
An Analysis of Artificial Intelligence Techniques in
Multiplayer Online Battle Arena Game Environments

Michael Waltham
CSIR Meraka Centre for Artificial Intelligence

Research (CAIR)
University of KwaZulu-Natal, Westville Campus,

Durban, South Africa
walthammichael@gmail.com

Deshen Moodley
CSIR Meraka Centre for Artificial Intelligence

Research (CAIR)
University of Cape Town, Cape Town, South

Africa
deshen@cs.uct.ac.za

ABSTRACT
The 3D computer gaming industry is constantly exploring
new avenues for creating immersive and engaging environ-
ments. One avenue being explored is autonomous control
of the behaviour of non-player characters (NPC). This pa-
per reviews and compares existing artificial intelligence (AI)
techniques for controlling the behaviour of non-human char-
acters in Multiplayer Online Battle Arena (MOBA) game
environments. Two techniques, the fuzzy state machine
(FuSM) and the emotional behaviour tree (EBT),were re-
viewed and compared. In addition, an alternate and simple
mechanism to incorporate emotion in a behaviour tree is
proposed and tested. Initial tests of the mechanism show
that it is a viable and promising mechanism for effectively
tracking the emotional state of an NPC and for incorporat-
ing emotion in NPC decision making.

Keywords
Artificial Intelligence; 3D Games; MOBA

1. INTRODUCTION
Artificial intelligence (AI) is an extremely diverse area

of Computer Science that continues to expand its applica-
tions in the real world. AI in Computer Science is focused
on allowing computers to act with a degree of intelligence
[11]. AI, when applied to the field of 3D game develop-
ment, allows non-player characters (NPCs), i.e. computer
controlled players, to effectively challenge human players by
giving them a certain degree of ”intelligence” with respect to
a particular game environment.

The Multiplayer Online Battle Arena (MOBA) style of game
was chosen simply because it has recently become one of the
most popular 3D game genres [3, 8, 10]. The game develop-
ment process can be quite time consuming and tedious [6,
7]. Third-party game engines e.g. The Unity Game Engine
or CRYEngine are usually used to develop games. For this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAICSIT ’16, September 26-28, 2016, Johannesburg, South Africa
c© 2016 ACM. ISBN 978-1-4503-4805-8/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2987491.2987513

reason, the Unreal Engine 4 (UE4) was used to develop the
test game environment that was used during technique eval-
uation.

The purpose of this study was to provide a review and
analysis of AI techniques that may be used for developing
stochastic, autonomous agents, i.e. NPCs, within a MOBA
style game environment. These techniques were analysed
using the literature for usage within MOBA environments
with respect to: stochastic behaviour support, resource con-
sumption and modularity. Two techniques were selected
for further comparison after a review of the literature was
completed. These techniques were the fuzzy state machine
(FuSM) and the emotional behaviour tree (EBT), which de-
rive from the popular finite state machine and behaviour
tree respectively. These techniques were then implemented
to control the behaviour of agents within the test game en-
vironment and their performances were compared.

This paper firstly outlines common behaviour control tech-
niques used in 3D game development as well as provide a
review of these techniques (section 2). An outline of the
game scenario is then discussed (section 3). The experimen-
tal design and technique implementation is then described
(section 4). Lastly, the performance results of each imple-
mented technique is presented and discussed (section 5).

2. LITERATURE REVIEW
The following section identifies and describes five artificial

intelligence techniques that are commonly used to control
the behaviour of NPCs within game environments. The ad-
vantages and disadvantages of using each technique is then
listed. These advantages and disadvantages relate to aspects
such as: stochastic behaviour support, resource consump-
tion and modularity.

2.1 Techniques

2.1.1 The Finite State Machine
The most popular AI technique used in game development

has, up until now, been the finite state machine (FSM) [12,
15]. It contains a number of behaviour-defining states that
describe the current situation of an agent. Transition logic
is inserted into states to allow the agent to move from one
state to another when various conditions are met. Inher-
ently, this may lead to issues when there are a large number
of behaviours to consider. This poses a major issue with

the finite state machine in that it does not scale well with
large systems [5, 10, 16]. The FSM has, however, proven to
be a relatively simple technique to implement within game
environments which is one of the reasons why it has been
extremely popular [15].

Modern commercial games use high amounts of resources on
aspects such as game logic and graphics processing, leaving
very little resources for artificial intelligence [13]. The FSM
inherently has a very low computational cost [12, 15]. This,
together with its simplicity, proves to be a major advantage
in using the FSM for games in which the focus of the game
is not centred around NPCs. Therefore, the FSM can be an
effective solution for games that do not require advanced,
adaptive agents [15]. Games in which the FSM has been
successful include: Age of Empires (Ensemble Studios) and
Quake (Id Software).

2.1.2 Fuzzy Logic
Fuzzy logic is an extension of conventional boolean logic

that accounts for partial truth values. It allows developers
to work with partial or incomplete information [15]. Many
researchers believe that fuzzy logic is similar to the way in
which humans perform reasoning [12].

In the field of game development, agents may alter their de-
cisions based on the values of fuzzy variables. It is notable
that fuzzy logic is a relatively popular artificial intelligence
technique for game development and has been used in sev-
eral commercial games [9, 13].

Non-programmers are able to assist in the design process
due to the fact that fuzzy logic simply requires knowledge
of boolean logic. The extremely low learning curve of fuzzy
logic proves to be a major advantage. Experts in the partic-
ular style of game, who may have no knowledge of how the
game is actually developed, are able to write fuzzy rules for
the agents to follow. This therefore will produce seemingly
intelligent agents with the advantage of a simple design. The
disadvantage of this is that if experts in the field cannot be
found, fuzzy rules may be time-consuming to develop [12].

2.1.3 The Fuzzy State Machine
The finite state machine may be incorporated with fuzzy

logic to produce a fuzzy state machine (FuSM). The re-
sult of this is a finite state machine with a degree of non-
determinism [15]. Commercial games such as Unreal (Epic
Games) successfully made use of the FuSM to control NPC
behaviour. Certain advantages of the FuSM are listed below:

• The fuzzy state machine does not require as many
states as the finite state machine while still providing
less predictable behaviour [2].

• Finite state machines can easily be converted to fuzzy
state machines [12].

• The range of possible responses from characters is in-
creased [15].

2.1.4 Behaviour Trees
The behaviour tree is a directed acyclic graph that can

contain various types of nodes [4, 5]. Behaviour trees have
become a very popular form of NPC behaviour control in

game development [5]. This is evident due to the fact
that commercial games such as Grand Theft Auto (Rock-
star Games) and Halo (Bungie) employ the use of behaviour
trees to control NPC behaviour [4, 5].

Behaviour trees consist of various types of nodes to form
a tree structure. Each node may have multiple parent nodes
as this allows for different parts of the tree to be reused.
When the tree is traversed, each node is able to return a
value indicating the result of their execution. The return
types are as follows: success, failure and running.

Leaf or terminal nodes may either be an action or a con-
dition node. An action node represents a specific task or
process that the agent may carry out. A condition node
simply checks if a certain condition holds at any given point
in execution.

The four types of non-leaf nodes are sequence, selector,
parallel and decorator. A sequence node executes its chil-
dren sequentially until a child returns failure. A selector
node executes its children sequentially until a child returns
success. A parallel node will execute all children in parallel,
the stopping criteria for this node depends on the particular
behaviour tree implementation. A decorator node may con-
tain only one child node and is able to prevent the execution
of the child until a certain condition is met. The advantages
of using behaviour trees have been listed below [5, 9, 10,
16].

• Behaviour trees scale well with a system.

• Previously defined trees are easily re-used.

• Easy to debug.

• Memory efficient.

• Additional functionality can easily be added.

• State transition logic does not need to be coded into
the behaviour.

• Different areas of an agent’s behaviour can easily be
kept separate in the tree.

• Commercial game engines such as the Unreal Engine 4
and CryENGINE have built-in support for behaviour
trees. This gives developers quick access to a graphical
user interface environment in which they can develop
NPC behaviour. As mentioned in [9], behaviour trees
are highly effective when used with a graphical user
interface.

2.1.5 Emotional Behaviour Trees
Emotion is an important factor for the human user in

games. Many researchers argue that emotions should play
a vital role in the decision making process [1, 5]. Take for
example the emotions happiness and anger. Individuals that
are currently happy or angry are more likely to make deci-
sions involving a high risk factor [5].

Although it is apparent that the addition of emotions into
NPC decision making has strong potential to bring about
human-like behaviour, the effectiveness of emotion within

NPC decision making is still new and requires further re-
search and testing [14]. It is important to balance non-
deterministic behaviour along with the required behaviour
of that specific agent. Human players expect non-player
characters to react rationally while still maintaining a cer-
tain style of behaviour required of their role in the game [10].

One approach to incorporate emotions into NPC decision
making is to extend behaviour trees. The emotional be-
haviour tree model presented in [5] proposes the addition of
an emotional selector node. This proposed model was tested
and yielded successful results.

2.1.6 Artificial Neural Networks and Evolutionary
Algorithms

There are various cases where artificial neural networks
(ANN) and evolutionary algorithms have been used success-
fully in game environments [16]. The non-deterministic
nature of these techniques allows the production of intelli-
gent, adaptive agents in games. These techniques however,
have not been fully accepted within the game industry for
producing non-player characters [15]. The main reason for
this is simply the fact that these techniques are extremely
resource intensive [15, 16]. Most commercial games that
incorporate resource intensive techniques such as artificial
neural networks and genetic algorithms are games in which
the goal of the game is centred around the non-player char-
acters [12, 13]. One example of this is Black and White
(Lionhead Studios).

2.2 Comparison of Techniques
This section reviewed AI techniques that are commonly

used in game development in order to identify suitable tech-
niques to be applied to the MOBA game environment. Table
1 provides a summary of the strengths and limitations of the
five techniques found to be used previously.

3. GAME SCENARIO
The following section defines the MOBA game genre as

well as the test bed used in this research.

3.1 The MOBA Game Genre
A MOBA style game is generally situated in a 3D world

and involves two opposing teams which both consist of a
number of characters (i.e. agents), and structures. The
goal of each team is to eliminate the core structure of the
opposing team which is situated on the opposite end of the
world. Each team’s core structure is connected to pathways
known as lanes. Each lane contains a number of structures
belonging to each team. Characters in the game may engage
each other in either ranged or melee combat in order to
progress down a particular lane and reach the enemy core
structure.

3.1.1 Character and Structure Types
The following character and structure types are evident

in this case study:

• The hero character - The primary class of character
in a MOBA. These characters may either be human
or computer controlled and will be the main focus of
this research. These characters are able to increase
in strength as the game progresses. This is done by

Table 1: A table summarising advantages and dis-
advantages of each artificial intelligence technique
evident in previous literature.

Technique Advantages Disadvantages

The Finite
State

Machine

- Simple.
- Low computational
cost.

- Difficult to
manage in large
systems.

- Deterministic.

The Fuzzy
State

Machine

- Works with
incomplete information.
- Requires knowledge
of simple boolean logic.
- Experts in the field
may define fuzzy rules
to be used.
- Less states required to
provide less predictable
behaviour.
- FSM can easily be
converted to a fuzzy
state machine.

- Fuzzy rules
may take longer
to develop and
be of less quality
when experts are
not available.

The Behaviour
Tree

- Scales well with system.
- Modular.
- Memory efficient.
- Easy to debug.
- Extensible.
- Tool support available
in various game engines.

- Deterministic.

Emotion
- A way to add
unpredictable behaviour
to agents.

- Not sufficiently
tested within game
environments.

ANN and
Evolutionary
Algorithms

- Non-deterministic and
produces intelligent,
adaptive agents.
- Useful when the focus
of the game resides around
agents.

- Resource
intensive.

gaining experience points which contribute to their
strength.

• The lane character - A purely computer controlled
character that assists hero characters in completing
objectives.

• The neutral character - A character that exists purely
to provide hero characters with a source of experience.
They do not belong to a particular team.

• The tower structure - An defensive structure that is an
objective that the enemy team must destroy before de-
stroying the core structure. This structure may attack
nearby enemies.

• The core structure - A passive structure that is the
primary objective of the enemy team.

3.1.2 Agent Capabilities
Each agent is able to move around the world to certain

locations and engage another agent or structure in combat.
Basic combat is limited to either a ranged or melee attack
however heroes contain certain special abilities that they
may utilize at times to gain a certain advantage.

3.2 The MOBA Test Bed
The following MOBA game scenario was implemented us-

ing the Unreal Engine 4 to analyze and evaluate certain
behaviour control techniques:

• Two teams each containing one hero with the same
special abilities. A human player may choose either
team to join.

• Each team has three structures: two tower structures
and one core structure. The tower structures appear
along the lane.

• A simplified MOBA map consisting of a single lane
and which was designed to fit only two hero characters.
The single lane runs through the centre of the world
with a team’s core structure at each end.

A screenshot of a hero character and a tower structure
within the test bed is shown in Figure 1.

Figure 1: A screenshot within the test bed

4. EXPERIMENTAL DESIGN
The following section provides an overview of the im-

plementation of the EBT and FuSM. The finite state ma-
chine and behaviour tree were implemented to control the
behaviour of characters that did not require stochastic be-
haviour. These characters included the lane characters and
tower structure AI. The focus of this research was on stochas-
tic NPC behaviour and therefore no quantitative results are
presented for these techniques. A qualitative analysis for
these techniques is given in Table 1.

4.1 FuSM Implementation
The design of the fuzzy state machine was taken from that

mentioned by Priovano [13]. Each fuzzy state has a corre-
sponding membership value. The machine will then select
the state with the highest membership value at a given time.

The fuzzy state machine was implemented to control the
behaviour of the hero character. The implementation of the
hero FuSM was kept close to that of the hero EBT as each
state in the FuSM encapsulates a branch of the EBT. The
three states are the defensive state, the aggressive state and
the training state as seen in Figure 2.

Figure 2: The hero fuzzy state machine

The defensive state handles situations whereby the hero
has a high probability of dying. These situations could in-
clude aspects such as: low health, a high enemy count, or
the presence of a stronger enemy hero.

The aggressive state controls the activity of engaging en-
emy characters and structures with the short-term goal of
winning the game.

The training state enables the hero to seek out neutral
characters with the goal of gaining experience points.

4.2 EBT Implementation
The emotional behaviour tree was implemented to control

the behaviour of the hero character. The process was split
up into two parts. Firstly, a standard behaviour tree was de-
veloped to control hero behaviour. Emotional aspects were
then incorporated into the existing behaviour tree structure.

4.2.1 Hero Behaviour Tree Implementation
A simplified representation of the hero behaviour tree is

depicted in Figure 3.

Figure 3: The hero behaviour tree

4.2.2 Incorporating Emotion
Emotion was added to the standard hero behaviour tree

through the use of a fuzzy state machine. Each character
emotion was represented by a state in the machine. Due
to the fuzzy nature of the machine, the character may be
in more than one emotional state at a particular time with
varying membership. The diagram in Figure 4 provides an
overview of the implemented emotion fuzzy state machine.
The FuSM contains three nodes which each correspond to a
particular emotion. Fear, anger and courage were the three
emotions that were included in the EBT decision making
process.

Figure 4: The emotional fuzzy state machine

The method proposed in [5] requires the addition of a
new type of selector node. The proposed method does not
require the existing structure of the behaviour tree to be
changed. In this approach the hero EBT (Figure 3) is ad-
justed as follows. Each node in the EBT will have access
to the emotion FuSM (Figure 4) as depicted in Figure 5.
The current emotional state of the agent is extracted from
the emotion FuSM and used as an additional input to the
behaviour tree. In this way, the emotional state of the agent
is continuously calculated in the emotion FuSM and used to
influence decision making in the behaviour tree.

Figure 5: The EBT’s relationship to the emotional
FuSM

5. RESULTS AND DISCUSSION
The following section provides results obtained as well as

a discussion.

5.1 EBT and FuSM Performance Experiment
The purpose of this experiment was to compare the per-

formance of the EBT and FuSM with respect to creating
a challenging opponent within a MOBA game environment.
Each technique was implemented to control the behaviour of
a hero agent. Each agent was set against the same human
player for three full length game simulations. The corre-
sponding player kills, death counts, wins and structures i.e.
objectives destroyed were recorded. The player kills served
as the primary performance measure.

Each simulation lasted an average of fifteen minutes, the
preliminary results of which are shown in Tables 2 and 3.

Table 2: Performance of the hero agent using the
emotional behaviour tree

Run
Player
Kills

Objectives
Destroyed

Win
Death
Count

1 2 1 False 5
2 2 1 False 6
3 0 0 False 5

Table 3: Performance of the hero agent using the
fuzzy state machine

Run
Player
Kills

Objectives
Destroyed

Win
Death
Count

1 2 0 False 1
2 3 0 False 4
3 4 1 False 5

5.2 The EBT and the FuSM Compared
Both the emotional behaviour tree and the fuzzy state

machine were successfully implemented to control the be-
haviour of the hero character class. Preliminary perfor-
mance results in Tables 2, 3 and Figure 6 indicate that the
emotional behaviour tree proved to be a slightly greater chal-
lenge for the human player in terms of structure defence. In
most runs, the emotional behaviour tree was able to destroy
one of the human player’s towers. The fuzzy state machine
however, had a significantly higher total player kill count
and a lower total death count. This shows that the fuzzy
state machine proved to be a greater challenge for the hu-
man player in terms of combat. In summary of performance,
it is evident from Figure 6 that the fuzzy state machine per-
formed better than the emotional behaviour tree within the
implemented MOBA test environment. The player kill count
has been given a higher weighting than the amount of towers
destroyed simply because it involves direct engagement with
the human player.

Figure 6: A graph summarising the performance re-
sults obtained in Tables 2 and 3.

For a MOBA style game, the emotional behaviour tree
does provide many evident implementation advantages. One
such advantage is its modular nature and the ability to cre-
ate sub-behaviour trees. This is particularly useful when
developing behaviour for hero characters in large MOBA
games. In commercial MOBA style games such as Dota
2 and Heroes of Newerth, there are multiple types of hero
characters each with unique ability sets. Although this re-
search considered the case of a single hero character type,
the hero behaviour tree engagement branch, as seen in Fig-
ure 7, that was developed may easily be extended to cater
for engaging different types of heroes. Sub-behaviour trees
may be developed to cater for encountering different classes
of heroes in the environment. Heroes would then be able to
adapt behaviour based on the type of enemy hero they are
currently engaging as proposed in Figure 8.

Figure 7: Existing hero EBT engagement branch.

Figure 8: Proposed hero EBT engagement branch.

When making the decision to use either the emotional
behaviour tree or the fuzzy state machine to control the
behaviour of the hero character class, it is important to con-
sider both the development environment being used and the
amount of expert assistance available. If an engine which
provides behaviour tree development tools, such as the Un-
real Engine 4, is being utilized then the behaviour tree is
highly recommended. If this is not the case, the fuzzy state
machine should be considered only if expert assistance is
available. If fuzzy rules are to be effective, experts in the
field, such as professional MOBA players, should be consol-
idated when rules are written.

5.3 Incorporating Emotion in MOBA Games
The use of emotion in this research was to provide non-

determinism to the hero behaviour tree. According to the
results evident in Table 2, the emotional behaviour tree ap-
peared to be successful in that it was able to destroy on
average one enemy tower per game. The performance over-
all however, did not match that of the fuzzy state machine.
Although data was not recorded, users stated that the emo-
tional behaviour tree controlled hero proved to be a far more
interesting and satisfying opponent. One may argue that
this is of more importance than the actual performance of
the algorithm.

This research has therefore shown that emotion can suc-
cessfully be integrated with aspects of the hero character de-
cision making process however the extent to which emotion
influences decisions should be restricted. A large portion
of character decision making within a MOBA style game is
required to be deterministic. The portion of the hero char-
acter class that should be mostly non-deterministic is enemy
engagement. Consider the case of a hero within a MOBA
game which is to create a challenge for the human player.
The hero is expected to gain experience and eliminate lane
characters at a reasonable rate. Therefore, main decisions

made by the hero such as deciding when to seek additional
experience and when to eliminate lane characters, should be
mostly deterministic to ensure that the hero poses a chal-
lenge in every game simulation. When the hero notices or
engages an enemy player, a higher level of non-determinism
is required to create adaptive and exciting combat situations
for the human player.

6. CONCLUSION AND FUTURE WORK
This research reviewed and evaluated different artificial in-

telligence techniques for autonomous control of non-player
characters within a MOBA game environment. AI tech-
niques were reviewed based on previous work and a compar-
ison of the most widely used techniques is provided in Table
1. A MOBA test bed was developed within the Unreal En-
gine 4 to evaluate selected techniques. The fuzzy state ma-
chine and emotional behaviour tree were implemented and
evaluated within this test bed and preliminary results were
obtained.

A novel aspect of the research was the proposal of a new
mechanism to incorporate emotions into behaviour trees.
The mechanism uses a fuzzy state machine to track the emo-
tional state of the agent and this state is incorporated into
the decision making at each node of the behaviour tree. An
initial evaluation of the mechanism compared the perfor-
mance of the Emotional Behaviour Tree (EBT) to a fuzzy
state machine using the test bed. While the results showed
that the FuSM outperformed the EBT in terms of player
kills, human players reported a considerably more interest-
ing and enjoyable game experience with the EBT than the
FuSM.

There are various control mechanisms available to intro-
duce elements of unpredictable behaviour for NPCs in game
environments. Mechanisms which incorporate emotions have
the potential to provide a more engaging and interesting
game experience over others. While this research provided
an alternate mechanism to that provided in [5], further test-
ing is still required to evaluate this mechanism for widespread
adoption in real world game engines.

This research implemented two of the techniques identi-
fied from literature and gathered preliminary performance
results. Future work may therefore include a wider range of
techniques that are compared with respect to the test game
environment and further testing within the environment.

7. ACKNOWLEDGMENTS
The author would like to acknowledge the financial assis-

tance given by the National Research Foundation (NRF) of
South Africa and the UKZN/CSIR Meraka Centre for Arti-
ficial Intelligence Research.

8. REFERENCES
[1] R. Bernhaupt, A. Boldt, T. Mirlacher, D. Wilfinger,

and M. Tscheligi. Using emotion in games: Emotional
flowers. In Proceedings of the international conference
on Advances in computer entertainment technology,
pages 41–48. ACM, 2007.

[2] M. Dickheiser. Game Programming Gems 6 (Book &
CD-ROM)(Game Development Series). Charles River
Media, Inc., 2006.

[3] A. Drachen, M. Yancey, J. Maguire, D. Chu, I. Wang,
T. Mahlmann, M. Schubert, and D. Klabajan.
Skill-based differences in spatio-temporal team
behaviour in defence of the Ancients 2 (DotA 2). In
2014 IEEE Games Media Entertainment (GEM),
pages 1–8, Oct. 2014.

[4] A. Johansson and P. Dell’Acqua. Comparing behavior
trees and emotional behavior networks for NPCs. In
2012 17th International Conference on Computer
Games (CGAMES), pages 253–260, July 2012.

[5] A. Johansson and P. Dell’Acqua. Emotional behavior
trees. In 2012 IEEE Conference on Computational
Intelligence and Games (CIG), pages 355–362, Sept.
2012.

[6] S. L. Kim, H. J. Suk, J. H. Kang, J. M. Jung,
T. Laine, and J. Westlin. Using Unity 3d to facilitate
mobile augmented reality game development. In 2014
IEEE World Forum on Internet of Things (WF-IoT),
pages 21–26, Mar. 2014.

[7] R. Maddegoda and A. Karunananda. Multi agent
based approach to assist the design process of 3d game
environments. In 2012 International Conference on
Advances in ICT for Emerging Regions (ICTer), pages
36–44, Dec. 2012.

[8] J. Meng, D. Williams, and C. Shen. Channels matter:
Multimodal connectedness, types of co-players and
social capital for Multiplayer Online Battle Arena
gamers. Computers in Human Behavior, 52:190–199,
2015.

[9] I. Millington and J. Funge. Artificial intelligence for
games. CRC Press, 2012.

[10] J. Ness, A. Olsen, M. RÃÿdland, and C. A. Sand.
Project NORS: a Multiplayer Online Battle Arena
Game Implemented in Unreal Engine 4. 2015.

[11] N. J. Nilsson. Principles of artificial intelligence.
Morgan Kaufmann, 2014.

[12] M. Pirovano. The use of Fuzzy Logic for Artificial
Intelligence in Games. University of Milano, Milano,
2012.

[13] M. Pirovano and P. L. Lanzi. Fuzzy Tactics: A
scripting game that leverages fuzzy logic as an
engaging game mechanic. Expert Systems with
Applications, 41(13):6029–6038, Oct. 2014.

[14] M. Spraragen and A. M. Madni. Modeling of
Emotional Effects on Decision-making by Game
Agents. Procedia Computer Science, 28:736–743, 2014.

[15] P. Sweetser and J. Wiles. Current AI in games: A
review. Australian Journal of Intelligent Information
Processing Systems, 8(1):24–42, 2002.

[16] E. Tomai and R. Flores. Adapting In-Game Agent
Behavior by Observation of Players Using Learning
Behavior Trees. In Proceedings of the 9th International
Conference on the Foundations of Digital Games
(FDG 2014), 2014.

