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Abstract

Observations of individual organisms (data) can be combined with expert ecological knowl-

edge of species, especially causal knowledge, to model and extract from flower–visiting

data useful information about behavioral interactions between insect and plant organisms,

such as nectar foraging and pollen transfer. We describe and evaluate a method to elicit and

represent such expert causal knowledge of behavioral ecology, and discuss the potential for

wider application of this method to the design of knowledge-based systems for knowledge

discovery in biodiversity and ecosystem informatics.

Introduction

Biodiversity scientists and ecologists work in different sub–domains including taxonomy,

community ecology, behavioral ecology, conservation planning and many others. The analyti-

cal methods and knowledge production processes [1,2] used in these different sub–domains

are common to all natural sciences. The scientific method will be employed to eliminate or

minimize variability and uncertainty in order to test a hypothesis. Frequentist [3] or Bayesian

[4] statistical analysis of empirical observations will then be conducted and the process will cul-

minate in publication of conclusions in the primary literature. In the field of flower–visiting

ecology the process of knowledge production typically starts with analyses of observations of

interacting plants and animals, either drawn from legacy natural history collection data [5] or

collected de novo during field surveys [6]. At this point an expert can generate knowledge

according to the traditions of natural science, by manually summarizing and analysing these

data and interpreting the results using available or personal knowledge. In the work described

below we report on a method that we developed to elicit and represent higher-level knowledge

typically called upon by ecologists to reason with, and interpret, their data. Our objective is to
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advance techniques for discovering ecological knowledge in databases through knowledge

engineering [7].

Whereas several ecology and biodiversity [7,8] ontologies have been created in the field of

biodiversity and ecosystem informatics (BDEI), techniques and applications that use ontolo-

gies in ecological knowledge engineering are still developing. An ontology was used to synthe-

size new conceptual ecological models from metadata in datasets by matching an existing

model with input metadata concepts constrained by the ontology [9]. Several ontologies have

been created for ecoinformatics, namely an ecology ontology as well as ontologies for ecologi-

cal models, analysis methods, ecological networks, and observations and measurements. These

can be used to describe ecological and environmental data to facilitate their discovery in par-

ticular contexts, and to describe data analysis tools to create scientific workflows [1,7,10–13].

In previous work [14], upon which we build in the work reported below, we developed an

ontology framework as part of a system that performs semantic enrichment and improves

semantic interoperability between heterogeneous records of flower–visiting observations. The

context is natural history specimen–records (e.g. of bees) in museum data–stores, which are

legacy data digitised from specimens with small labels which can be packed efficiently into

storage drawers. These digitised labels represent incomplete information, including about the

ecological association between each flower–visiting specimen (e.g. insect) and the plant on

which the insect had been captured in the field. An expert flower–visiting ecologist can discern

which specimen–records represent situations where pollination is likely to have taken place or

at least where the requirements for potential pollen transfer were met. Our objective was to

combine the incomplete label information in each specimen–record with domain knowledge

in a way that simulates the inferencing ability of a group of experts—to detect behavioral inter-

actions and potential pollen transfer.

Previously [14] we had defined a class at a high level of abstraction, namely ArthropodPlan-
tInteraction. This class represented instances when an individual insect and plant were deemed

to have been involved in an interaction, which we now term a behavioral interaction (class

BehavioralInteraction). We previously defined various kinds of low-level events subsumed by

the class PlantAssociationEvent, an instance of which is a part_of an instance of the class

ArthropodPlantInteraction. These events mainly represent the movements or behavior of

arthropods on or near flowers, recorded by scientists in detailed observations. For example,

when pollen is transferred, either from the anther to the arthropod vector or from the vector

to the flower’s stigma, there is an instance of the class FlowerPollenTransferEvent. The process

of pollen transfer itself is, however, not frequently or readily observed, except perhaps in cer-

tain families of plants that produce large pollinaria which adhere to certain large insects. Simi-

larly insect foraging behavior is difficult to observe. Unless exclusion trials are conducted [15],

ecologists studying flower–visiting therefore usually need to infer that foraging or pollen trans-

fer took place. It is this inferencing that we seek to automate.

Detailed observations of the behavior of flower–visiting arthropods on flowers, alone, can

be used to infer that foraging or pollen transfer took place. If these inferences are to be reliable,

however, other relevant fields in the specimen–record as well as relevant available knowledge

need to be combined in a way that simulates the way in which a domain expert would implic-

itly model knowledge and reason with the combined data and knowledge. For example, our

semantic enrichment system [14] allows a record of an association between an arthropod and

a plant to be extracted and enriched as a special flower–visiting behavioral interaction as long

as the arthropod belongs to a known flower–visiting taxonomic group such as bees (since nat-

ural history specimen–records often omit important behavioral detail such as whether the

arthropod was actually observed on the flower whose species name appears on the specimen

label). Clearly this would be incorrect, however, if the available knowledge is that the plant
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species in question is typically not in flower (represented by the class FloweringTime) at the

time of the year when the observation was made. This prompted us to ask: What other knowl-

edge, relating to the factors affecting foraging and pollen transfer, in particular, need to be con-

sidered, and how should they be combined in a model? We conducted an exploratory exercise

in eliciting and modeling ecological knowledge held by expert ecologists and reflected a con-

ceptual model of their knowledge back to them for evaluation.

Modeling choices

Whereas the semantic mediation system [14] was useful for semantic enrichment and

dynamic integration of heterogeneous data, it could not tell us what insects were probably

doing on flowers. The events we previously modeled, e.g. instances of the class FlowerNectar-
IngestingEvent, were relatively low–level representations. To recognise and understand an

unfolding ecological process (e.g. the process generally termed a plant–insect interaction in

the domain) we needed a composite class combining such a low–level event with expert

knowledge and other contextual data. In other words we needed to represent a situation. For

this reason we followed the general approach used in situation awareness, which encapsu-

lates knowledge of the relative positioning of, or relationships between, objects, or how the

current state of the world is comprehended [16]. Such high–level information is more useful

to an ecologist who sees or projects the world not as a collection of static objects requiring

classification (which might suffice in taxonomy) but as dynamic processes e.g. the flow of

information (DNA) or energy, or flow of a substance such as a nutrient or pollutant [1,17],

or an interaction between species. We therefore re–approached our case study [14] from a

different point of view, namely that of the expert who understands the factors affecting the

causal relations between ecological events, and modelled the knowledge using a semantic

Bayesian network (BN) [18].

A Bayesian network (Bayes net or Bayesian belief network) is a model that graphically and

probabilistically represents correlative and causal relationships among variables [18,19]. A BN

has two types of nodes: observation or measurement nodes and inferred nodes, connected by

arcs representing causal influences. A BN node is implicitly understood to be an event which

can be in one of a number of states at a given time. To specify the probability distribution of a

BN, one ‘must give the prior probabilities of all root nodes (nodes with no predecessors) and

the conditional probabilities of all nonroot nodes given all possible combinations of their

direct predecessors’ [18].

The BN formalism reflects the event–centric perspective on ecology developed in our previ-

ous work. Furthermore, the dependency–chain of consequent events inherent in a BN model

can easily be translated into an ecological network, a modeling artefact that is currently popu-

lar in flower–visiting studies.

Scope of modeling

There are many reasons why arthropods are attracted to or land on flowers, or repeatedly visit

flowers by flying from flower to flower. We modelled the three behavioral interactions that dis-

tinguish the more specialised anthophilous (flower–visiting) insect species (usually bees, or the

superfamily Apoidea, and masarine wasps, or the subfamily Masarinae) from other arthropods

that can be found on flowers but are not typical flower–visitors. These behaviors are active for-

aging for nectar, active foraging for pollen (with or without vibrating the wings to release pori-

cidally dehiscent pollen), active foraging for oil and the passive transfer of pollen that is an

incidental consequence of these behaviors. In our conceptual model the only other relevant

event is a generalized FlowerUtilizingEvent which takes place when an arthropod utilizes a
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flower for any reason (e.g. chewing and ingesting the flower parts, concealment, protection,

finding a mate or laying eggs), including that of foraging for a floral product. In other words

we did not model behaviors other than those associated specifically with foraging for floral

products.

We focused on interpreting data relevant to inferred behavioral interactions between indi-

vidual organisms (i.e. between an insect of species A and a plant of species B). Evidence used for

inferencing originated on the insect specimens’ labels, where a note contains the name of a

plant species (at least) (i.e. a PlantAssociationEvent) and sometimes more–detailed information

such as how the insect was behaving in relation to the plant’s flowers (e.g. ‘feeding on nectar’)

before the insect was captured and preserved.

We limited our knowledge modeling to preserved museum specimens of arthropods col-

lected in Africa, thereby excluding behavioral interactions exhibited by anthophilous arthro-

pods found outside Africa (e.g. arthropods that collect fragrances from flowers to attract

mates). We excluded observations that are not linked to preserved museum specimens because

we plan, in future work, to enumerate and aggregate records of the same species into popula-

tion samples, and must therefore be certain that different database records represent different

individual organisms (each labelled with unique museum catalogue numbers).

Objectives

Our ultimate objective is to design a knowledge–based system for high–level reasoning to

simulate the combined inferencing ability of a group of domain experts. The system would

automate the identification of situations of interest among flower–visiting records, specifi-

cally to infer or detect behavioral interactions (e.g. foraging for nectar or pollen transfer).

From our interactions with experts we deemed the combination of discrete knowledge

(modelled in an ontology) and probabilistic, causal knowledge (modelled in a BN) poten-

tially to be more useful in our application than an ontology alone. Our contribution consists

of the method we developed to elicit and represent expert causal knowledge, the conceptual

model itself, and the reflection upon our experience and what we learned from the exercise.

The following description and discussion therefore detail the BN modeling work towards

our ultimate objective. Further ontology development and implementation in a prototype

system is left for future work.

Broadly, we elicited experts’ natural language sentences containing causal knowledge of the

factors affecting the inferences experts draw from their flower-visiting observations (data). We

then abstracted the necessary knowledge elements from these elicited natural language sen-

tences to represent and formalize these as knowledge requirements. We combined random

variables representing the knowledge elements in a semantic BN. The final step was to evaluate

the semantic BN through qualitative feedback from experts.

Knowledge elicitation and modeling steps:

1. Elicit natural language statements from experts, describing the behavioral and ecological

factors that affect an expert’s belief that a behavioral interaction (e.g. foraging for nectar)

occurred, given the available data;

2. Identify the knowledge elements, or select, among these natural language statements, the

kinds of observations and knowledge that are important, and classify and characterize

these;

3. Formalize or represent the knowledge elements as high–level Knowledge Representation

and Reasoning (KRR) requirements, and develop the random variables and BN;
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4. Refine and evaluate, through expert feedback, the BN as a model to represent expert causal

knowledge.

Method and Results

The present work is an exception among research undertaken by staff of the South African

Institute for Aquatic Biodiversity (SAIAB) and was deemed not to require the approval of the

SAIAB Ethics Committee. Experts whose knowledge was elicited consented, in writing, to par-

ticipate in this study.

Eliciting expert knowledge in natural language

We consulted (S1 File) five experts in flower–visiting ecology and asked them what kinds of

behavioral interactions involving flower–visitors and flowers are recognized. We also asked

them, if given a flower–visiting record, what factors affect their belief that a specific flower–vis-

iting behavioral interaction, including pollen transfer, took place.

Using this information a BN was created and given to the experts as a way to focus their

attention on the factors that allow them to assert, when looking at their data, that these flower–

visiting behavioral interactions and pollen transfer took place. This elicitation process resulted

in new expert knowledge to incorporate into the BN model because experts understood how

the model simulated their thinking.

An expert with more than 30 years’ experience of the foraging and pollinating behavior of

flower–visiting insects was further consulted to elicit more–detailed knowledge. This expert’s

knowledge was captured as natural language assertions e.g.
It is likelythat pollentransferoccurred
if the arthropod–plantrelationshipis an obligatemutualism
and if the observationof the arthropod–plantrelationshipwas made during

the floweringperiod
or
if the arthropodis a femalebee or femalepollenwasp
and if the observationof the arthropod–plantrelationshipwas made during

the floweringperiod

Identifying and characterizing the knowledge elements

The knowledge elements contained in the natural language sentences were identified and

rewritten as random variables (summarized in Table 1). The random variables were classified

as observations (i.e. data) or knowledge or inferences, and categorized into kinds of knowledge

more–or–less corresponding to fields in biodiversity science or ecology.

We related the kinds of knowledge represented in the semantic BN to fields of biodiversity

science and ecology and noted the sources of knowledge in these fields (Table 2).

Further, we highlighted the kinds of observations and knowledge that are most useful in

causal knowledge representation and reasoning in the analysis of flower–visiting biodiversity

occurrence records. These are behavioral and ecological as well as taxonomic knowledge ele-

ments, for example:

• whether an insect species belongs to a known flower–visiting group such as bees (taxonomic

knowledge);

• the specific type of flower–visiting relationship, i.e. whether an arthropod is a nectar and pol-

len feeder, a specialist oil collector or a specialist pollen collector (behavioral ecology);
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• the type of floral reward, i.e. only pollen, pollen and nectar, or pollen and oil (ecological

knowledge);

• whether a plant species is known to flower during a particular month (ecological knowl-

edge), i.e. when it is not known that an insect was observed on a flower, but some association

between an insect specimen and a plant is implied by the appearance of the plant species

name on the insect specimen label (which is a unique combination of knowledge and data

found in natural history collections and the experts associated with collections).

• The degree of oligophagy, or how many species of plants an insect visits to obtain nectar,

which affects the chance that a given insect will visit another plant of the same species for

nectar, and thereby transfer pollen (behavioral ecology).

Table 1. The random variables extracted from natural language sentences elicited from experts.

Knowledge element Kind of knowledge Random variable

Observation Molecular / Microscopic Pollen evidence (free pollen)

Observation Curatorial i.e. a plant name appears on an insect label FlowerAssociation

Observation Behavioral / Ecological Duration of visit

Observation Behavioral / Ecological Observed behavior: Utilizing a flower

Observation Behavioral / Ecological Observed behavior: Foraging for a floral product

Observation Behavioral / Ecological Observed behavior: Vibratory pollen collection

Observation Behavioral / Ecological Observed behavior: Foraging for pollen

Observation Behavioral / Ecological Observed behavior: Foraging for nectar

Observation Behavioral / Ecological Observed behavior: Foraging for oil

Observation Behavioral / Ecological Robbing nectar (piercing the corolla to get nectar)

Observation Behavioral / Ecological Thieving nectar (removing nectar without piercing)

Observation Anatomical / Morphological Sex

Inference or observation Behavioral / Ecological Pollen transfer (vector–receiving)

Inference Behavioral / Ecological Visit to different flower of same species

Inference Behavioral / Ecological Pollen transfer (stigma–receiving)

Knowledge Molecular / Microscopic Pollen identification reference

Knowledge Anatomical / Morphological Known oil–producing plant species

Knowledge Anatomical / Morphological Plant species producing pollen only

Knowledge Anatomical / Morphological Poricidal dehiscence

Knowledge Anatomical / Morphological Plant species has Insect Pollination Syndrome

Knowledge Anatomical / Morphological Flower size

Knowledge Anatomical / Morphological Inflorescence type: Simple or flat compound vs. compound

Knowledge Ecological Plant species known to be robbed

Knowledge Ecological Plant species known to be thieved

Knowledge Ecological Collecting date is within flowering period

Knowledge Ecological / Morphological Known oil collecting vector species

Knowledge Morphological Vector size

Knowledge Ecological / Behavioral Known vibratory pollen foraging vector species

Knowledge Ecological / Behavioral Vector behavior

Knowledge Ecological Known thieving arthropod species

Knowledge Ecological Known robbing arthropod species

Knowledge Ecological Known pollen–specialist vector species

Knowledge Ecological Degree of oligophagy

Knowledge Ecological Independent evidence of flower–visiting

Knowledge Anatomical / Morphological Known nectar-producing plant species

doi:10.1371/journal.pone.0166559.t001
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Formalizing the high–level KRR requirements and creating a consensus

BN

The natural language sentences were formalized into standard, semi–formal assertions e.g.
It is: [degreeof probability]

that [behavioralinteraction]occurred(event1)
if [combinationof causalbiologicalfactorsexistsi.e. observations

and knowledge]
and consequentlyit is

[degreeof probability]
that a pollentransferbehavioralinteractionoccurred(event2)

We then specified the high–level KRR requirements in the analysis of flower–visiting

behavioral ecology data:

1. the variables included in the BN model;

2. the class BehavioralInteraction, an instance of which is a behavioral interaction between

two organisms (an event). This class has the sub–classes ForagingForNectar, ForagingFor-
Pollen, ForagingForOil and PassivelyTransferringPoll en; A formal definition of the class

BehavioralInteraction will be developed in future work;

3. a situation, which is a state of a given BN at a point in time, considering all available knowl-

edge, observations and beliefs e.g. the probability that a ForagingForNectarSituation took

place;

Refining and evaluating the Bayesian network

We created a BN to represent a reasonable consensus of experts. The data from twelve typical

flower–visiting records were then used to set the evidence nodes in the BN and evaluate the

posterior probability of behavioral interactions and pollen transfer for each record. The results

were compiled and presented to the five flower–visiting experts, who were asked to evaluate

the results and comment on whether the BN was a reasonable model. All five experts con-

curred that the results were reasonable, but all five experts also made comments which resulted

in refinement of the model. We further consulted a flower–visiting and pollination expert,

who added new, significantly more-detailed knowledge to the BN. The refined BN is shown in

Fig 1a and 1b. When implemented, the BN will receive a specimen-record (i.e. a digitised spec-

imen label) as input from a data-store. Such a record would already represent an instance of

the class PlantAssociationEvent in the flower–visiting ontology [14] because there would be a

plant name on the specimen label. The BN would then evaluate the posterior probabilities of

Table 2. The fields of biodiversity science or ecology which give rise to the concepts represented by the BN random variables.

Kind of knowledge Source of knowledge Field of biodiversity science or ecology

Knowledge of molecular biology Online databases containing reference gene

sequences

Gene sequencing or DNA barcoding

Curatorial and natural history knowledge (biological/

ecological annotations on specimen labels)

Specialized natural history collection databases Natural history collection management and

curation, or biodiversity informatics

Behavioral / ecological knowledge Specialized techniques, field surveys, projects,

publications e.g. [20],[21] and experts

Behavioral ecology or community ecology

Morphological knowledge (including the

microscopic level)

Specialized techniques, projects, publications (e.g.

containing pollen micrographs) and experts

Microscopic analysis of pollen

Anatomical / morphological knowledge Specialized publications e.g. [20], online repositories

(including DL knowledgebases) and experts

Systematics and taxonomy

doi:10.1371/journal.pone.0166559.t002
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Fig 1. The refined BN, divided into two parts for easier display—the nodes representing Foraging for

nectar, Foraging for oil and Foraging for pollen (heavier borders) appear in both parts to allow them

to be integrated. Shaded nodes represent data and unshaded nodes represent knowledge. Nodes with

dashed borders are nodes that can only be inferred and nodes with solid borders are evidence nodes, which

can also be inferred.

doi:10.1371/journal.pone.0166559.g001
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events represented by the nodes ForagingForNecta r, ForagingForPollen, ForagingForOil and

PassivelyTransferringPollen.

The table of prior probabilities associated with the node representing one of the BN vari-

ables is shown in Table 3. The degree of oligophagy of an arthropod species was deemed to be

the most important variable affecting the belief that a given insect would visit a second flower

of the same plant species, a prerequisite of pollen transfer. This is a good example of the kind

of causal knowledge of behavioral ecology that needs to be represented to extract useful infor-

mation from ecological data.

Reflection on the Validity and Usefulness of the Method and BN

Reflecting on the semantic BN as a tool for knowledge elicitation and representation, we found

that representing causal ecological knowledge enabled us to model behavioral interactions and

estimate the probability associated with their occurrence. The formalism we chose was also

useful as an elicitation method because experts were intuitively able to interrogate and tease

apart composite, high-level events and situations, using causality as a mechanism. Indeed,

whereas reactions to the ontology framework and semantic mediation system [14] were

somewhat mixed, ecologists could more easily relate to the objective of replicating, using a

computer, the way that they reason with their own knowledge and data. This could be an

important area for future research because potentially it represents the key to unlocking biodi-

versity and ecology KRR. In other words, modeling expert knowledge using a semantic BN

could be a way to reduce the complexity of expert knowledge without the need for discrete rep-

resentational classes, at least as a first step in knowledge modeling.

Conceptual stance

One of our findings was that a conceptual stance or perspective on ecology and ecological

interactions was needed in order to usefully and consistently represent the implicit expert

knowledge used in inferencing. The methodological status of ecological concepts is still charac-

terized by ambiguity and terminological confusion i.e. ‘many synonyms exist for the same eco-

logical unit and there are cases where the same term is used for different concepts’ [22] e.g. the

terms for the units ‘population’, ‘community’, and ‘ecosystem’, and the term ‘ecological inter-

action’. Many terms have not enjoyed formal scrutiny. For example, the ecological or species

interaction colloquially termed ‘pollination’ has been classified as a ‘non–trophic species inter-

action that modifies non–feeding parameters, specifically reproduction’ [23], a definition that

calls into question the meaning of several other concepts.

Whereas the concept of an ecological interaction was an implicit knowledge requirement (of

fundamental importance in BDEI) that remained unstated by the experts we consulted, they

Table 3. The conditional probability table associated with the BN node representing the variable Visit

to Second Flower of the Same Species.

Degree of oligophagy Conditional probability of Visit to Second

Flower of the Same Species

Obligate mutualist or female Colletidae or female

Melittidae or female Masarinae

55%

Female bee other than Colletidae or Melittidae, or male

bee or male masarine wasp or independent evidence of

flower–visiting to limited number of species

30%

Nectar feeding flower–visitor other than the above 15%

Flower–visitor that is not a nectar feeder 0

doi:10.1371/journal.pone.0166559.t003
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articulated other high–level knowledge, specific to flower–visiting ecology, in detailed terms

e.g. the behavior of a single bee. If an individual bee behaves in a specific way on a flower there

is said to be an instance of the class BehavioralInteraction between the bee organism and the

plant organism, though the word ‘interaction’ is not meant to indicate that the instance has

any properties in common with an instance of the putative class EcologicalInteraction. The

word ‘interaction’ in the class BehavioralInteraction, therefore, merely means that the individ-

ual bee and plant are moving or behaving or acting (interacting) ‘with or towards each other’

in concrete terms and can be observed to be doing so. Our concept of a behavioral interaction

between individuals is broadly consistent with the conventional perspective on ecology [24],

which recognizes the individual, population and community levels as the salient levels of eco-

logical organisation, and the individual as the ‘currency unit’. Working at the intersection of

ecology and computational modeling of complex systems Huston et al. [25] discussed the

application of individual–based computational models to studies of populations, communities

and ecosystems as well as feeding and predation (ecological interactions). The three levels of

ecological organization were depicted to illustrate how individual–level processes produce pat-

terns at higher levels of organisation [25] (Fig 2). The argument is that the individual organism

is the logical basic unit for modeling ecological phenomena, as the use of aggregated state–var-

iables in population models, for example, makes the simplifying assumption that all individu-

als are statistically similar and interact similarly with other organisms and the environment.

Small individual differences, however, can lead to significant effects at higher levels of organi-

zation [25].

The domain perspective on flower–visiting

Data on whether or not a particular insect visited a second flower of the same species, or

whether the direction of pollen transfer was ‘vector-receiving’ or ‘stigma–receiving’, are not

available in typical natural history specimen-records. Some authors claim that flower–visiting

Fig 2. Graphical conceptualization of an individual–based computational model illustrating how

individual–level processes produce patterns at higher levels of complexity. Different sizes of circles

(organisms) represent different species. Broad arrows represent feedback between organisms and the

environment (also a mechanism of indirect interaction between organisms) and thin arrows represent direct

interactions between individual organisms. (Huston, M., DeAngelis, D. and Post, W. 1988. New computer

models unify ecological theory. Bioscience 38(10): 682–691 by permission of Oxford University Press).

doi:10.1371/journal.pone.0166559.g002
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data are a poor proxy for pollination [26], noting that some of the most important factors

affecting pollination are the duration of the visit, the frequency of visits to a given flower (from

a flower’s perspective)[6] and the behavior of the vector in the flower. Typical natural history

specimen-records, however, document the insect’s perspective as a once–off observation (after

which the insect is killed and preserved), precluding the collection of such quantitative data or

data from a single, monitored flower which is visited many times. Even the behavior of an

insect on a flower represents detail that is included in only the most specialized natural history

research projects and databases. Experts nevertheless concurred within the scope of our appli-

cation, which is limited to the particular context of discovering knowledge from typical (if

unusually rich) natural history specimen-records such as they are.

The quality of knowledge elements. The quality of knowledge elements, including the

veracity of generally available (often implicit) knowledge and the provenance of data, have a

bearing on evaluating the BN as a modeling tool. We elicited and modeled highly detailed, if

not comprehensive, knowledge of flower–visiting and pollination, and combined this knowl-

edge with unusually rich natural history specimen–records. The specimen-records are the leg-

acy of Dr F.W. Gess and Dr S.K. Gess of the Albany Museum and are noteworthy for their

detail, specifically with respect to insect behavior and the flowers visited by bees and wasps

[21].

Reflecting on the techniques employed in biodiversity knowledge discovery in databases

can inform fieldworkers as to what kinds of data are needed to more easily enrich a database

record with, or extract from it, as much meaning and value as is possible. In many cases the

semantic enrichment need not be as detailed as the described case of flower-visiting behavioral

interactions and pollen transfer. Even making the simple assertion that two organisms were

involved in a generalized behavioral interaction could significantly and meaningfully increase

the amount of information available for traditional biodiversity data analyses or ecological

knowledge engineering.

Reasoning about the degree of oligophagy and reasoning about oil–collecting by special-

ist bees. There is a need to distinguish between pollen collected for nest provisioning (i.e.

pollen as food for larvae developing in the nest) and free pollen [20]. Whereas the former is

actively ingested into the crop or packed into external pollen–carrying structures for transport,

the latter accidentally adheres to the insect when it is searching for nectar, which is food for

the adult insect. The pollen that is transferred between flowers and ultimately fertilizes the

ovum is free pollen. An oligolectic bee species is one that collects and transports to its nest, as

provision, the pollen of only a few plant species (say, fewer than 10 species). An oligophagous

bee species, on the other hand, is one that feeds on the nectar of only a few plant species i.e. for

its own energy needs. A flower produces just enough nectar to attract a bee but not enough to

satisfy it, thereby forcing the bee to find another flower [27]. It is this tendency of females

(males are not as long lived) of certain bee families, and female pollen wasps (family Masari-

nae), to go from flower to flower of the same plant species, or a limited number of species, in

search of nectar, that most predictably causes free pollen to be transferred from one flower’s

anther to another conspecific flower’s stigma. For this reason the degree of oligophagy (not oli-

golecty) exhibited by an insect species strongly influences an expert’s belief that it may transfer

pollen between conspecific flowers. Similar reasoning applies to the case of oil–collecting bees,

which collect oil from particular oil-producing plant species: if plants of a small number of spe-

cies are visited the chance of pollination is higher than if plants of many species are visited

[28].The degree of oligophagy is perhaps the most important knowledge element in the BN.

Knowledge of the degree of oligophagy of insect species has been collected, compiled and pub-

lished for more than a century, and is included in specialized texts such as reference books

[20] and journal articles (including reviews on the subject, such as 27), and is therefore
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generally available. This knowledge was both easy to elicit and easy to represent due to its dis-

crete nature (Table 3) and the availability of experts.

Reasoning about pollen evidence. Similarly the presence or absence of pollen evidence,

or pollen found on the insect’s body and identified through microscopy [29] or DNA barcod-

ing is also an important factor influencing the belief that pollen was transferred, at least from

the anther to the insect vector. If a field worker used a single collecting net or killing bottle to

contain more than one insect specimen there is a possibility (nevertheless implicitly modelled

in the BN) that pollen may have been accidentally transferred from one specimen to another.

The provenance of this type of data (e.g. detail of the collecting protocol) could be used to stan-

dardize data accuracy or decrease uncertainty.

Reasoning about vector and flower/inflorescence size and morphology. On the other

hand, the relative size of the vector compared to the flower or inflorescence, and the morphol-

ogy of the insect and flower/inflorescence (e.g. degree of fit, stigma accessibility), are far more

difficult to elicit and represent as factors affecting the belief that a behavioral interaction or

pollen transfer took place. Size is a continuous variable and the compounded nature of mor-

phological variability is notoriously complex. Whereas knowledge of broad pollination syn-

dromes is available [6] (e.g. flower morphology suggesting bee pollination or moth pollination,

or scent suggesting fly pollination) there is no knowledge of e.g. specific morphological traits

or discrete classes of vector/inflorescence size ratios that apply across all flower-visiting insect

species. Specialized interactions between particular flowers and particular bees or pollen-

wasps have been studied in detail to understand precisely how pollen is received and deposited

[20,30].

Foraging behavior. The only other nodes influencing the belief in pollen transfer are the

nodes representing foraging, either for pollen or oil or nectar. Again, like the degree of oli-

gophagy, the knowledge that a given species is a pollen feeder or nectar feeder or oil collector

is well established and generally available [27]. All other nodes in the BN influence the belief

that one or more of these kinds of foraging or collecting behavior took place. In most records

that are detailed enough to be included in an analysis, this kind of knowledge will usually

determine the outcome of a BN evaluation.

The broader relevance, to BDEI, of the elicitation and representation

method

The described method of eliciting and representing biodiversity and ecological knowledge can

be adapted to different perspectives on, and applications of, biodiversity science and ecology.

Applying the method will be easier and the potential for success higher when the dataset units

are occurrence records that include implicit or explicit knowledge about behavioral interac-

tions between observed organisms or between organisms and the environment, e.g. in pest

control (and biological control), freshwater biomonitoring, intertidal ecology, food webs (iso-

tope analysis) or animal movement studies. Cases of implicit knowledge in databases such as

host–parasite relationships and stomach–content analyses lend themselves to logical inferen-

cing because there may be no uncertainty associated with asserting that a behavioral interac-

tion took place between organisms (e.g. the only way that a free-living prey organism can end

up in a predator’s stomach is through a predatory interaction). Similarly, enrichment of rec-

ords of certain plant-insect interactions may be associated with less uncertainty than is associ-

ated with flower-visiting, particularly with e.g. obligatory leaf-miners, gallers or stem–borers.

More often than not, however, behavioral interactions between organisms and the environ-

ment will need to be represented probabilistically because of inherent uncertainty and the frag-

mented nature of biodiversity and ecological data and knowledge. It takes time and effort to
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observe and record precisely how an organism is behaving, and interpret what it may be

doing, and many organisms are too small or inaccessible to observe easily. Biodiversity and

ecological studies are complex and data are often recorded to answer specific questions in par-

ticular ways. Nevertheless, scientists’ and natural history collections’ datasets and documents

are treasure troves of incomplete data that more-or–less inadvertently and implicitly docu-

ment interesting events that were not always the investigators’ intended targets.

Conclusion and Future Work

BDEI researchers have reflected on the field’s challenges [31] and the nature of the questions

that they ask of biodiversity data [32], implying that more can be achieved with natural history

occurrence data than merely a display of points on a map or the use of these to predict the

potential distribution of a species.

We applied knowledge engineering techniques in the context of specimen–records from

natural history collections. We found that our method to elicit and represent knowledge using

a semantic BN can be used to represent expert and implicit causal knowledge about ecological

events so as to discover behavioral interactions in data that were collected with a different

objective in mind. In future work we will focus on further developing an existing ontology,

which could be combined with the semantic BN to allow both logical and probabilistic

reasoning.

There is potential to use inferences about behavioral interactions between arthropods and

flowers to indicate, at a higher level of biological organisation, that ecological interactions

between a putative population of species A (arthropod) and a putative population of species B
(plant) are to be inferred from the data. This will require aggregating the records of individual

organisms into a class representing a population sample of each species. Ultimately we want to

model ecological interactions (e.g. between a population of an arthropod species and a popula-

tion of a plant species) relevant to flower–visiting and pollination studies using the modeling

construct of an interaction network. The modelled behavioral interactions between individuals

could therefore be the criteria for selecting records with which to create a network of popula-

tions linked by ecological interactions (an analogue of a community). Interaction networks are

widely used in flower–visiting community ecology and studies of pollination, and standardis-

ing the concepts and automating data interpretation and construction of interaction networks

could be meaningful contributions to ecological research.
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