
The Evolution of Evolvability in Evolutionary Robotics

David Shorten1 and Geoff Nitschke1

1Department of Computer Science, University of Cape Town
dshorten@cs.uct.ac.za, gnitschke@cs.uct.ac.za

Abstract

Previous research has demonstrated that computational mod-
els of Gene Regulatory Networks (GRNs) can adapt so as to
increase their evolvability, where evolvability is defined as
a population’s responsiveness to environmental change. In
such previous work, phenotypes have been represented as bit
strings formed by concatenating the activations of the GRN
after simulation. This research is an extension where pre-
vious results supporting the evolvability of GRNs are repli-
cated, however, the phenotype space is enriched with time
and space dynamics with an evolutionary robotics task en-
vironment. It was found that a GRN encoding used in the
evolution of a way-point navigation behavior in a fluctuating
environment results in (robot controller) populations becom-
ing significantly more responsive (evolvable) over time. This
is as compared to a direct encoding of controllers which was
unable to improve it’s evolvability in the same task environ-
ment.

Introduction
An open question in artificial and natural life is whether
digital and natural organisms undergoing an evolutionary
process are able to become more responsive to changes in
their environment, that is to become more evolvable (Wag-
ner and Altenberg, 1996a). A prevailing hypothesis is that
if the environment sufficiently varies over time, then organ-
isms evolve the ability to be able to evolve suitable adap-
tations to such environmental changes faster (Wagner and
Altenberg, 1996a; Draghi and Wagner, 2008). Crombach
and Hogeweg (2008) as well as Draghi and Wagner (2008)
have demonstrated that computational models of Gene Reg-
ulatory Networks (GRNs) exhibit such evolvability. This
study’s main goal is to replicate the results of this previous
research (Crombach and Hogeweg, 2008; Draghi and Wag-
ner, 2008), but in the context of evolutionary robotics (Nolfi
and Floreano, 2000) experiments that test robot controller
(behavior) evolution in environments where the goal tasks
vary over time.

The representation problem in Evolutionary Computation
(EC) (Eiben and Smith, 2003) addresses the issue of how
to represent and adapt (mutate and recombine) genotypes
such that a broad range of complex solutions are repre-
sented by relatively simple genotype encodings (Wagner and

Altenberg, 1996b). Representation choice and associated
operators has a significant impact on the evolution of vi-
able solutions and representations which facilitate evolution
have been termed evolvable (Wagner and Altenberg, 1996b;
Rothlauf, 2006a; Simões et al., 2014). Similarly, in nature,
genetic information defining the form and function of an or-
ganism is stored within its genotype, however the develop-
mental process which translates this information into phe-
notypes is not well understood (Pigliucci, 2010). It has be-
come clear that the mapping between genotype and pheno-
type is neither one-to-one nor linear (Gjuvsland et al., 2013).
In many organisms, including the case of Ribonucleic acid
(RNA) folding (Draper, 1992), it has been found that many
genotypes can code for a single phenotype and that genetic
change resulting from mutation is not proportional to phe-
notypic change (Pigliucci, 2010; Parter et al., 2008).

In EC, this is known as a developmental or generative (in-
direct encoding) genotype representation (Stanley and Mi-
ikkulainen, 2003), where effects of mutations are not only
determined by representation and associated mutation op-
erators, but also by the population’s position in genotype
space. This is distinct from a one-to-one mapping (direct
encoding) where, for a given phenotype and its associated
genotype, mutational effects are determined by the repre-
sentation, mutation operators and fitness function. Thus
the population’s location (genotype values) in the genotype
space can be viewed as an integral component of represen-
tation (Rothlauf, 2006b).

An open question in biology is whether developmental
representations have occurred by chance, or if such repre-
sentations have also been subject to evolution (Parter et al.,
2008). A current hypothesis is that an organism’s geno-
type representation is itself evolvable due to the evolution
of evolvability (Wagner and Altenberg, 1996b), (Pigliucci,
2008). However, this is complicated by multiple defini-
tions of evolvability1 in both evolutionary biology(Pigliucci,

1For a review of evolvability in biology, the reader is referred
to Pigliucci (Pigliucci, 2008).



2008), (Pigliucci, 2010; Parter et al., 2008) and EC (Tara-
pore and Mouret, 2014), for example, evolvability can re-
fer to either populations or individuals (Wilder and Stanley,
2015). Similarly, within EC, numerous definitions and asso-
ciated metrics have been proposed. For example, those that
focus exclusively on solution fitness (Grefenstette, 1999) or
variability of offspring (Lehman and Stanley, 2013). Tara-
pore and Mouret (Tarapore and Mouret, 2014) developed a
metric which incorporated both the fitness and diversity of
offspring.

The principle aim of this work is to extend the demonstra-
tion of evolvability in GRN’s by Crombach and Hogeweg
(2008) as well as Draghi and Wagner (2008) to an evolu-
tionary robotics domain. In these previous studies a popu-
lation’s evolvability was defined as its responsiveness, that
is, the population’s ability to rapidly adapt to changes in
the fitness landscape. This work maintains consistency with
this definition. Hence, we define evolvability to be tanta-
mount to a population’s adaptability (Kirschner and Gerhart,
1998). This implies that we do not predefine sets of features
that will likely propagate beneficial phenotypes (behaviors)
in the evolutionary process. Rather, in line with biological
literature (Pigliucci, 2008; Flatt, 2005), evolvability is an or-
ganism’s (genotype’s) capability to adapt and survive in its
environment.

We investigate evolvability in the context of an evolution-
ary robotics task, where robot controller (behavior) evolu-
tion is tested using both indirect (GRN) and direct genotype
encodings. The hypothesis is that an indirect encoding facil-
itates the improvement of responsiveness over the course of
evolution in a robotics task domain with changing task envi-
ronments, whereas indirect encoding does not. Here we use
responsiveness and evolvability interchangeably to mean the
speed with which a population adapts given task environ-
ment changes. The robotics task was way-point navigation,
where responsiveness was tested via having the environment
fluctuate with its own task variants. In order to facilitate this,
two different way-point layouts were used.

Results indicated that evolution using the indirect (GRN)
encoding facilitated the evolution of controllers that were
significantly more responsive (adapted) to task environment
fluctuations over evolutionary time. Comparatively, evolu-
tion using the direct (bit-string) encoding applied to this task
indicated that evolved behaviors were unresponsive and un-
able to appropriately adapt to task environment variations
over time. Methods
Simulation and Task Environment
The evolutionary robotics simulation used a bounded two-
dimensional continuous environment2, where the environ-
ment was imposed with a 400 x 200 grid for ease of speci-
fying task environment and simulation parameters (table 1).

2An extension of the RoboRobo simulator (Bredeche et al.,
2013) was used for all experiments.

The task tested was way-point navigation. During controller
evolution, the task variants were switched in order to simu-
late a fluctuating environment (Evolutionary Algorithm Sec-
tion). Two task variants were specified, each requiring the
robot to pass by (within a given distance, table 1) of a pre-
specified number of way-points. The task required the robot
to pass the way-points in a specific order and within its life-
time (a given number of simulation time steps, table 1). The
number of way-points the robot passed by during its lifetime
equalled its fitness.

Figure 1 shows the layout of the way-points for each of
the two task variants, where the way-points were specially
positioned to encourage the emergence of a wall-following
behavior.

Robot Controller

The robot controller was a fully connected feed-forward
Artificial Neural Network (ANN) with twelve connection
weights. That is, three hidden layer neurons (Sigmoidal
units), connected to two sensory input and two motor out-
put neurons. The two sensory inputs were distance sensors,
each placed π/3 radians on either side of the direction in
which the robot was facing. These sensors operated simi-
lar to Infrared proximity sensors. ray casting in the sensor’s
field of view. If this line intersected a wall in the sensor’s
range, then the sensor’s reading was d/r, where d was the
distance to the wall and r was the sensor’s range. If there
was no wall in sensor range, then the sensor reading was
1.0. The controller’s motor outputs determined the robot’s
speed and heading, where outputs were normalized in the
range [0.0, 1.0] and corresponded to minimum and maxi-
mum speed and heading values (table 1).

Gene Regulatory Network

The Gene Regulatory Network (GRN) model for robot con-
troller encoding is based on that used in previous related
work (Crombach and Hogeweg, 2008; Draghi and Wagner,
2008). Nodes in the GRN are genes, and connections be-
tween the nodes are either excitatory or inhibitory. All nodes
are updated synchronously via equation 1.

si(t+ 1) =

{
1 :

∑
j wijsj(t) > θi

0 :
∑

j wijsj(t) ≤ θi
(1)

Where, si(t) is the activation of the ith node at simulation
iteration t, wij is the connection weight of the directed edge
from the ith to the jth node, and θi is the threshold of the
ith node. If no such connection exists then wij = 0. Table 2
presents the GRN parameters. In order to facilitate the con-
version of activations into bit-strings all nodes were given
a unique value in the range [0, l], where l is one less than
the number of nodes (Gene Regulatory Network Encoding
section).



Figure 1: Visualization of the way-point navigation task for each of the two task variants (left and right). Way-points (brown
dots) line the top-right and top-left corners of each task variant. The circles surrounding each way-point represent the distance
within which the robot must pass the way-point. The robot is presented as the blue dot on either side (far left and far right) with
two lines extending (representing sensor fields of view).

Mutation Operators. Table 3 specifies the mutation op-
erators used in the Evolutionary Algorithm (EA) applied to
evolve the GRN. The mutate weight, add edge, and
delete edge operators were applied to the GRN node
connections, where for every connection, the operator was
applied with a given probability (table 4). All other mutation
operators acted on nodes activation and threshold functions
with a given probability (table 4).

Binary (Direct) Encoding. A direct mapping function
was used to map the binary genotype encoding to an ANN
controller. To convert the sixty element binary string geno-
type to the twelve connection weight values which specify
an ANN controller, the genotype string was split into twelve
smaller strings of five elements each. These twelve strings
were then converted into real numbers in the range [0.0, 1.0]
using equation 2.

2

(∑
i∈{0...4} ai2

i

25 − 1
− 0.5

)
(2)

Where, ai is the ith element of substring a.

Gene Regulatory Network (Indirect) Encoding. Using
methods from previous work (Crombach and Hogeweg,
2008; Draghi and Wagner, 2008), the GRN was simulated
for a given number of iterations (table 2). During this simu-
lation time, convergence to a point attractor was tested for by
determining whether node activations in the last and penulti-
mate iterations were identical. If the GRN did not settle on a
point attractor then it was marked for removal and no further
evaluation took place. Preliminary testing indicated that the
removal of these GRNs had a negligible effect on the evo-
lutionary dynamics in this study’s experiments. If the GRN
settled on a point attractor then the node activations were
converted into a bit string, where the ordering of the activa-
tions was determined by unique node identifiers (Gene Reg-
ulatory Network section). This GRN convergence test was
done to maintain consistency with previous work (Crom-
bach and Hogeweg, 2008), (Draghi and Wagner, 2008). Bit-

strings were then converted into an ANN controller using the
genotype to ANN direct encoding mapping method (Binary
Encoding section, equation 2).

Evolutionary Algorithm (EA)
The binary and GRN encoded genotypes were evolved with
an EA using deterministic tournament selection (Eiben and
Smith, 2003), applied 200 times per generation. Also, the
EA used mutation only (there was no recombination oper-
ator). Table 4 presents the EA parameters. The following
subsections detail the EA setup for controller evolution us-
ing the binary and GRN encodings, respectively.

Direct Encoding When the EA was started, a population
of bit-string genotypes were randomly generated. Each gen-
eration, each genotype was systematically selected, decoded
into an ANN controller (Binary Encoding section) and tested
in the way-point navigation task (Simulation and Task Envi-
ronment Section) for one robot lifetime (table 1), after which
fitness was assigned to the tested controller (genotype). One
generation was when all genotypes had been tested and eval-
uated. Selection and mutation operators were then applied
(table 4).

In preliminary mutation operator testing it was found that
using a constant mutation rate for each bit (gene) in each
genotype resulted in a significantly lower task performance
compared to controller evolution with GRN encoding. That
is, at a high mutation rate, genotypes with high fitness were
quickly found, however, convergence was sub-optimal. For
relatively low mutation rates, the population converged to a
set of fit genotypes, however genotypes with optimal fitness
were not found. To address this, we executed 100 evolu-
tionary runs of controller evolution with GRN encoding and
recorded the Hamming distance between parent and child
genotypes (Gene Regulatory Network Encoding section).
The probability of each Hamming distance (number of bit-
flips) occurring was then calculated and these probabilities
were used to determine the number of bit-flips in a mutation
of the binary direct encoding. That is, if on average, the as-



Parameter Value
Robot speed 5 units per iteration
Robot maximum angular
velocity

0.5 radians per iteration

Robot heading [0, 2π)
Sensor range 75 units
Collision radius 20 units
Environment size 400 x 200 units
Way-point radius (navi-
gation task)

20 units

Number of way-points [0, 59]
Simulation iterations
(robot lifetime)

250

Parameter Value Range
GRN Weights (wij) [−2.0, 2.0]
ANN Weights [−1.0, 1.0]
ANN sensory and out-
puts

[−1.0, 1.0]

Thresholds (θij) [−3, 3]
Number of nodes 60
Incoming / outgoing
connections per node

[0, 59]

Simulation iterations
(maximum t)

20

Table 1: Simulation and task parameter values. Table 2: Parameters for the Binary and Gene Regulatory
Network controller encoding.

Operator Description
mutate weight A new value for the weight of an edge is chosen from the

allowed values.
mutate activation The value of the initial activation of a node is flipped.
mutate threshold A new value for the threshold of a node is chosen from

the allowed values.
add edge A new incoming edge is added to the node. It connects to

a random node and has a random weight.
delete edge One of the node’s edges is chosen at random and re-

moved.

Table 3: Mutation operators for the Gene Regulatory Network.

sociated bit strings of GRNs had a Hamming distance of h
from their parent genotypes (with probability p), then when
a binary encoded genotype was mutated, h bits would be
flipped with probability p. This probability distribution was
then assigned as the mutation rate for the direct encoding ap-
proach. Table 5 presents the probability of a given number of
bit-flips occurring whenever the binary encoding mutation
operator was applied. It was found, when these probabilities
were used (table 5), that the task performance of controller
evolution with direct binary encoding was comparable to the
task performance to early generations of controller evolution
using the GRN encoding (Results section).

Gene Regulatory Networking Encoding When the EA
was started, GRNs were randomly initialized with given pa-
rameter constraints, and each GRN simulated for a given
number of iterations (table 2). If the GRN settled on a
point attractor, then the GRNs activations were mapped to a
bit-string, which was then decoded into an ANN controller
(Gene Regulatory Network Encoding section). Each de-
coded ANN controller was then simulated in the way-point
navigation task (Simulation and Task Environment Section)
for one robot lifetime (table 1), and fitness assigned to the
tested genotype. One generation was when all genotypes

had been tested and evaluated. Selection and mutation op-
erators were then applied. The mutation operators spec-
ified in table 3 were applied to every node of the child
GRNs with the probability specified in table 4. However,
the mutate weight operator was applied to every con-
nection of the GRNs with a lower probability (table 4).

Experiments, Results, Discussion
Controller evolution was run for 10000 generations in the
way-point navigation task, where robot controllers were en-
coded using direct binary or indirect GRN encoding. In
order to investigate the conditions facilitating evolvability
in this evolutionary robotics case study, task variants were
switched every 200 generations. Hence, given these two
controller encodings, two different evolutionary setups were
run, where each setup was run 100 times to ensure viability
of statistical tests on results data.

Figure 2 presents task performance (average and best fit-
ness) results for the way-point navigation task. Table 6
presents average fitness results and table 7 presents statis-
tical test results for within and between comparisons of di-
rect and GRN encoded populations. Table 7 presents sta-
tistical test results from pair-wise comparisons on average
maximum and average fitness results in table 6. The Mann-



Parameter Value
Population size 1000
Genotypes replaced per generation 100
Tournament size 4
Recombination None
Generations per task variant switch 200
Number of generations 10000
Binary encoding mutation Bit-flip
Binary encoding mutation rate See table 5
GRN mutation See table 3
GRN weight mutation rate 0.002
GRN node mutation rate 0.02
Genotype bit-string length 60

Bit flips Probability
0 / 13 0.5088 / 0.0023
1 / 14 0.2466 / 0.0017
2 / 15 0.1068 / 0.0012
3 / 16 0.0471 / 0.0009
4 / 17 0.0231 / 0.0006
5 / 18 0.0139 / 0.0004
6 / 19 0.0103 / 0.0003
7 / 20 0.0087 / 0.0002
8 / 21 0.0076 / 0.0001
9 / 22 0.0065 / 0.0001
10 / 23 0.0053 / 0.0000
11 / 24 0.0042 / 0.0000
12 / 25 0.0032 / 0.0000

Table 4: Evolutionary Algorithm Parameters Table 5: Mutation rates for direct binary encoding. Prob-
abilities match mutation probabilities of the binary GRN
encoding (for given number of bit flips). Genotypes were
sixty gene bit-strings, however, mutations of more than
twenty-three bit flips never occurred

Whitney U test (p < 0.01) with Bonferroni correction (Flan-
nery et al., 1986) for multiple comparisons was applied to
gauge statistical significance.

Table 6 presents average and maximum fitness results.
These fitness results are presented for early and late stages
of the evolutionary process. Early stages were at generation
25 and 425 and late stages were at generations 9225 and
9625. These generation intervals were chosen as they were
an eighth into the allotted generations for task variant one,
and were deemed a good measure of the population’s early
response to the environmental change early and late in the
artificial evolution process.

One may note that we measure average and maximum fit-
ness, rather than the rate of fitness change (relative fitness) as
an indicator of a population’s responsiveness. We elected to
use absolute fitness, since measuring relative fitness would
unfairly benefit genotypes whose fitness dropped the most
after a change in the task environment. That is, given two
populations, the one with the highest fitness a given interval
after a task change is concluded to be the most responsive.
Also, this interpretation holds in the case that the other popu-
lation suffers a greater fitness decrease after the task change
which might subsequently lead it to having a faster fitness
increase.

In figure 2 one may observe that populations using the
GRN encoding were able to significantly improve (with sta-
tistical significance, table 7) their responsiveness between
early and late stages of the evolutionary process. Here we
use responsiveness and evolvability interchangeably to mean
the speed with which a population adapts given task environ-
ment changes (task variants). The responsiveness of popula-
tions using the direct encoding was statistically comparable

during both the early and late stages of the evolutionary pro-
cess (table 7).

Hence, statistical tests run between average and average
maximum fitness values of populations using the GRN en-
coding in the early and late stages of evolution (table 7)
confirm that in the late stages of evolution, populations re-
spond more quickly to environmental change (task variants).
Results indicate that populations using the GRN encoding
were significantly more responsive in the late generations
compared to populations using the direct encoding (table 7).
Also, there was not a significant difference in the responsive-
ness of populations using direct encoding between the early
and late stages of evolution. This is supported by previous
work (Crombach and Hogeweg, 2008; Draghi and Wagner,
2008) and supports this study’s hypothesis that direct geno-
type encoding does not facilitate responsiveness in changing
environments (Introduction section). Although, in the early
stages of evolution, the average fitness of populations using
the direct encoding was more responsive than populations
using the GRN encoding (figure 2).

In terms of the responsiveness of populations using the
direct encoding, there was no significant difference between
the average and average maximum fitness values of these
populations between early and late stages of evolution (ta-
ble 7). This indicates that direct binary encoded populations
did not evolve a responsiveness to the changing task envi-
ronment of this way-point navigation task, as was observed
in the case of GRN encoded populations (table 7). However,
in terms of the average fitness, the direct encoding was sig-
nificantly more responsive in the early stages of evolution.

Thus, results demonstrate that a GRN encoding of popula-
tions of robot controllers (behaviors) evolve to become more



0 100 200 300 400 500 600 700 800
Generation

0

1

2

3

4

5

6

7

8

Fit
ne

ss

maximum
average

9200 9300 9400 9500 9600 9700 9800 9900 10000
Generation

0

1

2

3

4

5

6

7

8

Fit
ne

ss

maximum
average

0 100 200 300 400 500 600 700 800
Generation

0

1

2

3

4

5

6

7

8

Fit
ne

ss

maximum
average

9200 9300 9400 9500 9600 9700 9800 9900 10000
Generation

0

1

2

3

4

5

6

7

8

Fit
ne

ss

maximum
average

Figure 2: Average and maximum fitness for evolved GRN (top left, right) and binary encoded (bottom left, right) controllers in
the way-point navigation task.

responsive to changes in their task environment. That is, a
statistically significant difference (for average and maximum
fitness values) was observed in the improvement of respon-
siveness of GRN versus directly binary encoded populations
in the way-point navigation task. The contribution is that
results support previous work on the efficacy of GRN en-
codings for conferring evolvability in changing task environ-
ments (Crombach and Hogeweg, 2008), as well as extending
previous work (Crombach and Hogeweg, 2008; Draghi and
Wagner, 2008) into an evolutionary robotics task environ-
ment with both time and space dynamics.

A goal of this study was to investigate the environmen-
tal and evolutionary conditions that facilitate the evolution
of evolvability. Previous researchers have demonstrated
that many-to-one genotype-to-phenotype mapping (redun-
dant mappings) result in evolvability in EAs (Shipman,
1999; Ebner et al., 2001a) as well as increased EA task
performance. That is, a highly redundant mapping enables
some mutations to have negligible impact on the fittest phe-
notypes, meaning the EA is better able explore the search
space via neutral networks (Ebner et al., 2001b).

Redundancy, and the closely related notion of robustness
(Wagner, 2005), is theorized to have played a key role in
the increased responsiveness of evolved GRN encoded be-
haviors, given that the GRN encodings are more redundant
than the direct encodings. During their evaluation, GRN’s
are decoded into bit-strings before these bit-strings are de-

coded into ANN’s, which are then evaluated by the EA.
Given that the decoding from GRN’s into bit-strings is a
many-to-one mapping, the redundancy in the GRN encoded
search space is considerably higher than that in the directly
encoded search space.

That is, the bit-strings are sixty characters long, which
implies that there are 260 ≈ 1018 genotypes in this space.
In the GRNs, each node has fifty-nine possible connections
and each connection can either connect to one of the sixty
nodes or not connect. This implies that each node has 5961

possible configurations. Note that although many of these
configurations are equivalent, where the only difference is
the ordering of the connections, each one forms a distinct en-
coding and thus represents part of a distinct genotype. There
are sixty nodes, so the number of genotypes in this space is(
5961

)60 ≈ 106000.

Also, consider that in this study’s way-point navigation
task, there were only nine fitness values, where fitness was
equated with how many of eight way-points a robot passed
in its lifetime. The ninth fitness value was to account for
the robot not passing any way-points (Simulation and Task
Environment Section). Thus, given the GRN encoding, nine
possible phenotypes (way-point navigating behaviors) were
represented by a high dimension and highly redundant geno-
type space. That is, in this task, there were many possible
genotype to phenotype (controller) mappings, where con-
troller behavior was equated with one of nine fitness values.



Measure Fitness
Early maximum GRN encoding 0.88 (0.18)
Late maximum GRN encoding 0.96 (0.11)
Early maximum direct encoding 0.86 (0.17)
Late maximum direct encoding 0.85 (0.17)

Measure Fitness
Early average GRN encoding 0.33 (0.11)
Late average GRN encoding 0.45 (0.16)
Early average direct encoding 0.39 (0.15)
Late average direct encoding 0.39 (0.16)

Table 6: Maximum (left) and average (right) fitness and standard deviations (in parentheses) for way-point navigation for early
and late stages of evolution. Results have been normalized, where given values are portions of the minimum and maximum pos-
sible task performance: 0 and 1.0, respectively. Early stages were at generation 25 and 425 and late stages were at generations
9225 and 9625.

EM GRN LM GRN EM DE LM DE EA GRN LA GRN EA DE LA DE
EM GRN • 3 7 • • • • •
LM GRN 3 • • 3 • • • •
EM DE 7 • • 7 • • • •
LM DE • 3 7 • • • • •
EA GRN • • • • • 3 3 •
LA GRN • • • • 3 • • 3
EA DE • • • • 3 • • 7
LA DE • • • • • 3 7 •

Table 7: Statistical test results from pair-wise comparisons on average fitness results in table 6. 3 signifies a statistically
significant difference between two data-sets (p < 0.01) using the Mann-Whitney U test and Bonferroni correction. 7 signifies
that the difference between two data-sets is not significant and • signifies that a test was not done. EM is an abbreviation for
Early Maximum (average maximum fitness in early evolution), LM is Late Maximum, EA is Early Average (average fitness in
early evolution), LA is Late Average, and DE is Direct Encoding.

It is theorized that the larger size of the space of the GRN
encoding is the cause of it exhibiting lower evolvability in
the early stages of evolution. That is, given that phenotypes
may not be uniformly distributed over the space (Pigliucci,
2010; Parter et al., 2008), finding target phenotypes after ini-
tialization may be more challenging. During the course of
evolution, however, the population can move to areas of the
space biased towards the targets. Moreover, other work has
shown that direct encodings do exhibit a baseline of evolv-
ability that is comparable to certain generative encodings
(Tarapore and Mouret, 2015).

This study’s results are also supported by related work
(Ciliberti et al., 2007), that similarly modeled GRNs, where
GRN instances were individual genotypes decoded into ex-
pression patterns (phenotypes). Ciliberti et al. (2007) dis-
covered that such a GRN encoding was robust (and redun-
dant) as a large number of genotypic changes had no pheno-
typic impact.

To demonstrate this for our experimental results, current
research is investigating the relationship between robust-
ness, redundancy and evolvability for the GRN versus di-
rectly encoded search spaces. This is being done for way-
point navigation and more complex evolutionary robotics
tasks.

Conclusion

This research presented an evolutionary robotics study that
replicated and extended previous work testing the evolvabil-
ity of populations of Gene Regulatory Networks (GRNs).
Evolvability was defined as a population’s speed of adapta-
tion to changing task environments. Direct binary encodings
of robot controllers were compared to indirect GRN encod-
ings in controller evolution to accomplish a way-point nav-
igation task. Task variants were alternated during controller
evolution to confirm previous results that GRNs facilitate
the emergence of evolvability in environments with alternat-
ing tasks. Results indicated that, for the GRN encoding ap-
proach, populations became significantly more adapted to
task variation over time, and thus evolvable. This was com-
pared to a direct encoding of controllers which was unable
to achieve a high level of evolvability in the same task en-
vironment. This work thus demonstrates that the previous
results are valid in a substantially more complicated domain
and suggests approaches for aiding robots in dealing with
dynamic environments. The findings were theorized to be a
result of increased redundancy and robustness of the indirect
GRN encoding of the search space. However, definitively
demonstrating increased robustness and redundancy result-
ing in increased evolvability for the GRN encoding of this
and other more complex evolutionary robotics tasks remains
the subject of ongoing research.



References
Bredeche, N., Montanier, J.-M., Weel, B., and Haasdijk, E.

(2013). Roborobo: A fast robot simulator for swarm
and collective robotics. arXiv preprint.

Ciliberti, S., Martin, O., and Wagner, A. (2007). Innova-
tion and robustness in complex regulatory gene net-
works. Proceedings of the National Academy of Sci-
ences, 104(34):13591–13596.

Crombach, A. and Hogeweg, P. (2008). Evolution of evolv-
ability in gene regulatory networks. PLoS Comput Biol,
4(7):e1000112.

Draghi, J. and Wagner, G. P. (2008). Evolution of evolvabil-
ity in a developmental model. Evolution, 62(2):301–
315.

Draper, D. (1992). The rna-folding problem. Acc. Chem.
Res., 25(4):201–207.

Ebner, M., Langguth, P., Albert, J., Shackleton, M., and
Shipman, R. (2001a). On neutral networks and evolv-
ability. In Proceedings of the 2001 Congress on Evolu-
tionary Computation, pages 1–8. IEEE.

Ebner, M., Shackleton, M., and Shipman, R. (2001b). How
neutral networks influence evolvability. Complexity,
7(2):19–33.

Eiben, A. and Smith, J. (2003). Introduction to Evolutionary
Computing. Springer, Berlin, Germany.

Flannery, B., Teukolsky, S., and Vetterling, W. (1986). Nu-
merical Recipes. Cambridge University Press, Cam-
bridge, UK.

Flatt, T. (2005). The evolutionary genetics of canalization.
The quarterly review of biology, 80(3):287–316.

Gjuvsland, A., Vik, J., Beard, D., Hunter, P., and Omholt,
S. (2013). Bridging the genotype-phenotype gap: what
does it take? J Physiol., 591(8)::2055–2066.

Grefenstette, J. (1999). Evolvability in dynamic fitness land-
scapes: A genetic algorithm approach. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 3. IEEE.

Kirschner, M. and Gerhart, J. (1998). Evolvability.
Proceedings of the National Academy of Sciences,
95(15):8420–8427.

Lehman, J. and Stanley, K. (2013). Evolvability is in-
evitable: Increasing evolvability without the pressure
to adapt. PloS one, 8(4):e62186.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics:
The Biology, Intelligence, and Technology of Self-
Organizing Machines. MIT Press, Cambridge, USA.

Parter, M., Kashtan, N., and Alon, U. (2008). Facilitated
variation: how evolution learns from past environments
to generalize to new environments. PLoS Comput Biol,
4(11):e1000206.

Pigliucci, M. (2008). Is evolvability evolvable? Nature
Reviews Genetics, 9(1):75–82.

Pigliucci, M. (2010). Genotype phenotype mapping and the
end of the genes as blueprint metaphor. Philosophi-
cal Transactions of the Royal Society B: Biological Sci-
ences, 365(1540):557–566.

Rothlauf, F. (2006a). Introduction. In Representations
for Genetic and Evolutionary Algorithms, pages 1–7.
Springer Berlin Heidelberg.

Rothlauf, F. (2006b). Representations for Genetic and Evo-
lutionary Algorithms. Springer-Verlag, Berlin, Ger-
many.

Shipman, R. (1999). Genetic redundancy: Desirable or
problematic for evolutionary adaptation. In Proceed-
ings of the 4th International Conference on Artificial
Neural Networks and Genetic Algorithms, pages 337–
344. Springer.

Simões, L. F., Izzo, D., Haasdijk, E., and Eiben, A. E.
(2014). Self-adaptive genotype-phenotype maps: neu-
ral networks as a meta-representation. In Parallel Prob-
lem Solving from Nature–PPSN XIII, pages 110–119.
Springer.

Stanley, K. and Miikkulainen, R. (2003). A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130.

Tarapore, D. and Mouret, J.-B. (2014). Comparing the
evolvability of generative encoding schemes. In Pro-
ceedings of ALife, pages 1–8. MIT Press.

Tarapore, D. and Mouret, J.-B. (2015). Evolvability signa-
tures of generative encodings: beyond standard perfor-
mance benchmarks. Information Sciences, 313:43–61.

Wagner, A. (2005). Distributed robustness versus redun-
dancy as causes of mutational robustness. Bioessays,
27(2):176–188.

Wagner, G. and Altenberg, L. (1996a). Complex adaptations
and the evolution of evolvability. Evolution, 50(1):967–
976.

Wagner, G. and Altenberg, L. (1996b). Perspective: Com-
plex adaptations and the evolution of evolvability. Evo-
lution, pages 967–976.

Wilder, B. and Stanley, K. (2015). Reconciling explanations
for the evolution of evolvability. Adaptive Behavior.


	Introduction
	Methods
	Simulation and Task Environment
	Robot Controller
	Gene Regulatory Network
	Evolutionary Algorithm (EA)

	Experiments, Results, Discussion
	Conclusion

