Test-Driven Development of Ontologies

C. Maria Keet! and Agnieszka Lawrynowicz?
! Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za
2 Institute of Computing Science, Poznan University of Technology, Poland
agnieszka.lawrynowicz@Qcs.put.poznan.pl

Abstract. Emerging ontology authoring methods to add knowledge to
an ontology focus on ameliorating the validation bottleneck. The verifi-
cation of the newly added axiom is still one of trying and seeing what
the reasoner says, because a systematic testbed for ontology authoring is
missing. We sought to address this by introducing the approach of test-
driven development for ontology authoring. We specify 36 generic tests,
as TBox queries and TBox axioms tested through individuals, and struc-
ture their inner workings in an ‘open box’-way, which cover the OWL 2
DL language features. This is implemented as a Protégé plugin so that
one can perform a TDD test as a black box test. We evaluated the two
test approaches on their performance. The TBox queries were faster, and
that effect is more pronounced the larger the ontology is.

1 Introduction

The process of ontology development has progressed much over the past 20 years,
especially by the specification of high-level, information systems-like methodolo-
gies [8,25], and both stand-alone and collaborative tools [9, 10]. But support for
effective low-level ontology authoring—adding the right axioms and adding the
axioms right—has received some attention only more recently. Processes at this
‘micro’ level of the development may use the reasoner to propose axioms with
FORZA [13], use Ontology Design Patterns (ODPs) [6], and repurpose ideas
from software engineering practices, notably exploring the notion of unit tests
[27], eXtreme Design with ODPs [3], and Competency Question (CQ)-based
authoring using SPARQL [23].

However, testing whether a CQ can be answered does not say how to add the
knowledge represented in the ontology, FORZA considers simple object proper-
ties only, and eXtreme Design limits one to ODPs that do not come out of the
blue but have been previously prepared. Put differently, there is no systematic
testbed for ontology engineering, other than manual efforts by a knowledge en-
gineer to add or change something and running the reasoner to check its effects.
This still puts a high dependency on expert knowledge engineering, which ideally
should not be in the realm of an art, but be rather at least a systematic process
for good practices.

We aim to address this problem by borrowing another idea from software en-
gineering: test-driven development (TDD) [2]. TDD ensures that what is added to

the program core (here: ontology) does indeed have the intended effect specified
upfront. Moreover, TDD in principle is cognitively a step up from the ‘add stuff
and lets see what happens’-attitude, therewith deepening the understanding of
the ontology authoring process and the logical consequences of an axiom.

There are several scenarios of TDD usage in ontology authoring:

I CQ-driven TDD Developers (domain experts, knowledge engineers etc) spec-
ify CQs. A CQ is translated automatically into one or more axioms. The
axiom(s) are the input of the relevant TDD test(s) to be carried out. The
developers who specify the CQs could be oblivious to the inner workings of
the two-step process of translating the CQ and testing the axiom(s).

II-a. Ontology authoring-driven TDD - the knowledge engineer The knowledge
engineer knows which axiom s/he wants to add, types it, which is then fed
directly into the TDD system.

1I-b. Ontology authoring-driven TDD - the domain expert As there is practically
a limited amount of ‘types’ of axioms to add, one could create templates, alike
the notion of the “logical macro” ODP [22], which then map onto generic,
domain-independent tests (as will be specified in Section 3). For instance, a
domain expert could choose the all-some template from a list, i.e., an axiom
of the form C' C 3R.D. The domain expert instantiates it with relevant do-
main entities (e.g., Professor C Jteaches.Course), and the TDD test for the
C C JR.D type of axiom is then run automatically. The domain expert need
not know the logic, but behind the usability interface, what gets sent to the
TDD system is that axiom.

While in each scenario the actual testing can be hidden from the user’s view, it
is necessary to specify what actually happens during such testing and how it is
tested. Here, we assume that either the first step of the CQ process is completed,
or the knowledge engineer adds the axiom, or that the template is populated,
respectively; i.e., that we are at the stage where the axioms are fed into the TDD
test system. To realise the testing, a number of questions have to be answered:

1. Given the TDD procedure in software engineering—check that the desired
feature is absent, code it, test again (test-first approach)—then what does
that mean for ontology testing when transferred to ontology development?

2. TDD requires so-called mock objects for ‘incomplete’ parts of the code; is
there a parallel to it in ontology development, or can that be ignored?

3. In what way and where (if at all) can this be integrated as a methodological
step in existing ontology engineering methodologies that are typically based
on waterfall, iterative, or lifecycle principles?

To work this out for ontologies, we take some inspiration from TDD for
conceptual modelling. Tort et al. [26] essentially specify ‘unit tests’ for each fea-
ture/possible addition to a conceptual model, and test such an addition against
sample individuals. Translating this to OWL ontologies, such testing is possible
by means of ABox individuals, and then instead of using an ad hoc algorithm,
one can avail of the automated reasoner. In addition, for ontologies, one can avail
of a query language for the TBox, namely, SPARQL-OWL [15], and most of the
tests can be specified in that language as well. We define TBox and ABox-driven

TDD tests for the basic axioms one can add to an OWL 2 DL ontology. To ex-
amine practical feasibility for the ontology engineer and determine which TDD
strategy is the best option, we implemented the TDD tests as a Protégé plu-
gin and evaluated it on performance by comparing TBox and ABox TDD tests
for 67 ontologies. The TBox TDD tests outperform the ABox ones except for
disjointness and this effect is more pronounced with larger ontologies. Overall,
we thus add a new mechanism and tool to the ontology engineer’s ‘toolbox’ to
enable systematic development of ontologies in an agile way.

The remainder of the paper is structured as follows. Section 2 describes re-
lated works on TDD in software and ontology development. Section 3 sum-
marises the TDD tests and Section 4 evaluates them on performance with the
Protégé plugin. We discuss in Section 5 and conclude in Section 6. Data, re-
sults, and more detail on the TDD test specifications is available at https:
//semantic.cs.put.poznan.pl/wiki/aristoteles/doku.php.

2 Related Work

To ‘transfer’ TDD to ontology engineering, we first summarise preliminaries
about TDD from software engineering and subsequently discuss related works
on tests in ontology engineering.

TDD in software development. TDD was introduced as a software de-
velopment methodology where one writes new code only if an automated test
has failed [2]. TDD permeates the whole development process, which can be
summarised as: 1) Write a test for a piece of functionality (that was based on a
requirement), 2) Run all tests to check that the new test fails, 3) Write relevant
code that passes the test, 4) Run the specific test to verify it passes, 5) Refactor
the code, and 6) Run all tests to verify that the changes to the code did not
change the external behaviour of the software (regression testing) [24]. The im-
portant difference with unit tests, is that TDD is a test-first approach rather than
test-last (design, code, test). TDD results in being more focussed, improves com-
munication, improves understanding of required software behaviour, and reduces
design complexity [17]. Quantitatively, TDD produced code passes more exter-
nally defined tests—i.e, better software quality—and involves less time spent on
debugging, and experiments showed that it is significantly more productive than
test-last [11].

TDD has been applied to conceptual data modelling, where each language
feature has its own test specification in OCL that involves creating the objects
that should, or ought not to, instantiate the UML classes and associations [26].
Tort and Olivé’s tool was evaluated with modellers, which made clear, among
others, that more time was spent on developing and revising the conceptual
model to fix errors than on writing the test cases [26].

Tests in ontology engineering. In ontology engineering, an early explo-
rative work on borrowing the notion of testing from software engineering is
described in [27], which explores several adaptation options: testing with the ax-
iom and its negation, formalising CQs, checks by means on integrity constraints,

autoepistemic operators, and domain and range assertions. Working with CQs
has shown to be the most popular approach, notably [23], who analyse CQs and
their patterns for use with SPARQL queries that then would be tested against
the ontology. Their focus is on individuals and the formalisation stops at what
has to be tested, not how that can, or should, be done. Earlier work on CQs
and queries include the OntologyTest tool for ABox instances, which specifies
different types of tests, such as “instantiation tests” (instance checking) and “re-
covering tests” (query for a class’ individuals) and using mock individuals where
applicable [7]; other instance-oriented test approaches is RDF /Linked Data [16].
There is also an eXtreme Design NeON plugin with similar functionality and
ODP rapid design [3, 21], likewise with RapidOWTL [1], which lacks the types of
tests, and a more basic variant exists in the EFO Validator®. Neither are based
on the principle of TDD. The only one that aims to zoom in on unit tests for
TBox testing requires the tests to be specified in Clojure and the ontology in
Tawny-Owl notation, describes subsumption tests only [28], and the tests are
tailored to the actual ontology rather than reusable ‘templates’ for the tests
covering all OWL language features.

Related notions have been proposed in methods for particular types of ax-
ioms, such as disjointness [5] and domain and range constraints [13]. Concerning
methodologies, none of the 9 methodologies reviewed by [8] are TDD-based, nor
is NeON [25]. The Agile-inspired OntoMaven [20] has OntoMvnTest with ‘test
cases’ only for the usual syntax checking, consistency, and entailment [20].

Thus, full TDD ontology engineering has not been proposed yet. While the
idea of unit tests—which potentially could become part of TDD tests—has been
proposed, there is a dearth of actual specifications as to what exactly is, or
should be, going on in such as test. Even when one were to specify basic tests
for each language feature, it is unclear whether they can be put together in a
modular fashion for the more complex axioms that can be declared with OWL 2.
Further, there is no regression testing to check that perhaps an earlier modelled
CQ—and thus a passed test—conflicts with a later one.

3 TDD Specification for Ontologies

First the general procedure and preliminaries are introduced, and then the TBox
and RBox TDD tests are summarised.

3.1 Preliminaries on Design and Notation of the TDD tests

The generalised TDD test approach is summarised as follows for the default case:
1. input: CQ into axiom, axiom, or template into axiom.
2. given: axiom z of type X to be added to the ontology.
3. check the vocabulary elements of x are in ontology O (itself a TDD test)
4. run TDD test twice:

3 http://www.ebi.ac.uk/fgpt/sw/efovalidator/index.html

(a) the first execution should fail (check O ¥ x or not present),

(b) update the ontology (add z), and

(¢) run the test again which then should pass (check that O |= z) and such

that there is no new inconsistency or undesirable deduction

5. Run all previous successful tests, which should pass (i.e., regression testing)
There are principally two options for the TDD tests: a test at the TBox-level
or always using individuals explicitly asserted in the ABox. We specify tests for
both approaches, where possible. For the test specifications, we use the OWL
2 notation for the ontology’s vocabulary: C, D, E, ... € Vo, R, S, ... € Vop, and
a,b, ... € Vi, and SPARQL-OWL notation [15] where applicable, as it conve-
niently reuses OWL functional syntax-style notation merged with SPARQL’s
queried objects (i.e., ?x) for the formulation of the query. For instance, o
SubClassOf (?x D) will return all subclasses of class D. Details of SPARQL-OWL
and its implementation are described in [15].

Some TBox and all ABox tests require additional classes or individuals for
testing purposes only, which resembles the notion of mock objects in software
engineering [18,14]. We shall import this notion into the ontology setting, as
mock class for a temporary OWL class created for the TDD test, mock individual
for a temporary ABox individual, and mock aziom for a temporary axiom. These
mock entities are to be removed from the ontology after completion of the test.

Steps 3 and 4a in the sequence listed above may give an impression of epis-
temic queries. It has to be emphasised that there is a fine distinction between 1)
checking when an element is in the vocabulary of the TBox of the ontology (in
Ve or Vop) versus autoepistemic queries, and 2) whether something is logically
true or false versus a test evaluating to true or false. In the TDD context, the
epistemic-sounding ‘not asserted in or inferred from the ontology’ is to be un-
derstood in the context of a TDD test, like whether an ontology has some class
C in its vocabulary, not whether it is ‘known to exist’ in one’s open or closed
world. Thus, an epistemic query language is not needed for the TBox tests.

3.2 Generic Test Patterns for TBox Axioms

The tests are introduced in pairs, where the primed test names concern the tests
with individuals; they are written in SPARQL-OWL notation. They are pre-
sented in condensed form due to space limitations. The TDD tests in algorithm-
style notation are available in an extended technical report of this paper [12].

Class subsumption, Test.s or Test.,. When the axiom to add is of type
C C D, with C and D named classes, then O = =(C T D) should be true if
it were not present. Logically, then in the tableau, O U —(=(C E D)) should be
inconsistent, i.e., O U (—=C' U D). Given the current Semantic Web technologies,
it is easier to query the ontology for the subclasses of D and to ascertain that
C is not in query answer « rather than create and execute tailor-made tableau
algorithms:

Testcs = a < SubClassOf(?x D). If C ¢ «, then C C D is neither asserted
nor entailed in the ontology; the test fails. <
After adding C C D to the ontology, the same test is run, which should evaluate

to C' € a and therewith Test.s returns ‘pass’. The TTD test with individuals
checks whether an instance of C' is also an instance of D:

Testeg = Create a mock object a and assert C(a). a < Type(?x D). If a ¢ «,
then C' C D is neither asserted nor entailed in the ontology. <

Class disjointness, Test.q or Test! ;. One can assert the complement, C' T
—D, or disjointness, C M D C L. Let us consider the former first (test Test.q,),
such that then =(C C —D) should be true, or T(C C —D) false (in the sense of
‘not be in the ontology’). Testing for the latter only does not suffice, as there are
more cases where O ¥ C' C D holds, but disjointness is not really applicable—
being classes in distinct sub-trees in the TBox—or holds when disjointness is
asserted already, which is when C' and D are sibling classes. For the complement,
we simply can query for it in the ontology:

Testeq, = @ ObjectComplementOf(C ?x). If D ¢ «, then O ¥ C C —D;
hence, the test fails. <
For CM D C L, the test is:

Testcdd = a « DisjointClasses(?x D). If C ¢ o, then OF CNDLC L. «

The ABox option uses a query or classification; availing of the reasoner only:

Test_y = Create individual a, assert C(a) and D(a). ostate < Run the
reasoner. If ostate is consistent, then either O ¥ C C -D or O CN D C L
directly or through one or both of their superclasses (test fails). Else, the ontology
is inconsistent (test passed); thus either C C —D or CMD C L is already asserted
among both their superclasses or among C or D and a superclass of D or C,
respectively. <
Further, from a modelling viewpoint, it would make sense to also require C' and
D to be siblings. The sibling requirement can be added as an extra check in the
interface to alert the modeller to it, but not be enforced from a logic viewpoint.

Class equivalence, Test.. and Test,,. When the axiom to add is of the form
C = D, then O = =(C = D) should be true before the edit, or O ¥ C = D
false. The latter is easier to test—run Test.s twice, once for C' C D and once
for D C C—or use one SPARQL-OWL query:

Testce = « < EquivalentClasses(?x D). If C' ¢ «, then O ¥ C = D; the test
fails. <
Note that D can be complex here, but C cannot. For class equivalence with
individuals, we can extend Test.,:

Testce = Create a mock object a, assert C(a). Query a <+ Type(?x D). If
a ¢ «a, then O ¥ C = D and the test fails; delete C(a) and a. Else, delete C(a),
assert D(a). Query a + Type(?x C). If a ¢ «, then O ¥ C = D, and the test
fails. Delete D(a) and a. <

Simple existential quantification, Test.q or Test'eq. The axiom pattern is
C C 3R.D, so O ¥ =(C C 3R.D) should be true, or O = C C JR.D false (or:
not asserted) before the ontology edit. One could do a first check that D is not
a descendant of R but if it is, then it may be the case that C' € 3R.D, with C a
different class from C’. This still requires one to confirm that C' is not a subclass
of 3R.D. This can be combined into one query/TDD test:

Testeq = o < SubClassOf(?x ObjectSomeValuesFrom(R D)). If C ¢ «, then

O ¥ C C dR.D, hence the test fails. 4
If C ¢ «, then the axiom is to be added to the ontology, the query run again,
and if C' € «, then the test cycle is completed.

From a modelling viewpoint, desiring to add a CQ that amounts to C' C
JR.—~D may look different, but =D = D’, so it amounts to testing C C IR.D’,
i.e., essentially the same pattern. This also can be formulated directly into a
SPARQL-OWL query, encapsulated in a TDD test:

Testeqnd = «a ¢+ SubClassOf(?x ObjectSomeValuesFrom(R ObjectComple-

mentOf(D))). If C ¢ «, then O ¥ C T 3R.~D; hence, the test fails. <
It is slightly different for C' © =3R.D. The query with TDD test is as follows:

Testeqy,, = @ < SubClassOf(?x ObjectComplementOf(ObjectSomeValues-
From(R D))). If C' ¢ «, then O ¥ C C —3R.D, and the test fails. <
The TDD test Test,, with individuals only is as follows:

Testeq = Create mock objects a, assert (C' 1 —3R.D)(a). ostate <— Run
the reasoner. If ostate is consistent, then O ¥ C T JR.D; test fails. Delete
(CM—-3R.D)(a), and a. <«

This holds similarly for C' C 3R.=D (Test,,). Finally, for C £ ~3R.D:

Test(ean = Create two mock objects, a and b; assert C(a), D(b), and
R(a,b). ostate + Run the reasoner. If ostate is consistent, then O ¥ C' C -3R.D,
hence, the test fails. Delete C(a), D(b), R(a,b), a, and b. <

Simple universal quantification, Test,q or Test;q. The axiom to add is of the
pattern C C VR.D, so then O ¥ —(C C VR.D) should hold, or O = C C VR.D
false (not be present in the ontology), before the ontology edit. This has a similar
pattern for the TDD test as the one for existential quantification,

Testuq = a « SubClassOf(?x ObjectAllValuesFrom(R D)). If C' ¢ «, then
O ¥ C CVR.D, hence, the test fails. <
which then can be added and the test ran again. The TDD test for Test;,, is

alike T'est;,,, but then the query is a <— Type(?x, ObjectAllValuesFrom(R D).

3.3 Generic Test Patterns for Object Properties

TDD tests for object properties (the RBox) do not lend themselves well for TBox
querying, though the automated reasoner can be used for the TDD tests.
Domain axiom, Testq, or Test),. The TDD needs to check that 3R C C
that is not yet in O, so O = =(3R C C) should be true, or O = 3R C C false.
There are two options with SPARQL-OWL. First, one can query for the domain:
Testy, = a < ObjectPropertyDomain(R ?x) If C' ¢ «, then O ¥ 3R E C;
test fails. <
Alternatively, one can query for the superclasses of 3R (it is shorthand for IR.T),
where the TDD query is: a < SubClassOf(SomeValuesFrom(R Thing) 7x). Note
that C' € a only will be returned if C' is the only domain class of R or when
C' N (but not if it is C' L C’, which is a superclass of C). The ABox test is:
Test’da = Check R € Vop and C € V¢. Add individuals a and topObj, add
R(a,topObj). Run the reasoner. If a ¢ C, then O ¥ 3R C C (also in the strict
sense as is or with a conjunction); hence the test fails. Delete a and topObj. <

If the answer is empty, then R does not have any domain specified yet, and if
C ¢ «, then O ¥ 3R C C, hence, it can be added and the test run again.

Range axiom, Test,q or Test,,. Thus, IR~ C D should not be in the ontol-
ogy before the TDD test. This is similar to the domain axiom test:

Testra = o < ObjectPropertyRange(R ?x). If D ¢ «, then O ¥ 3R~ C D;
test fails. <
Or one can query a < SubClassOf(SomeValuesFrom(ObjectInverseOf(R) Thing)
?x). Then D e aif O=3R" " C Dor O 3R CDMND’, and only owl:Thing
€ « if no range was declared for R. The test with individuals:

Testyg = Check R € Vop and D € V. Add individuals a and topObj, add
R(topObj,a). If a ¢ D, then O ¥ IR~ C D. Delete R(topObj,a), a, topObj. 4

Object property subsumption and equivalence, Test,s and Testy., and Test;S
and Test;e, For property subsumption, R C S, we have to test that O E —~(R C
S), or that R C S fails. This is simply:

Testps = a < SubObjectPropertyOf(?x S) If R ¢ a, then O ¥ R C S; test
fails. <
Regarding the ABox variant, for R C S to hold given the OWL semantics, it
means that, given some individuals a and b, that if R(a,b) then S(a,b):

Test’ps = Check R,S € Vpp. Add individuals a,b, add R(a,b). Run the
reasoner. If S(a,b) ¢ «, then O ¥ R C S; test fails. Delete R(a,b), a, and b. <
Upon the ontology update, it should infer S(a,b). There is no guarantee that
R C S was added, but R = S instead. This can be observed easily with the
following test:

Test’pe = Check R,S € Vop. Add mock individuals a,b,c,d, add R(a,b)
and S(c,d). Run the reasoner. If S(a,b) € a and R(c,d) ¢ o, then O = RC S
(hence the ontology edit was correct); test fails. Else, i.e. {S(a,b), R(c,d)} € a,
so O &= R = S; test passes. Delete R(a,b) and S(c,d), and a,b,c,d. <
For object property equivalence at the Thox level, i.e., R = S, one could use
Testys twice, or simply use the EquivalentObjectProperties:

Testpe = « < EquivalentObjectProperties(?x S) If R ¢ «, then O ¥ R = S;
test fails. <

Object property inverses, Testy; and Test;n». There are two options since
OWL 2: explicit inverses (e.g., teaches with its inverse declared as taught by)
or ‘implicit’ inverse (e.g., teaches and teaches™). For the failure-test of TDD,
only the former case can be tested. Also here there is a TBox and an ABox
approach; their respective tests are:

Testp; = a InverseObjectProperties(?x S) If R ¢ «, then O ¥ RC S—;
test fails. <

Testi)i = Check R,S € Vpp. Assume S is intended to be the inverse of

R (with R and S having different names). Add mock individuals a,b, and add
R(a,b). Run the reasoner. If O ¥ S(b,a), then O ¥ R C S~ ; hence, the test fails.
Delete a, b. <

Object property chain, Test,. or Test;c. The axiom to be added is one of
the permissible chains (except for transitivity; see below), such as Ro S C S,
SoRLC S, RoSj0...05, C S (with n > 1). This is increasingly more cumbersome

to test, because many more entities are involved, hence, more opportunity to have
incomplete knowledge represented in the ontology and thus more hassle to check
all possibilities that lead to not having the desired effect. Aside from searching
the owl file for owl:propertyChainAxiom, with the relevant properties included
in order, the SPARQL-OWL-based TDD test is:

Testpc, for Ro S C S = a < SubObjectPropertyOf(ObjectPropertyChain(R
S) ™). If S ¢ «, then OF Ro S C S, and the test fails. 4
and similarly with the other permutations of property chains. However, either
option misses three aspects of chains: 1) a property chain is pointless if the
properties involved are never used in the intended way, 2) this cannot ascertain
that it does only what was intended, and 3) whether the chain does not go
outside OWL 2 due to some of them being not ‘simple’. For O = Ro S C S
to be interesting for the ontology, also at least one O = C C 3R.D and one
O = D C 3S5.F should be present. If they all were, then a SPARQL-OWL query
a < SubClassOf(?x ObjectSomeValuesFrom(S E)) will have C' € «. If either of
the three axioms are not present, then C' ¢ a. The ABox TDD test is more
cumbersome:

Test’pc7 for RoSC S = Check R,S € Vop and C,D,E € Vo. If C,D,E ¢
Ve, then add the missing class(es) (C, D, and/or E) as mock classes. Run the
test T'esteq or Test’eq, for both C' €& 3R.D and for D €& 3S.E. If Test.q is false,
then add C C 3R.D, D C 3S.E, or both, as mock axiom. If O = C C 35.D,
then the test is meaningless, for it would not test the property chain. Then add
mock class C', mock axiom C' © AR.D. Verify with Test., or Test,,. a
SubClassOf(?x ObjectSomeValuesFrom(S E)). If C" ¢ «, then O ¥ Ro S C S; test
fails. Else, i.e., O ¥ C C 35.D: « < SubClassOf(?x ObjectSomeValuesFrom(S E)).
IfC ¢ a, then OF Ro S C S; test fails. Delete all mock entities. <
Assuming that the test fails, i.e., C' ¢ « (resp. C' ¢ «) and thus O ¥ Ro S C S,
then add the chain and run the test again, which then should pass (i.e., C € «).
The procedure holds similarly for the other permissible combinations of object
properties in a property chain/complex role inclusion.

Object property characteristics, Test, . TDD tests can be specified for the
ABox approach, but only transitivity and local reflexivity have a TBox test.

R is functional, Test;f, i.e., an object has at most one R-successor:

Test’pf = Check R € Vop and a, b, c € Vy; if not present, add. Assert mock

axioms R(a,b), R(a,c), and b # ¢, if not present already. Run reasoner. If O is
consistent, then O ¥ Func(R), so the test fails. (If O is inconsistent, then the
test passes.) Remove mock axioms and individuals, as applicable. <

R is inverse functional, Test;if. This is as above, but then in the other
direction, i.e., R(b,a), R(c,a) with b, ¢ declared distinct. Thus:

Test’pif = Check R € Vpp and a, b, c € Vy; if not present, add. Assert mock
axioms R(b,a), R(c,a), and b # ¢, if not present already. Run reasoner. If O
is consistent, then O ¥ InvFun(R), so the test fails. (If O is inconsistent, then
InvFun(R) is true.) Remove mock axioms and individuals, as applicable. <

R is transitive, Test,, or Test;t. As with object property chains (Test,.),
transitivity is only ‘interesting’ if there are at least two related axioms so that

one obtains a non-empty deduction; if the relevant axioms are not asserted, they
have to be added. The TBox and ABox tests are as follows:

Testp = Check R € Vpp and C,D,E, € Vi. If C,D,E, ¢ V¢, then add
the missing class(es) (C, D, and/or E as mock classes). If C T 3R.D and
D C 3R.E are not asserted, then add them to O. Query a < SubClassOf(?x
ObjectSomeValuesFrom(R E)). If C ¢ «, then O ¥ Trans(R), so the test fails.
Remove mock classes and axioms, as applicable. 4

Testp = Check R € Vop, a,b,c € Vy. If not, introduce mock a,b, ¢, R(a,b),
and R(b c) if not present already. Run reasoner. If R(a,c) ¢ «, then O F
Trans(R), so the test fails. Remove mock entities. <

R is symmetric, Test;, , Sym(R), so that with R(a,b), it will infer R(b,a).
The test-to-fail—assuming R € Vpp—is as follows:

Testp = Check R € Vop. Introduce a,b as mock objects (a,b € V;). Assert
mock axiom R(a,b). a < ObjectPropertyAssertion(R x? a). If b ¢ «, then O ¥
Sym(R), so the test fails. Remove mock assertions and individuals. <
Alternatively, one can check in the ODE whether R(b, a) is inferred.

R is asymmetric, Test’ This is easier to test with its negation, i.e., assert
objects symmetric and dlstlnct then if O is not inconsistent, then O ¥ Asym(R)

Testi:,a = Check R € Vop. Introduce a,b as mock objects and assert mock
axioms R(a,b) and R(b,a). Run reasoner. If O is not inconsistent, then O F
Asym(R), so the test fails. Remove mock axioms and individuals. <

R is reflexive, Test; orT est;, . The object property can be either globally
reflexive (Ref(R)), or locally (cC 3R. Self). Global reflexivity is uncommon, but
if the modeller does want it, then the following test should be executed:

Test’p = Check R € Vpp. Add mock object a. Run the reasoner. If
rg

R(a,a) ¢ O, then O ¥ Ref(R), so the test fails. Remove mock object a. <
Adding Ref(R) will have the test evaluate to true. Local reflexivity amounts to
checking whether O = C' T 3R.Self. This is essentially the same as Test., but
then with Self cf. a named D, so there is a TBox and an ABox TDD test:

Testp , = a « SubClassOf(?x ObjectSomeValuesFrom(R Self)). If C' ¢ a,
then O ¥ C' C 3R.Self, so the test fails. <

Testp = Check R € Vop. Introduce a as mock objects (a € Vi). As-
sert mock axiom C(a). a + Type(?x C), PropertyValue(a R ?x). If a ¢ «, then
O ¥ C C 3R.Self, so the test fails. Remove C(a) and mock object a. <

R is irreflexive, Test;ir. As with asymmetry, the TDD test exploits the con-
verse:

Test’pi = Check R € Vpp, and add a € V;. Add mock axiom R(a,a). Run
reasoner. If O is consistent, then O ¥ Irr(R); test fails. (Else, O is inconsistent,
and Irr(R)) is true. Remove mock axiom and individual, as applicable. 4

This concludes the basic tests. While the logic permits that a class on the
left-hand side of the inclusion axiom is an unnamed class, we do not consider
this here, as due to the tool design of the most widely used ODE, Protégé, the
class on the left-hand side of the inclusion is typically a named class.

4 Evaluation with the Protégé Plugin for TDD

In order to support ontology engineers in performing TDD, we have implemented
a Protégé plugin, TDDOnto, which provides a view where the user may specify
the set of tests to be run. After their execution, the status of the tests is displayed.
One also can add a selected axiom to the ontology (and re-run the test).

The aim of the evaluation is to answer Which TDD approach—queries or
mock objects—is better?, as performance is likely to affect user opinion of TDD.
To answer this question, we downloaded the TONES ontologies from OntoHub
[https://ontohub.org/repositories], of which 67 could be used (those omitted
were either in OBO format or had datatypes incompatible with the reasoner).
The ontologies were divided into 4 groups, based on the number of axioms:
up to 100 (n=20), 100-1000 axioms (n=35), 1000-10,000 axioms (n=10), and
over 10,000 (n=2) to measure effect of ontology size. The tests were generated
randomly, using the ontology’s vocabulary, and each test kind was repeated 3
times to obtain more reliable results as follows. For each axiom kind of the basic
form (with C' and D as primitive concepts) there is a fixed number of “slots”
that can be replaced with URIs. For each test, these slots were randomly filled
from the set of URIs existing in the ontology taking into account whether an
URI represents a class or a property. The tested axioms with the result of each
test are published in the online material. The test machine was a Mac Book
Air with 1.3 GHz Intel Core i5 CPU and 4 GB RAM. The OWL reasoner was
HermiT 1.3.8, which is the same that is built-in into OWL-BGP to ensure fair
comparison.

The first observation during our experiments was that not all the features
of OWL 2 are covered by OWL-BGP, in particular the RBox axioms (e.g.,
subProperty0f and property characteristics). Therefore, we only present the
comparative results of the tests that could be run in both settings: ABox tests
and TBox tests with use of the SPARQL-OWL query answering technology im-
plemented in the OWL-BGP tool.

The performance results per group of ontologies are presented in Fig. 1. Each
box plot has the median m (horizontal line); the first and third quartile (bottom
and top line of the box); the lowest value above m — 1.5 - IQR (horizontal line
below the box), and the highest value below m+1.5-IQR (horizontal line above
the box), where TQR (interquartile range) is represented with the height of the
box; outliers are points above and below of the short lines. It is evident that
TBox (SPARQL-OWL) tests are generally faster than the ABox ones, and these
differences are larger in the sets of larger ontologies. A comparison was done
also between two alternative technologies for executing a TBox test—based on
SPARQL-OWL and based on OWL API with the reasoner—showing even better
performance of the TBox based TDD tests versus ABox based ones (results
available in the online material). Before running any test on an ontology, we also
measured ontology classification time, which is also included in Fig. 1: it is higher
on average in comparison to the times of running the test. Performance by TDD
test type and the kind of axiom is shown in Fig. 2, showing the better general
performance of the TBox approach in more detail, except for disjointness.

104

102}

101 L

+
CHE b

1000

Time [s]

10°F !

il
|.___—-—hln-|+w e e
]44

104}

10°

(Ontology
classification) |
0-10* (ABox) |
(SPARQL) |-
classification) |
10° -10° (ABox) |
(SPARQL) |-
classification) |
10" -10* (ABoX) |-

-10" (Ontology
Classification) |

10* (ABox)
* (SPARQL) |

=10

0-10°

0-10°

10° -10° (Ontology

10° -10* (Ontology
10° -10* (SPARQL) |

10% -10°

Fig. 1. Performance times by ontology size (four groups, with lower and upper number
of the axioms of the ontologies in that group), and classification and test type for each.

5 Discussion

The current alternative to TDD tests is browsing the ontology for the axiom.
This is problematic, for then one does not know the implications it is responsible
for, it results in cognitive overload that hampers ontology development, and one
easily overlooks something. Instead, TDD can manage this in one fell swoop. In
addition, the TDD tests also facilitate regression testing.

On specifying and implementing a TDD tool TBox tests can be imple-
mented in different ways; e.g., in some instances, one could use the DL query tab
in Protégé; e.g., T.s’s as: D and select Sub classes, without the hassle of unnamed
classes (complex class expressions) on the right-hand-side of the inclusion axiom
(not supported by BGP [15]). However, it lacks functionality for object property
tests (as did all others, it appeared during evaluation); one still can test the
sequence ‘manually’ and check the classification results, though.

The core technological consideration, however, is the technique to obtain the
answer of a TDD test: SPARQL SELECT-queries, SPARQL-OWL’s BGP (with
SPARQL engine and HermiT), or SPARQL-DL with ASK queries and the OWL
API. Neither could do all TDD tests in their current version. Regarding perfor-
mance, the difference between the ABox and TBox tests are explainable—the
former always modifies the ontology, so requires an extra classification step—
though less so for disjointness or the difference being larger (subsumption, equiv-

b

Time [s]

F

[I
[N
B R
- e - -
b--- O e+
I

F----] =
§ I
I+
e

Disjoint ABox
Disjoint SPARQL

SubClassOf ABox
SubClassOf SPARQL -
Equivalent ABox
Equivalent SPARQL |-
ExistQuant ABox |-
ExistQuant SPARQL |-
UnivQuant ABox |-
UnivQuant SPARQL |-
PropDomain ABox |-
PropDomain SPARQL |-
PropRange ABox |-
PropRange SPARQL |-

Test Type

Fig. 2. Test computation times per test type and per the kind of the tested axiom.

alence) or smaller (queries with quantifiers). Overall performance is likely to vary
also by reasoner [19], and, as observed, by ontology size. This is a topic of further
investigation.

A related issue is the maturity of the tools. Several ontologies had datatype
errors, and there were the aforementioned RBox tests limitations. Therefore, we
tested only what could be done with current technologies (the scope is TDD
evaluation, not extending other tools), and infer tendencies from that so as to
have an experimentally motivated basis for deciding which technique likely will
have the best chance of success, hence, is the best candidate for extending the
corresponding tool. This means using TBox TDD tests, where possible.

A step toward a TDD ontology engineering methodology A method-
ology is a structured collection of methods and techniques, processes, people
having roles possibly in teams, and quality measures and standards across the
process (see, e.g., [4]). A foundational step in the direction of a TDD ontology
development methodology that indicates where and how it differs from the typi-
cal waterfall, iterative, or lifecycle-based methodologies is summarised in Fig. 3,
adapting the software development TDD procedure. One can refine these steps,
such as managing the deductions following from the ontology update and how
to handle an inconsistency or undesirable deduction due to contradictory CQs.
Refactoring could include, e.g., removing an explicitly declared axiom from a
subclass once it is asserted for its superclass. These details are left for future
work. Once implemented, a comparison of methodologies is also to be carried
out.

CQ added, template filled,

or axiom Writter‘\\\\\\\\\\\\\\\\\ Prior feasibility study, architecture,
language decisions, ontology reuse

decisions, etc etc, CQ specification

documentation, etc.

Fig. 3. Sketch of a possible ontology lifecycle that focuses on TDD, and the typical,
default, sequence of steps of the TDD procedure summarised in key terms.

6 Conclusions

This paper introduced 36 tests for Test-Driven Development of ontologies, speci-
fying what has to be tested, and how. Tests were specified both at the TBox-level
with queries and for ABox individuals, using mock entities. The implementation
of the main tests demonstrated that the TBox test approach performs better,
which is more pronounced with larger ontologies. A high-level 8-step process for
TDD ontology engineering was proposed.

Future work pertains to extending tools to also implement the remaining
tests, elaborate on the methodology, and conduct use-case evaluations.

Acknowledgments This research has been supported by the National Science
Centre, Poland, within the grant number 2014/13/D/ST6/02076.

References

1. Auer, S.: The RapidOWL methodology—towards Agile knowledge engineering. In:
Proc. of WETICE’06. pp. 352-357. IEEE Computer Society (June 2006)

2. Beck, K.: Test-Driven Development: by example. Addison-Wesley, Boston, MA
(2004)

3. Blomqvist, E., Sepour, A.S., Presutti, V.: Ontology testing — methodology and
tool. In: Proc. of EKAW’12. LNAI vol. 7603, pp. 216-226. Springer (2012)

4. Cockburn, A.: Selecting a project’s methodology. IEEE Softw. 17(4), 64-71 (2000)

5. Ferré, S., Rudolph, S.: Advocatus diaboli — exploratory enrichment of ontologies
with negative constraints. In: Proc. of EKAW’12. LNAI, vol. 7603, pp. 42-56.
Springer (2012), Oct 8-12, Galway, Ireland

6. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, pp. 221-243. Springer Verlag (2009)

7. Garca-Ramos, S., Otero, A., Fernandez-Lépez, M.: OntologyTest: A tool to evalu-
ate ontologies through tests defined by the user. In: Proc. of IWANN 2009 Work-
shops, Part II. LNCS, vol. 5518, pp. 91-98. Springer (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Garcia, A., O'Neill, K., Garcia, L.J., Lord, P., Stevens, R., Corcho, O., Gibson,
F.: Developing ontologies within decentralized settings. In: Chen, H., et al. (eds.)
Semantic e-Science. Annals of Information Systems 11, pp. 99-139. Springer (2010)
Gennari, J.H., et al.: The evolution of Protégé: an environment for knowledge-based
systems development. Int. J. of Hum.-Comp. St. 58(1), 89-123 (2003)

Ghidini, C., Kump, B., Lindstaedt, S., Mabhub, N., Pammer, V., Rospocher, M.,
Serafini, L.: Moki: The enterprise modelling wiki. In: Proc, of ESWC’09 (2009),
Heraklion, Greece, 2009 (demo)

Janzen, D.S.: Software architecture improvement through test-driven development.
In: Companion to ACM SIGPLAN’05. pp. 240-241. ACM Proceedings (2005)
Keet, C.M., Lawrynowicz, A.: Test-driven development of ontologies (extended ver-
sion). Tech. Rep. 1512.06211 (Dec 2015), arxiv.org http://arxiv.org/abs/1512.
06211

Keet, C.M., Khan, M.T., Ghidini, C.: Ontology authoring with FORZA. In: Proc.
of CIKM’13. pp. 569-578. ACM proceedings (2013)

Kim, T., Park, C., Wu, C.: Mock object models for test driven development. In:
Proc. of SERA06. IEEE Computer Society (2006)

Kollia, I., Glimm, B., Horrocks, I.: SPARQL Query Answering over OWL Ontolo-
gies. In: Proc, of ESWC’11. LNCS, vol. 6643, pp. 382-396. Springer (2011)
Kontokostas, D., Westphal, P.,; Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proc. of WWW’14.
pp. 747-758. ACM proceedings (2014)

Kumar, S., Bansal, S.: Comparative study of test driven development with tradi-
tional techniques. Int. J. Soft Comp. & Eng. 3(1), 352-360 (2013)

Mackinnon, T., Freeman, S., Craig, P.: Extreme Programming Examined, chap.
Endo-testing: unit testing with mock objects, pp. 287-301. Addison-Wesley,
Boston, MA (2001)

Parsia, B., Matentzoglu, N., Goncalves, R., Glimm, B., Steigmiller, A.: The OWL
Reasoner Evaluation (ORE) 2015 competition report. In: Proc. of SSWS’15.
CEUR-WS, vol. 1457 (2015), bethlehem, USA, Oct 11, 2015.

Paschke, A., Schaefermeier, R.: Aspect OntoMaven - aspect-oriented ontology de-
velopment and configuration with OntoMaven. Tech. Rep. 1507.00212v1, Free Uni-
versity of Berlin (July 2015), http://arxiv.org/abs/1507.00212

Presutti, V., Daga, E., et al.: extreme design with content ontology design patterns.
In: Proc. of WS on OP’09. CEUR-WS, vol. 516, pp. 83-97 (2009)

Presutti, V., et al.: A library of ontology design patterns: reusable solutions for col-
laborative design of networked ontologies. NeOn deliverable D2.5.1, NeOn Project,
ISTC-CNR (2008)

Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: Proc. of ESWC’14. LNCS, vol.
8465, p. 752767. Springer (2014)

Shrivastava, D.P., Jain, R.: Metrics for test case design in test driven development.
Int. J. of Comp. Th. & Eng. 2(6), 952-956 (2010)

Sudrez-Figueroa, M.C., et al.: NeOn methodology for building contextualized on-
tology networks. NeOn Deliverable D5.4.1, NeOn Project (2008)

Tort, A., Olivé, A., Sancho, M.R.: An approach to test-driven development of
conceptual schemas. Data & Knowledge Engineering 70, 1088—-1111 (2011)
Vrandecié¢, D., Gangemi, A.: Unit tests for ontologies. In: OTM workshops 2006.
LNCS, vol. 4278, pp. 1012-1020. Springer (2006)

Warrender, J.D., Lord, P.:. How, What and Why to test an ontology. Technical
Report 1505.04112, Newcastle University (2015), http://arxiv.org/abs/1505.04112

