Berlin/Heidelberg: Springer.

Lovejoy, W. (1991). A survey of algorithmic methods for partially
observed Markov decision processes. Annals of Operations Research,
28, 47-66.

Meneguzzi, F., Zorzo, A., Méra, M., & Luck, M. (2007). Incorporating
planning into BDI systems. Scalable Computing: Practice and Expe-
rience, 8(1), 15-28.

Monahan, G. (1982). A survey of partially observable Markov decision
processes: Theory, models, and algorithms. Management Science, 28(1),
1-16.

Murphy, R. (2000). Introduction to AI Robotics. Massachusetts/England:
MIT Press.

Nair, R., & Tambe, M. (2005). Hybrid bdi-pomdp framework for
multiagent teaming. Journal of Artificial Intelligence Research (JAIR),
23, 367-420.

Paquet, S., Tobin, L., & Chaib-draa, B. (2005). Real-time decision making
for large POMDPs. In Advances in artif. intell.: Proceedings of the
eighteenth conf. of the canadian society for computational studies of
intelligence. Lecture notes in computer science (Vol. 3501, pp. 450-455).
Springer-Verlag.

Pereira, D., Gongalves, L., Dimuro, G., & Costa, A. (2008). Constructing
BDI plans from optimal POMDP policies, with an application to
agentspeak programming. In G. Henning, M. G. and S. Goneet,
(Eds.), XXXIV Conferéncia Latinoamericano de Informdtica, Santa Fe.
Anales CLEI 2008 (pp. 240-249).

Pollack, M., & Ringuette, M. (1990). Introducing the Tileworld: Exper-
imentally evaluating agent architectures. In Proceedings of the eighth
conf. on artif. intell (pp. 183-189). AAAI Press.

Rao, A. (1996). AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proceedings of the 7th European workshop on

Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-
96) (pp. 42-55). Berlin/Heidelberg: Springer-Verlaag.

Rao, A., & Georgeff, M. (1995). BDI agents: From theory to practice. In
Proceedings of the ICMAS-95 (pp. 312-319). AAAI Press.

Rens, G., & Ferrein, A. (2013). Belief-node condensation for online
POMDP algorithms. In Proceedings of IEEE AFRICON 2013
(pp. 1270-1274). Red Hook, NY 12571 USA: Institute of Electrical
and Electronics Engineers, Inc..

Rens, G., Ferrein, A., & Van der Poel, E. (2009). A BDI agent architecture
for a POMDP planner. In G. Lakemeyer, L. Morgenstern, & M.-A.
Williams (Eds.), Proceedings of the ninth intl. symposium on logical
formalizations of commonsense reasoning (Commonsense 2009)
(pp- 109-114). University of Technology, Sydney: UTSe Press.

Rens, G., & Meyer, T. (2015). Hybrid POMDP-BDI: An agent architec-
ture with online stochastic planning and desires with changing
intensity levels. In J. Van den Herik, B. Duval, J. Filipe, & S. Loiseau
(Eds.), Proceedings of the seventh Intl. Conf. on Agents and Artif. Intell.
(ICAART), revised selected papers, LNAI (pp. 79-99). Springer
Verlaag.

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (2008). Online planning
algorithms for POMDPs. Journal of Artificial Intelligence Research
(JAIR), 32, 663-704.

Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate POMDP
solutions through belief compressions. Journal of Artificial Intelligence
Research (JAIR), 23, 1-40.

Schut, M., & Wooldridge, M. (2000). Intention reconsideration in
complex environments. In Proceedings of the fourth intl. conf. on
autonomous agents (AGENTS-00) (pp. 209-216). New York, NY,
USA: ACM.

Schut, M., & Wooldridge, M. (2001). The control of reasoning in
resource-bounded agents. The Knowledge Engineering Review, 16(3),
215-240.

Schut, M., Wooldridge, M., & Parsons, S. (2004). The theory and practice
of intention reconsideration. Experimental and Theoretical Artificial
intelligence, 16(4), 261-293.

Shani, G., Brafman, R., & Shimony, S. (2007). Forward search value
iteration for POMDPs. In R. L. de Mantaras (Ed.), Proceedings of the
twentieth intl. Joint Conf. on Artif. Intell. (IJCAI-07) (pp. 2619-2624).
Menlo Park, CA: AAAI Press.

Shani, G., Pineau, J., & Kaplow, R. (2013). A survey of point-based
POMDP solvers. Autonomous Agents and Multi-Agent Systems, 27(1),
1-51.

Simari, G., & Parsons, S. (2006). On the relationship between MDPs and
the BDI architecture. In Proceedings of the fifth intl. joint conf. on
autonomous — agents —and — multiagent systems, AAMAS 06
(pp. 1041-1048). New York, NY, USA: ACM.

Simari, G., & Parsons, S. (2011). Markov decision processes and the belief-
desire-intention model. Springer briefs in computer science. New York,
Dordrecht, Heidelberg, London: Springer.

Singh, D., Sardina, S., Padgham, L., & James, G. (2011). Integrating
learning into a BDI agent for environments with changing dynamics.
In T. Walsh (Ed.), Proceedings of the twenty-second Intl. Joint Conf. on
Artif. Intell. (IJCAI-11) (pp. 2525-2530). Menlo Park, CA: AAAI
Press.

Walczak, A., Braubach, L., Pokahr, A., & Lamersdorf, W. (2007).
Augmenting BDI agents with deliberative planning techniques. In R.
Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.), Proceedings of
the fourth intl. workshop of Programming Multi-Agent Systems
(ProMAS-06) (pp. 113-127). Heidelberg/Berlin: Springer-Verlag.

Wooldridge, M. (1999). Intelligent agents. In G. Weiss (Ed.), Multiagent
systems: A modern approach to distributed artif. intell. Massachusetts/
England: MIT Press.

Wooldridge, M. (2000). Reasoning about rational agents. Massachusetts/
England: MIT Press.

Wooldridge, M. (2002). An introduction to multiagent systems. Chichester,
England: John Wiley & Sons.

http://refhub.elsevier.com/S1389-0417(16)30087-0/h0015
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0015
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0015
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0015
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0015
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0020
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0020
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0020
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0025
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0025
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0025
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0030
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0030
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0030
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0030
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0030
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0030
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0035
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0035
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0035
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0040
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0040
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0040
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0040
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0045
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0045
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0045
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0045
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0050
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0050
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0050
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0050
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0055
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0055
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0055
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0060
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0060
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0060
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0065
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0065
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0065
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0065
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0065
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0070
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0070
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0070
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0070
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0070
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0075
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0075
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0075
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0075
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0080
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0080
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0080
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0080
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0085
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0085
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0085
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0085
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0090
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0090
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0090
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0095
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0095
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0095
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0095
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0100
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0100
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0100
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0100
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0100
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0100
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0110
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0110
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0110
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0110
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0115
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0115
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0115
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0115
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0115
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0120
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0120
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0120
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0125
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0125
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0125
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0125
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0130
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0130
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0130
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0130
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0130
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0135
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0140
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0140
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0140
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0140
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0145
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0145
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0145
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0145
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0150
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0150
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0150
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0150
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0150
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0155
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0155
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0155
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0155
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0160
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0160
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0160
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0160
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0165
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0165
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0165
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0165
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0165
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0170
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0170
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0170
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0170
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0175
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0175
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0175
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0175
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0180
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0180
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0180
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0180
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0185
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0185
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0185
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0185
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0185
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0185
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0190
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0190
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0190
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0190
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0190
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0190
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0195
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0195
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0195
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0195
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0200
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0200
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0200
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0205
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0205
http://refhub.elsevier.com/S1389-0417(16)30087-0/h0205

	A hybrid POMDP-BDI agent architecture with online �stochastic planning and plan caching
	Introduction
	Preliminaries
	The basic HPB architecture
	Declarative semantics
	The desire function
	Focusing and satisfaction levels
	Planning for the next action

	The extended HPB architecture
	Prologue
	A new approach to focusing
	Over-optimistic strategy
	Compatibility strategy
	A new desire function

	Planning by policy generation
	Introducing a plan library
	Attribute condition plans
	Belief state condition plans
	Summary

	Evaluation of HPB agent performance
	Simulation
	Vanilla POMDP planner
	Original HPB architecture
	Extended HPB architecture

	Results
	High-level comparison of the three controllers
	Goal compatibility
	Effects of the plan library
	Further insights
	Summary

	Related work
	Conclusion
	References

