Using SDN and Reinforcement Learning for Traffic
Engineering in UbuntulNet Alliance

Josiah Chavula, Melissa Densmore, Hussein Suleman
Computer Science Department
University of Cape Town
South Africa
Email: jchavula@cs.uct.ac.za

Abstract—Software Defined Networking (SDN) provides op-
portunities for dynamic and flexible traffic engineering. This
paper discusses how UbuntuNet Alliance National Research and
Education Networks (NRENs) can improve bandwidth utilization
and reduce inter-NREN latencies through implementation of
SDN-based traffic engineering and applying network metrics in
selection of inter-NREN paths. Additionally, the paper looks at
the utility of applying Reinforcement Learning to path selection,
using network data obtained through an SDN controller. Results
from simulations using the UbuntuNet topology show an increase
in total throughputs when multipath is employed. Furthermore,
simulation results show that where latency is the key metric for
computing rewards, lower latencies are achieved.

Index Terms—Software Defined Networking, Reinforcement
Learning, Multipath Traffic Engineering, NRENs, UbuntuNet
Alliance.

I. INTRODUCTION

The UbuntuNet Alliance - the regional internetwork for Na-
tional Research and Education Networks (NRENSs) in southern
and eastern Africa - recently embarked on the Africa Connect
Project to build high-speed NREN interconnections through
cross border terrestrial fiber optic networks. The UbuntuNet
topology now comprises eight Network Operating Centers
(NOCs) acting as interconnection points, as well as multiple
intra-continental and transcontinental links. A detailed descrip-
tion of the current UbuntuNet topology is given in Section
III-B. However, despite the improved physical interconnection,
a recent investigation into traffic routing between African
NRENSs revealed that a larger proportion of the inter-NREN
traffic still traverses exchange points in Europe, resulting in
high latencies [1]. More generally, the level of peering and
interconnectivity among Africa’s Internet Service Providers
(ISPs) remains low [2]. This suggests that optimal end-to-
end path selection for Africa’s inter-NREN communication
remains a problem.

Optimal path selection requires that the quality of links in
the topology is continually evaluated to ensure that paths with
better performance have a higher probability of being utilized
[3]. However, for large scale networks, the use of end-to-
end active measurements for dynamic path ranking is neither
efficient nor scalable [4]. Given that SDN controllers maintain
a global view of the topology and have, at their disposal, a
large volume and variety of network data, it is worthwhile to

987-1-5090-2576-3/16/$31.00 (©2016 IEEE

investigate a data driven approach. Some studies [5], [6] have
shown that correlations learned from network controller data
can be utilized to improve resource allocation and network
performance. It is worthwhile therefore to investigate a data
driven [7] approach where controllers data is used to inform
path selection.

Software Defined Networking (SDN) provides new oppor-
tunities for flexible management of Internet routing and packet
forwarding [8]. SDN separates switches’ control plane from
the forwarding plane, and this separation enables remote and
dynamic configuration of forwarding tables. As a result, SDN
achieves at least three important things that are useful for
interdomain traffic engineering [9]: forwarding packets based
on multiple header fields, remote configuration of forwarding
rules, and dynamic/programmatic configuration of the for-
warding rules.

This paper evaluates how the ability to discover alter-
nate paths and dynamically configure routes based on path
characteristics, could help improve optimal utilization and
network performance of the fiber optic cable system between
Africa’s NRENs. More specifically, this paper discusses how
the UbuntuNet Alliance can improve bandwidth utilization
and reduce inter-NREN latencies by implementing SDN-based
traffic engineering and applying network metrics to achieve
dynamic selection of paths. Further, the paper looks at the util-
ity of applying Reinforcement Learning (RL) to path selection
by using network data obtained through an SDN controller
and through inter-switch probing. For evaluation, an SDN-
based network emulation is implemented in Mininet, applying
Reinforcement Learning algorithm Q-learning to distribute
traffic through multiple forwarding links, with the aim of
maximizing throughput and reducing latency.

II. RELATED WORK

Standard approaches for influencing selection of paths
across multiple domains have relied on manipulating the
Border Gateway Protocol (BGP), but these approaches have
been unreliable and inefficient [10]. A key problem is that, as
an inherently single path system, BGP does not disseminate
alternate routes. Each BGP router selects and advertises only
the best path [11] to its neighbors. By propagating only a
single path (default route), the multipath diversity available in
an internetwork is diminished. Yet, it is not always the case

that the default BGP routes offer the best performance. One
study [12] has shown that in multipath environments, better
alternative paths with lower loss rate and delay are available
between 30% and 80% of the time.

Another multipath challenge is that at the data-link layer,
most networks deal with loops by implementing Spanning Tree
Protocol (STP) to determine the loop-free paths (spanning tree)
between every pair of switches in the network. The use of a
spanning tree path between pairs of the SDN switches results
in redundant links in the network being disabled. As a result,
end-to-end communication gets restricted to single paths when,
in fact, redundant and possibly better paths are available. STP
eliminates the multipath capability that should otherwise be
available in the topology.

A number of SDN-based multipath traffic engineering ap-
proaches have been proposed with the aim of improving
network resilience and performance [13]. For example, HiQoS
[14] makes use of multiple paths between source and desti-
nation and applies a queuing mechanism to guarantee QoS
for different types of traffic. The approach calculates path
costs using a weighted combination of the estimated price,
stability, physical distance and bandwidth of the links. HiQoS
controller periodically measures the bandwidth utilization of
each queue along the path, and the path with the minimal
bandwidth utilization of a queue is selected as the optimal
path for a new flow. Similarly, M2SDN [15] considers link
utilization to dynamically schedule flows towards multiple
less loaded paths. M2SDN calculates link costs based on
utilization and packet drop rate, and attempts to split traffic on
multiple paths, applying a path dependency parameter so as a
to minimize usage of paths with intersections. [16] attempt
to select multipath routes dynamically based on available
network resources. The approach forwards flow data into
multiple routes from the source to the destination based on
utilization rate of the network for every route from the source
to the destination.

Another multipath SDN implementation is Google’s B4,
an SDN WAN [17] that uses OpenFlow to centrally control
WAN switches. The system is built with three key char-
acteristics: balancing competing application demands at the
network edge during resource constraint; using multipath
forwarding/tunnelling to leverage available network capacity
in accordance with application priorities; and dynamically
reallocating bandwidth in the face of link/switch failures
or shifting application demands. The architecture aggregates
source to destination flows based on QoS requirements to form
forwarding groups (FGs), and a universal controller installs
FG-based rules in multiple site switches to form end-to-end
tunnels.

The multipath traffic engineering proposed in this papers
makes use of Reinforcement Learning algorithm Q-learning
to enable forwarding devices to adapt and improve network
performance by learning from experience. The design consists
of an SDN controller, as well as a RL engine and Q-learning
agents, working together to dynamically configure optimal
forwarding rules.

III. DESIGN AND IMPLEMENTATION

This section provides a background and motivation
for RL/Q-learning, describes the UbuntuNet topology, and
presents a set of experiments designed to test the utility of
applying Q-learning in a multipath SDN traffic engineering
model.

A. Reinforcement Learning

The problems solved by reinforcement learning generally
involve sequential decisions that can be modeled as Markov
Decision Processes(MDPs) [18]. An MDP agent acts in an
environment modeled as a tuple (S, A, P, R); where S is a set
of states, A is a set of actions, and P(s’|s,a) is a transition
model for the probability of entering state s’ after executing
action a at state s. It must be assumed that there is at least one
corresponding action a such that P(s’|s,a) = 1, i.e executing
action a at s implies sending a data packet from router s
towards s’ results in the packet subsequently being at s’.
Further, R(s, a, s) represents the reward given to the learning
agent for executing action a at s that caused transition into
state s’. The rewards act as reinforcement signals to adjust
forwarding-link priorities so as to enhance or diminish the
probability that a specific next-hop is selected for the traffic
[18]. A routing agent learns to adjust path selection policies
based on experience and rewards and, through continuous
modification of action selection policies, attempts to maximize
some cumulative pay-off [18].

The state-action pairs utility value is called the Q-value,
and is calculated by the Q-function. A Q-learning agent finds
an optimal control policy by iteratively approximating its Q-
values using prior Q-value estimates, a short-term reward r =
p(s,a) € R, and a discounted future reward. Thus, the goal of
maximizing the cumulative reward is represented by an action-
value function Q(s,a):

Q*(s,a) = (1 —a)Q(s,a) + afr + 7 max Q(s',a)] (1)

where the learning rate o € (0,1] models the rate of
updating the Q-values, i.e how fast new information overrides
previously learned information, and v € (0, 1] represents a
discount factor that scales the importance of the immediate
reward (obtained for the action at s) versus rewards obtainable
for actions at the resultant state s’.

B. Modelling the UbuntuNet Topology

The UbuntuNet core topology forms a ring through the
alliance’s Network Operation Centers (NOCs) in Cape Town,
Mtunzini, Maputo, Dar-es-salam, Nairobi, Amsterdam, Lon-
don, and back to Cape Town. NRENSs in landlocked countries
are connected via terrestrial fiber optic cables to the coastal
NOCs: from Lusaka to Cape Town and Dar-es-salam; Li-
longwe to Lusaka; Luanda to Cape Town; Kigali and Kampala
to Nairobi.

There were two key metrics for the experiment; latency and
link capacity. To estimate latency between NRENS, link delays
were calculated from estimated fiber optic cable lengths.

London < Amsterdam
42 471 61
2% 5]
46 Sudan Ethiopia
DRC Kigali Kampala
56 4
Mad
Dar-es-salarh adagascar
Luanda
&
Ili 15 £ 3 5] 19
Lusaka Lilongwe
Maput
aputo 3
4
%) 8 £33
Cape Town Mtunzini

Fig. 1. UbuntuNet Alliance Topology

Terrestrial distances between inland cities were obtained using
Google Maps roads, whereas distances between sea port NOCs
were obtained using PortDistance '. These distances were
used to estimate link delays between NOCs, translating every
200km to 1 ms latency. In Figure 1, the link weights represent
the link delays used in the experiments.

In terms of link capacities (bandwidth), the UbuntuNet Al-
liance has, as of June 2016, a total link capacity of 2.18 Gbps
linking the alliance’s region to Europe [19]. This capacity
includes 2 STM-4 links (2 X 622 Mbps) on the east cost of
Africa, from Mtunzini to Amsterdam, with landing points in
Maputo, Dar-es-Salam and Nairobi. On the west African cost,
the capacity comprises of a single STM-4 (622 Mbps) and 2
STM-1 links (2 X 155 Mbps), from Cape Town to London.
The backbone between the UbuntuNet countries is made up
of STM-4 links (622 Mbps): between Dar-es-Salam and Cape
Town via Lusaka; between Mtunzini and Nairobi; and between
Mtunzini/Maputo and Dar-es-Salam. There are also 2 STM-4
links (2 X 622 Mbps): between Nairobi and Kampala; and a
single STM-4 between Kampala and Kigali.

Figure 1 shows the topology used in this study. Multiple
physical links between a pair of NOCs were aggregated into
single links. The overall link capacities were scaled down by a
factor of 10 to cope with limitations of the network emulator.
This was done to cope with link speed limitations within the
Mininet network simulation environment.

C. SDN Topology

In this experiment, the UbuntuNet Alliance core topology
(shown in Figure 1) was emulated as an SDN network,
with each of the NOCs in the alliance represented with an
SDN switch. The topology was built in a Mininet SDN

Uhttps://www.searates.com/reference/portdistance/

emulator [20], which provides for a network controller, Open-
flow switches, linux hosts and network links. Furthermore,
Mininet’s hosts run a standard Linux kernel and network
stack, and can therefore run real network applications. An
Ryu Openflow controller was connected to the Nairobi NOC -
chosen to host the SDN controller because it is the most central
NOC in the topology. NRENs were also modeled as switches
connected to the core topology switches. The UbuntuNet
topology map indicates that four of the alliance’s members
- Sudan, Ethiopia, Madagascar and the Democratic Republic
of Congo (DRC) - are connected to UbuntuNet through either
the London or Amsterdam NOCs. Traceroute measurements
suggest DRC is directly connected to the London IXP, while
the other 3 are directly connected to the Amsterdam IXP.

As Figure 1 shows, the UbuntuNet has loops in its topol-
ogy. If the NRENs were to implement a mechanism for
dynamic multipath selection, it would be possible for KENET
to dynamically exchange traffic with TENET through either
Amsterdam or Mtunzini. TENET would also be reachable
from KENET via either London or Mtunzini gateways.

As an illustration, consider the topology in Figure 1, and
the traffic between the Kenyan NREN, KENET, and the South
African NREN, TENET. KENET has its NOC in Nairobi,
whereas TENE has two NOCs; in Cape Town and in Mtunzini.
Thus, if the topology were to have a mechanism for dynamic
multipath selection, traffic between KENET and TENET could
flow through the four paths:

(1) CapeTown = London S Amsterdam S N airobi,
(2) Mtunzini = Nairobi;

(3) Mtunzini S Maputo S DarSalam = Nairobi; and
@) CapeTown S Lusaka = DarSalam < Nairobi.

In the emulated topology, the Link Layer Discovery Pro-
tocol (LLDP) [15] was used to obtain link and switch states
in the topology. All forwarding paths were stored and used
as alternate routes for each source-destination switch pair.
The use of LLDP helped maintain a global view of network
topology and retain a multipath environment.

D. Implementing Q-learning in the SDN

To implement Q-learning in the experimental topology, each
node (SDN switch) is modeled as a state s, and a next-hop
switch as s’. Performance rewards are calculated based on
distance (packet delay) between s and s, available capacity
on the s <+ s’ link, and the resultant load (number of flows)
at the next hop s'.

Each of the core topology’s SDN switches conduct active
and passive measurements to monitor its egress links. A
network controller collects performance and utilization data
from all the core switches and links, and employs the Q-
learning algorithm to calculate rewards and adjust forwarding
rules at each node.

In this study, the Q-learning implementation consisted of a
local Q-values table at each network node, as well as a global
aggregation table managed by the network controller. Each
switch in the topology performs QoS measurements to each of
its next neighbors, and the results from such a measurement

Global Q-values

StateID Action Q-value chlHod

Q-values

Fig. 2. Local and global Q-value tables

(latency, jitter, packet loss) are passed on to the controller.
The controller uses the active measurement data, as well as
interface-level statistics (number of flows, packet count) to
calculate a reward value that it uses to update the Q-values.

Once the path metrics to the next hop have been collected,
an aggregation function is used to calculate the reward as a
composite value of path metrics. Each metric value is scaled
to decimal of a maximum possible value. For example, path
delay is scaled as a fraction of the maximum possible delay on
a link (1000 ms considered in the experiments). Link load is
a fraction of the available link bandwidth versus the capacity
of the link.

In this implementation, a weighting variable A is used
to aggregatena set of path mﬁ:trics K, into a reward value

r(s,a) = > AK;; where > A; = 1, and K = {latency,

available-bandwidth}. =

The Q-values records consist of tuples with a state identifier,
action, a pointer to the next state for each action, and reward
value for the action. A state represents a hop in the network
topology. Since each hop handles traffic going to different
destinations, a state in this work is defined by the node name
and a destination’s IP prefix. This means each hop may have
several states associated with it, one for each destination IP
prefix for traffic going through it.

After taking a state-action and the reward having been
calculated, a record < s,a,s’,Q(s,a) > is written into the
Q-values table.

On SDN switches, Q-values are transformed into interface
priorities that determine the next hops for each destination.
The process of selecting the optimal end-to-end path for traffic
flow is achieved by probabilistically selecting the forwarding
link based on Q-values at each switch.

E. Q-learning procedure and Path Selection

As the traffic flow commences between the source and
destination hosts, a network controller commences learning
episodes in which the controller performs active and passive
measurements between all adjacent SDN switches. Active
measurements are used to measure latency between switches,
whereas passive measurements are used to obtain the load
and residual capacity in each link. Capacity in this sense is

measured in terms of available link bandwidth relative to the
number of flows and packets coming through each switch
interface.

IV. EXPERIMENTAL EVALUATION

This section describes a set of experiments that were
conducted to evaluate the simulated SDN topology, with
reinforcement learning being used to adjust forwarding rules.

1) Single lowest latency path forwarding: This experi-
ment was setup with the aim of evaluating performance
when a single path is selected for each flow. The
controller determined and configured the single lowest
latency path between each pair of hosts in the network.
This is implemented by using only delay between ad-
jacent switches to calculate the rewards and Q-values.
Each switch then forwarded all the traffic towards the
egress link that had the highest Q-value.

2) Single highest capacity forwarding: This experiment
was setup with the aim of evaluating performance when
a single path is selected for each flow. The controller
determines and configures the single highest capacity
path between each pair of hosts in the network. This was
implemented by considering only the residual bandwidth
on the links to calculate the rewards and Q-values. The
switch forwarded all the traffic on the egress link that
has the highest Q-value.

3) Multipath forwarding based on latency and capacity:
This experiment was setup to evaluate the performance
when the switches forward traffic through multiple paths
towards the destination host. The rewards and Q-values
are calculated based on delay between switches, as well
as the residual capacities in the link. The switches then
use the Q-values to split the flow packets probabilisti-
cally, in fixed size blocks, to the egress links’ Q-values.

4) Multipath forwarding based on latency: In this ex-
periment, multiple links paths were used for each flow,
but the rewards and Q-values were influenced only by
the path delay. The egress link that was part of the
shortest delay path to the destination was awarded higher
rewards, and thus carried more traffic to the destination.

5) Multipath forwarding based on capacity: In this
setup, multiple forwarding paths were used, with the
reward and Q-values being influenced solely by links’
residual capacity. The egress link that is part of the path
with the highest capacity receives higher rewards and
Q-values, and therefore carries more traffic.

V. TEST TRAFFIC

Each experiment primarily aimed to measure three aspects
of network performance: latency, throughput, and jitter, aggre-
gated at flow level and network level. In all the experiments,
Iperf [21] was used for measuring performance characteristics.
More specifically, the TCP version of Iperf was used to
measure throughput between network hosts, while the UDP
version of Iperf was used to measure latency and jitter.

To measure throughput, each end host randomly selected
another end host and initiated a TCP Iperf throughput test for
60 seconds. All end hosts looped through this process for at
least 20 mins, thereby measuring throughput to at least 20
other end hosts.

To measure latency, jitter and packet loss, all the end
hosts again looped through the process of randomly selecting
another end host and initiating and Iperf transmission. The
traffic characteristics used in this case were based on [22] as
follows:

1) Protocol flow: UDP to TCP ratio: 3:1
2) Flow Duration:
e 0-2sec: 45% of all the traffic
e 2 sec - 5 mins : 55% of all the traffic

3) Flow rate:

o Short flows (0 - 60 sec) : 1 Bps - 10 kBps
e Medium flows (1 min - 5 mins) : 100 Bps - 50 kBps

VI. RESULTS AND DISCUSSION

This section describes the results for the experiments. The
metrics that are presented in this paper are throughput, latency
and jitter. The first part describes the aggregate results for
the whole topology. A more detailed discussion on network
performance is given in the Section VI-B, focusing on a single
source-destination pair - Cape Town and Nairobi. These two
nodes have multiple routes between them and are used in this
for illustration.

A. Network wide performance

Network-wide results indicates that the multipath configu-
ration achieved higher throughput, but with higher jitter and
latency. One possible cause for high jitter is due to packets
of the same flow traveling on different paths. With contiguous
packets of the same flow taking different paths, they have a
higher possibility of arriving at the destination with variable
delays, and possibly out of order. Out of order packets need
to be buffered and reassembled by the receiving TCP device,
and this could potentially result in increased packet loss and
retransmissions.

B. Performance between two end nodes - Cape Town and
Nairobi

This section focuses specifically on Cape Town and Nairobi,
two of NOCs in the UbuntuNet topology between which
multiple paths exist.

1) Throughput: Results from the network emulation exper-
iments indicate a substantial differences with regards to the
range of achieved throughput between single path communi-
cation and multipath communication. Multipath configurations
achieved throughput levels that are generally higher single
path configuration. However, it is noted the total achieved
bandwidth is still less than the aggregate capacities of the
multipath links. The only single path mechanism that had
higher throughput that multipath is the one in Experiment
5, where the single highest capacity path was used for each
source-destination pair. As can be observed from Figure 3 and

Figure 4, Experiments 2 and 5 (both use available bandwidth
for path selection) achieved the highest throughput, with Inter-
Quartile Ranges (IQR) of 40 - 65% and 45 - 70 Mbps
respectively. This is higher than the IQR of 30-55 Mbps
achieved for Experiments 1, 3 and 4.

It was expected that Experiment 5 would be have the highest
throughput given that it employs multipath forwarding and
favors higher capacity links. However, it is noted that Experi-
ment 5 achieved slightly lower throughput than Experiment 2,
in which a single highest capacity link was used. The reduction
in throughput can be attributed to packet loss and retrans-
missions owing to packets arriving out of order. Since packet
multiplexing in Experiment 5 does not consider path latencies,
there is an increased likelihood of contiguous packets being
forwarded towards paths that have significant differences in
delays, resulting in higher packet loss. In Experiment 2, on the
other hand, since only a single highest capacity link was used,
higher throughput was achieved without the negative effects
of the out of packets. Although Experiments 2 and 5 achieved
higher throughputs, their disregard for path delay resulted in
the worst latencies.

Experiment 1 achieved the lowest throughput. This should
be expected as the setup uses only a single path for forwarding,
and calculates rewards and Q-values based on link delays
without any regard to link capacity.

2) Latency: Figure 5 shows the recorded latencies between
the Cape Town and Nairobi nodes in the topology, with the
highest latencies being for Experiments 2 and 5. This was to
be expected, considering that both Experiments 2 and 5 don’t
consider path delays in rewarding forwarding paths, instead,
they only consider the link capacities.

Experiment 1 achieves the lowest and least dispersed laten-
cies. This should be expected, considering that this configu-
ration chooses a single lowest latency path. As a result, all
the flow’s packets flow on the same path, thereby having very
small deviations in the packets’ end-to-end latencies.

3) Jitter: litter is caused by deviations in packet delay, and
this can easily be the case when packets of the same flow
follow different paths. As can be observed from Figure 6,
the single path setups in Experiments 1 and 2 experienced the
least amount of jitter. On the other hand, all the three multipath
approaches had significant levels of jitter. Experiment 5 had
the highest jitter, as expected, due to its non-consideration for
delay when allocating forwarding rewards/Q-values.

Dealing with jitter in packet-level forwarding requires care-
ful balance for the size of the packet blocks. Ideally, if the
latency difference between the multiple paths is significant,
then it is helpful to use bigger blocks of packets (number
of packets forwarded to each link based on the Q-value). On
the other hand, if the latency difference between the paths is
insignificant, then it might be helpful to use smaller buckets
of packets so as to maximize utilization of all the links.

VII. CONCLUSION AND FUTURE WORK

This paper has shown how different types of QoS can be
achieved by the use of SDN’s dynamic path configurations.

1.00-

0.75-
Yy
'z
=
A Expl.]
Exp2.]
@50. —Exp3.1
=] —Exp4.]
= Exp5.1
=
g
=
@)
0.25-
0.00-
25 50 7 100
Throughput(Mﬁaps)
Fig. 3. Throughput distribution between Cape Town and Nairobi
100-
75-
_
7 S E—
(=7
)
2
N’
N
250-
=
on
2
i
=
= 1
25-
0-

Expl.T Exp2.T Exp3.T Exp4.T Exp5.T

Fig. 4. Throughput between Cape Town and Nairobi

The results indicate that packet level multipath forwarding is
able to increase throughput, but also introduces significant
levels of jitter. The best throughput in multipath setting
was achieved when the primary determinant of reinforcement
rewards was the links’ available bandwidth (Experiment 5).
However, this configuration gave the worst performance in
terms of jitter and latency. Of the multipath configurations, the
best performance in terms of latency and jitter was obtained
when the rewards were given on the basis of both the available
link capacity and latency (Experiment 3). On the other hand,
single path forwarding is seen to provide the lowest jitter.
In terms of latency, the best performance is obtained with
single path forwarding, where the rewards are based on the

S
e

L.atency(ms)

ExplL Exp2L Exp3L ExpdL ExpS.L

Fig. 5. Latency between measurements between Cape Town and Nairobi

100-

~
«

5- —l—

Jitter(ms)
@

[

5-

ExplJ Exp2J Exp3J Expd] ExpSJ

Fig. 6. lJitter between Cape Town and Nairobi

link delays.

A key challenge observed was high level of jitter when
multipath is used. To deal with this problem, the configu-
ration must aim to minimize the usage of different paths
for contiguous data frames. This can be achieved by having
larger packet buckets sizes, so as to minimize the number of
contiguous packets following the different paths. However, if
the bucket sizes are going to be too large, then for prolonged
periods, only one of the links will be heavily utilized, while the
other links are idle. This will be almost similar to single path
forwarding. One way to solving this problem is by dynamically
setting the optimal packet bucket sizes, by considering the
delay imbalance between the multipaths. Future work will
evaluate mechanisms for setting the optimal size of the packet
bucket sizes so as to maximize usage of the multipaths while
minimizing jitter.

ACKNOWLEDGMENTS

The authors acknowledge and appreciate the financial sup-
port received for this research from the Hasso-Plattner-Institute
(HPI), Potsdam University.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

J. Chavula, N. Feamster, A. Bagula, and H. Suleman, “Quantifying the
effects of circuitous routes on the latency of intra-africa internet traffic:
A study of research and education networks,” vol. 147, pp. 64-73, 2015.
A. Gupta, M. Calder, N. Feamster, M. Chetty, E. Calandro, and E. Katz-
Bassett, “Peering at the internets frontier,” in Passive and Active Mea-
surement Conference 2014, 2014.

R. Desai and B. Patil, “Cooperative reinforcement learning approach
for routing in ad hoc networks,” in Pervasive Computing (ICPC), 2015
International Conference on. 1EEE, 2015, pp. 1-5.

A. Jain and J. Pasquale, “Internet distance prediction using node-pair
geography,” in Network Computing and Applications (NCA), 2012 11th
IEEE International Symposium on. 1EEE, 2012, pp. 71-78.

T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine,
and A. Nagurney, “Choice as a principle in network architecture,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 105-
106, 2012.

G. N. Rouskas, I. Baldine, K. Calvert, R. Dutta, J. Griffioen, A. Nagur-
ney, and T. Wolf, “Choicenet: Network innovation through choice,” in
Optical Network Design and Modeling (ONDM), 2013 17th Interna-
tional Conference on. 1EEE, 2013, pp. 1-6.

H. Yin, Y. Jiang, C. Lin, Y. Luo, and Y. Liu, “Big data: transforming
the design philosophy of future internet,” IEEE network, vol. 28, no. 4,
pp. 14-19, 2014.

C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Corréa, S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control
platforms with the eyes and muscles of software-defined networking.”
ACM, 2012, pp. 13-18.

A. Gupta, M. Shahbaz, L. Vanbever, H. Kim, R. Clark, N. Feamster,
J. Rexford, and S. Shenker, “Sdx: A software defined internet exchange,”
2013.

D. Saucez, B. Donnet, L. Iannone, and O. Bonaventure, “Interdomain
traffic engineering in a locator/identifier separation context,” in Internet
Network Management Workshop, 2008. INM 2008. IEEE, Oct 2008, pp.
1-6.

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

W. Xu and J. Rexford, “Miro: Multi-path interdomain routing,” SIG-
COMM Comput. Commun. Rev., vol. 36, no. 4, pp. 171-182, Aug. 2006.
J. He and J. Rexford, “Toward internet-wide multipath routing,” Net-
work, IEEE, vol. 22, no. 2, pp. 16-21, 2008.

Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang,
“Traffic engineering in software-defined networking: Measurement and
management,” [EEE Access, vol. 4, pp. 3246-3256, 2016.

J. Yan, H. Zhang, Q. Shuai, B. Liu, and X. Guo, “Hiqos: An sdn-based
multipath qos solution,” China Communications, vol. 12, no. 5, pp. 123—
133, 2015.

W. Wang, W. He, and J. Su, “M2sdn: Achieving multipath and multi-
homing in data centers with software defined networking,” in 2015 IEEE
23rd International Symposium on Quality of Service (IWQoS). 1EEE,
2015, pp. 11-20.

S. Izumi, A. Edo, T. Abe, and T. Suganuma, “An adaptive multipath
routing scheme based on sdn for disaster-resistant storage systems,”
in 2015 10th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA), Nov 2015, pp.
478-483.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp.
3-14, Aug. 2013.

X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning algorithms with
function approximation: Recent advances and applications,” Information
Sciences, vol. 261, pp. 1-31, 2014.

UbuntuNetAlliance, “State of the art of the research networking in-
frastructure - eastern and southern africa,” in IST-Africa Conference
Proceedings, 2016. 1EEE, 2016.

B. Heller, N. Handigol, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container based emulation,”
in Proc. ACM CoNEXT, Dec. 2012.

A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf: The
tcp/udp bandwidth measurement tool,” htt p://dast. nlanr. net/Projects,
2005.

L. Quan and J. Heidemann, “On the characteristics and reasons of
long-lived internet flows,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 444—450.

