
Introducing Defeasibility into OWL Ontologies

Giovanni Casini1,2,4, Thomas Meyer3,4, Kody Moodley4,5, Ulrike Sattler6, and Ivan
Varzinczak7

1 University of Luxembourg
2 Deprtment of Philosophy, University of Pretoria

3 Department of Computer Science, University of Cape Town
4 Centre for Artificial Intelligence Research, CSIR Meraka

5 School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal
6 University of Manchester

7 Universitade Federal do Rio de Janeiro

Abstract. In recent years, various approaches have been developed for repre-
senting and reasoning with exceptions in OWL. The price one pays for such ca-
pabilities, in terms of practical performance, is an important factor that is yet
to be quantified comprehensively. A major barrier is the lack of naturally oc-
curring ontologies with defeasible features - the ideal candidates for evaluation.
Such data is unavailable due to absence of tool support for representing defea-
sible features. In the past, defeasible reasoning implementations have favoured
automated generation of defeasible ontologies. While this suffices as a prelimi-
nary approach, we posit that a method somewhere in between these two would
yield more meaningful results. In this work, we describe a systematic approach
to modify real-world OWL ontologies to include defeasible features, and we ap-
ply this to the Manchester OWL Repository to generate defeasible ontologies for
evaluating our reasoner DIP (Defeasible-Inference Platform). The results of this
evaluation are provided together with some insights into where the performance
bottle-necks lie for this kind of reasoning. We found that reasoning was feasible
on the whole, with surprisingly few bottle-necks in our evaluation.

1 Introduction

Reasoning with exceptions has been a major topic in AI since the 80s. Classical mono-
tonic formalisms such as OWL, assume that represented knowledge is infallible and do
not admit exceptions; such systems generally cannot accommodate the addition of new
information which contradicts what is known. For example, if a monotonic system is
told that “Students do not pay taxes” then, upon encountering an exception (a student
who works), it will still conclude that this student is exempt from taxes [10].

Defeasible reasoning is concerned with the development of formalisms which are
able to represent and reason with defeasible (non-strict) facts: “Typically, students do
not pay taxes” is the defeasible counterpart of “Students do not pay taxes”.

The main approaches for introducing defeasible reasoning into KR formalisms have
been through adaptations or combinations of the following systems: Circumscription [4],
Default Logic [22], Negation as failure [15], Probabilistic logic [17] and Preferential
reasoning [6, 8, 10].

2

The theoretical foundation of our work is a Description Logic (DL) [1] adaptation
of the preferential reasoning approach by Lehmann et al. [16]. DLs form the logical
underpinning of OWL and so our approach is applicable in this setting as well.

The motivation for focusing on the preferential approach is that it derives intu-
itive inferences using procedures that reduce to classical OWL reasoning. This gives
the advantage of being able to use “off-the-shelf” OWL reasoners such as FaCT++
(owl.man.ac.uk/factplusplus) and HermiT (hermit-reasoner.com), to per-
form defeasible inference. In particular, we have implemented a defeasible entailment
regime called Rational Closure (RC) in our reasoner DIP (Defeasible-Inference Plat-
form) [21]. This implementation is a variant of the one by Casini and Straccia [8].

However, there is a lack of insight into the expected practical performance of imple-
mentations such as DIP. A major barrier is the lack of tools for representing defeasibility
in OWL, which in turn leads to the absence of naturally occurring data using defeasi-
ble features - the ideal candidates for testing performance. Currently, the majority of
datasets for testing defeasible extensions of OWL, are automatically generated with the
only mature attempt at a standardisation being LoDEN (loden.fisica.unina.it).

Our main goal in this paper is to take the next step from completely synthetic data,
to a systematic approach for introducing defeasible features into naturally occurring
ontologies that do not contain such features. We apply this approach to construct a
dataset for evaluating our RC implementation in DIP. First, we introduce ALC, the DL
of choice for our implementation and a defeasible notion of subsumption that we intro-
duce into the logic. We then give a concise description of RC for this logic and sketch
the algorithms for computing the construction. Section 3 is the heart of the paper, here
we detail a procedure for introducing defeasible subsumption into real-world ontologies
and apply it to the Manchester OWL Repository to generate data for evaluating the per-
formance of RC. We present the results and compare these with related work. Finally,
we conclude by mentioning future work to be undertaken in the area.

2 Preliminaries

2.1 Description Logics

DLs are decidable fragments of first-order logic with interesting properties and a variety
of applications, notably the formalisation of ontologies. They are very popular since
they represent the logical underpinning of the Web Ontology Language (w3.org/TR/
owl-features). In this paper we focus on ALC, a representative member of the family
of DLs, although our algorithms are applicable to a wide class of DLs, in particular
SHIQ [14] .

Let NC = {A1, A2, . . .} (resp. NR = {r1, r2, . . .}) be a finite set of class names
(resp. role names) s.t. (NC ∩ NR = ∅). The language, L, of complex classes is:

C ::= A | ¬C | C uD | C tD | ∃r.C | ∀r.C | ⊥ | >

ALC has a standard set-theoretic semantics based on first-order interpretations, that is
defined in the provided reference [1].

owl.man.ac.uk/factplusplus
hermit-reasoner.com
 loden.fisica.unina.it
w3.org/TR/owl-features
w3.org/TR/owl-features

3

A classical DL ontology consists of a TBox T (and optionally an ABox A), T
contains the terminology describing the domain of discourse, i.e., T is a finite set of in-
clusion axioms C v D; such an axiom is read as “C is subsumed by D”, that is, every
individual that falls under the class C, falls also under the class D. A is a finite set of
instance axioms (called assertions) of the form C(a) or R(a, b), where the former rep-
resents that a is an instance of the concept C, and the latter that a is related to b via the
role R. ALC has a classical monotonic relation of entailment, and we use |= to indicate
this standard entailment relation, i.e., T ∪ A |= α indicates that all the interpretations
satisfying all the axioms contained in T and A also satisfy the axiom α. There are effi-
cient tools for deciding ALC entailment. More details on DLs (ALC in particular [1])
and the relationship between OWL and DL [9] can be found in the provided references.

2.2 An algorithm to compute Rational Closure in ALC

We present an algorithm for computing RC in ALC, based on a procedure defined by
Casini and Straccia [8]. We omit the theoretical underpinnings, referring the reader to
Lehmann and Magidor’s work [16] and, w.r.t. the DL reformulation, to the work of
Casini and Straccia [8] and Britz et al. [5].

RC has a series of desirable properties from a formal point of view: the consequence
relation has a solid logical foundation, it is characterised by a set of structural properties
that should be satisfied by any nonmonotonic formal system [5, 16] and the decision
problem can be reduced to classical monotonic decision steps.

To model defeasible reasoning in ALC, we introduce a new kind of inclusion ax-
iom, i.e., a defeasible inclusion axiom C @∼D, which is read as “Typically an instance
of C is also an instance of D”, that is, if we know that an object is in the set referred
to by C, we can conclude that it is also in the set referred to by D, provided we do not
have knowledge forcing us to conclude otherwise. For the semantics of such axioms,
we refer the reader to the work by Britz et al. [5, 6].

We consider knowledge bases (KBs) of the form K = 〈T ,D〉, where T is a DL TBox
and D is known as a defeasible TBox (DTBox) which is a finite set of defeasible inclu-
sion axioms. We are not considering ABoxes here, and the algorithm we are going to
introduce, computes the RC only considering classes, i.e., given K = 〈T ,D〉, it will be
able to decide if C @∼D or C v D is a defeasible consequence of K according to RC.

Example 1. Consider the KB K = 〈T ,D〉, with T = {BactMen v Men,VirMen v
Men} and D = {Men @∼ ¬Fatal,BactMen @∼ Fatal}. K is about meningitis (Men), bac-
terial meningitis (BactMen), viral meningitis (VirMen), and their fatality (Fatal).

If all axioms in K were classical inclusion axioms, we derive BactMen v ⊥ because
the facts lead to bacterial meningitis being both fatal (BactMen v Fatal) and non-fatal
(BactMen v Men, Men v ¬Fatal). We would rather “relax” some strict facts to cater
for the atypicality of BactMen (meningitis is usually not fatal, but bacterial meningitis
is an exceptional type of meningitis because it usually is fatal).

We shall indicate the set of materialisations of the axioms in D by D, where the
materialisation of an axiom C @∼D denotes the class expressing the same subsumption
relation of the axiom (i.e., ¬C tD). Hence D = {¬C tD | C @∼D ∈ D}.

4

The classical translation of C @∼D is C v D. Similarly, for a set D = {C1
@∼D1,

...,Cn
@∼Dn}, the classical translation of D is D′ = {C1 v D1, ..., Cn v Dn}.

The algorithm to compute Rational Closure consists of a main algorithm and two
sub-procedures. The first sub-procedure is called exceptional. Its aim is to determine
which of the left-hand side (LHS) classes in our inclusions are exceptional. Intuitively,
a class is exceptional in a KB if it refers to a class that is atypical w.r.t. one of its
superclasses (e.g. BactMen in the example above). The exceptionality of a class can
be decided using |=, since a class C is exceptional in K = 〈T ,D〉 if and only if T |=d
D v ¬C. A defeasible axiom C @∼D ∈ D is considered exceptional if its antecedent

(LHS-concept) C is exceptional. Given a finite set E of defeasible inclusion axioms, the
algorithm exceptional gives back the subset of E containing the exceptional axioms.

Procedure Exceptional(T , E)
Input: T , E ⊆ D
Output: E ′ ⊆ E such that E ′ is exceptional w.r.t. E

1 E ′ := ∅;
2 foreach C @

∼D ∈ E do
3 if T |=

d
E v ¬C then

4 E ′ := E ′ ∪ {C @
∼D};

5 return E ′;

Since, in general, there may be “exceptions-to-exceptions” (we may encounter a
strain of bacterial meningitis that is usually not fatal), we can compute this exception-
ality ranking by recursive application of Procedure Exceptional. That is, we can asso-
ciate a ranking value to each axiom in the KB representing its degree of exceptionality.
computeRanking is the second procedure that, using exceptional as a sub-procedure,
partitions the set D into R = {D0,D1, . . .}, where each set Di contains the defeasible
axioms having i as ranking value.

computeRanking receives KB K = 〈T ,D〉 as input and outputs an equivalent KB
K∗ = 〈T ∗,D∗〉 (i.e., that is satisfied in exactly the same interpretations as K, see [5]),
but in which implicit strict knowledge contained in the DTBox has been moved to the
TBox, and all the information in the DTBox has been ranked w.r.t. its exceptionality.

We call axioms (and their antecedents) which are implicitly strict and yet concealed
in the DTBox, totally exceptional axioms (and antecedents). Consider the KBs: K1 =
{C @∼D,C @∼ ¬D} and K2 = {E @∼D,C v E,C @∼ ¬D}. C is unsatisfiable w.r.t. K′1
and K′2. In K′1, the unsatisfiability does not indicate an exception, whereas in K′2, it
does. The former case is a knowledge engineering problem, an indication of logical
incoherence in defeasible KBs, while the latter situation is not considered such.

Sub-procedure Exceptional reaches a fixed point Ei = Ei +1 (Ei is possibly empty)
during Procedure ComputeRanking. If Ei is not empty, then it represents a set of totally
exceptional axioms, and we assign ∞ as the ranking value to each of these axioms
(indicated by D∗∞). We move such information to the TBox (that is, if C @∼D is in D∗∞,
we eliminate it from D and add C v ⊥ to T ∗). We repeat the procedure (Lines 2-8)

5

Procedure ComputeRanking(K)
Input: KB K = 〈T ,∆I〉
Output: KB 〈T ∗,D∗〉 and the partitioning (ranking)R = {D0, . . . ,Dn} for D∗

1 T ∗:=T ; D∗:=D;R:=∅;
2 repeat
3 i := 0; E0 := D∗;
4 E1 := Exceptional(T ∗, E0);
5 while Ei+1 6= Ei do
6 i := i + 1; Ei+1 := Exceptional(T ∗, Ei);
7 D∗∞ := Ei; T ∗ := T ∗ ∪ {C v D | C @

∼D ∈ D∗∞}; D∗ := D∗ \ D∗∞;
8 until D∗∞ = ∅;
9 for j = 1 to i do

10 Dj−1 := Ej−1 \ Ej ;R :=R∪ {Dj−1};
11 return 〈T ∗,D∗〉,R;

until all implicit strict facts in D are moved to the TBox. We end up with a new KB
〈T ∗,D∗〉. We give an example to illustrate this:

Example 2. Consider K = 〈T ,D〉, with T = {E v D} and D = {F @∼ ∃r.C,
C @∼ ¬D,C @∼ E}. Applying Procedure ComputeRanking, we obtain that C is excep-
tional, i.e., E2 = E1 = {C @∼ ¬D,C @∼ E}. This means that D∗∞ = {C @∼ ¬D,C @∼ E},
and therefore, T ∗ = {E v D,C v ⊥} and D∗ = {F @∼ ∃r.C}. Repeating Lines 2-8 of
the procedure we get E1 = E0 = {F @∼ ∃r.C}, hence D∗∞ = {F @∼ ∃r.C} and we end
up with a TBox T ∗ = {E v D,C v ⊥, F v ⊥} and an empty DTBox.

Once the procedure has identified 〈T ∗,D∗〉, it ranks the remainder axioms in the
DTBox (if any): an axiom has i as a ranking value if i is the highest label for which it
turns out to be exceptional. The result is a partition of D into R = {D0, . . . ,Dn}.

Example 3. Consider K in Example 1. ComputeRanking takes K as input, executes
Lines 2 to 8 to obtain the sequence E0 = D, E1 = {BactMen @∼ Fatal}, E2 = ∅ and
the TBox T ∗ = T . Finally, applying Lines 9 to 10, we obtain the partition D∗ of
D0 = {Men @∼ ¬Fatal}, D1 = {BactMen @∼ Fatal}.

Given our computed ranking, we can ask queries of the form C @∼D. Note that if we
are confronted with a strict query (classical inclusion axiomC v D), one can determine
if it is in the RC of the KB by checking if it is classically entailed by the strict facts alone
in K (that is, T ∗). This was implemented as an optimisation.

However, for simplicity, Algorithm RationalClosure considers only the case in which
the query is a defeasible inclusion axiom. The algorithm takes the ranking R and query
C @∼D as input, determines which portion of R is compatible with the class C, i.e.,
which portion of defeasible knowledge does not imply that C is exceptional, starting
from the most normal situations up to increasing levels of exceptionality. By example:

Example 4. Consider the ranking R in Example 3 and the query VirMen @∼ ¬Fatal. The
RC algorithm checks if T ∗ |=

d
E0 v ¬VirMen, which is not the case. Hence, we have

6

Procedure RationalClosure(K)
Input: KB K = 〈T ∗,D∗〉 with strict facts moved to TBox, E0, . . . , En, query C @

∼D.
Output: true iff C @

∼D is in the RC of K
1 i := 0;
2 while T ∗ |=

d
Ei u C v ⊥ and i ≤ n do

3 i := i + 1;

4 if i ≤ n then
5 return T ∗ |=

d
Ei u C v D;

6 else
7 return T ∗ |= C v D;

to check if T ∗ |=
d
E0 u VirMen v ¬Fatal, which is true. However, if our query is

BactMen @∼ ¬Fatal, we obtain a different result: since T ∗ |=
d
E0 v ¬BactMen but

T ∗ 6|=
d
E1 v ¬BactMen, BactMen is an exceptional class of level 1, compatible with

D1, and we have to move one level higher in the ranking eliminating the facts in D0

from consideration. It turns out that T ∗ 6|=
d
E1 u BactMen v ¬Fatal, and that is the

right conclusion since we have BactMen @∼ Fatal in our KB.

The correctness of Algorithm RationalClosure follows from the procedure by Casini
and Staccia [8] as it is a reformulation thereof. The computational complexity of the en-
tire procedure is the same as that of the underlying monotonic entailment relation |=,
i.e., it is an EXPTIME-complete problem ([5] and [8], Corollary 2). This is easy to see
since the number of classical entailment checks is at most exponential w.r.t. the size of
the ontology (number of axioms). Moreover, note that the defined procedures can be
applied to DLs more expressive than ALC, still preserving the computational complex-
ity of the decision problem w.r.t. the underlying monotonic entailment relation, and,
is still sound and complete for logics up to SHIQ. Using a more expressive DL than
ALC, the defeasible information will still be represented only by defeasible inclusion
axioms C @∼D, while the strict information different from ALC inclusion axioms (role
inclusion axioms, role transitivity, etc.) must be considered as background knowledge
at each step of the decision procedure.

3 Performance Evaluation

An important question that we ask of RC is: how much does one pay for the additional
expressivity, in terms of practical reasoning performance? We have shown that the worst
case computational complexity of RC is not higher than reasoning with the underlying
classical formalism that we extend. This is good news, but does not guarantee good
performance in practice. As illustrated in our algorithms (Section 2.2), we have to per-
form some additional computation over and above the classical decision (entailment)
checks. In general, we perform multiple classical entailment checks to answer a single
defeasible entailment question. The question is how much more work are we doing. We
aim to investigate this question in order to provide evidence of the feasibility of adding
defeasible features to ontologies.

7

In terms of data, the norm until now has been the use of automatically generated on-
tologies with defeasible features (the most notable attempt at a benchmark of synthetic
defeasible ontologies is LoDEN). Indeed, we have also used synthetic data in the past as
a preliminary indicator of performance [7]. Naturally, there are obvious shortcomings
with such an approach, such as possible biases in the ontology generation methodology.
However, there is no question of finding representative data because there are virtually
no naturally occurring ontologies with intended defeasible features.

We instead choose a middle-ground approach, taking advantage of the rich set of
(classical) OWL ontologies that we have on the Web in various repositories and copora.
The basic idea of our approach is to modify selected subsumptions in these ontolo-
gies to be defeasible subsumptions, thereby making these ontologies useful as data to
evaluate our defeasible reasoner. Of course, this has to be done with care to gener-
ate cases which are challenging for the reasoner. For example, we need to ensure that
there are cases where there are more than one rank in the ranking of the ontology (see
Procedure ComputeRanking). Our method is described in Section 3.2, together with
a discussion about its strengths and weaknesses. In the next section, we describe the
curation process that used for sampling our initial set of unmodified OWL ontologies.

3.1 Non-defeasible Dataset

For our initial data, we sample some classical OWL ontologies which we can later pass
through our procedure for the introduction of defeasible features. The natural choice is
to select the same data that is traditionally used to evaluate the performance of existing
classical OWL reasoners. However, even in such a setting, there is no precise concensus
on what data to use. The result is that data is generally curated manually by choosing
“well-known” ontologies and corpora from which to sample, or arbitrarily selecting
from the variety of respectable corpora on the web.
Choice of corpora: While there are bona fide ontology benchmarks available such as
LUBM [11] and its extensions, it was pointed out that there are shortcomings in manual
selection of ontologies and ontology corpora for evaluation [18]. In particular, the main
limitation with such selection procedures is that they result in datasets lacking suffi-
cient variety. Thus the results of evaluations can be heavily skewed or biased towards
the particular benchmarks being used. The Manchester OWL Repository [19] is an ef-
fort to address this issue. The Repository is a framework for sharing ontology datasets
for OWL empirical research. The current version of the repository contains three core
datasets, namely versions of NCBO Bioportal (bioportal.bioontology.org), The
Oxford Ontology Library or OOL (cs.ox.ac.uk/isg/ontologies) and MOWL-
Corp [18]. While Bioportal and OOL are already established ontology corpora that are
actively used in OWL reasoner evaluations, MOWLCorp is a recent gathering of on-
tologies through sophisticated web crawls and filtration techniques [18].

We obtain a recent snapshot of the Manchester OWL Repository as the base dataset
for our evaluation. There are 344, 793 and 20,996 ontologies in the Bioportal, OOL and
MOWLCorp corpora respectively.
Filtration Process and Choice of OWL Reasoner: For loading and analysing the
ontologies of our dataset, we use the popular and well-supported Java-based OWL

bioportal.bioontology.org
cs.ox.ac.uk/isg/ontologies

8

API [13]. The API contains parsers for a wide variety of different syntaxes of ontolo-
gies such as RDF, Turtle and OBO. As we have shown in Section 2.2, our defeasible
reasoning algorithms are built upon classical entailment checks. Thus, we would need
to select an existing OWL 2 DL reasoning implementation to perform these classical
entailment checks from within our defeasible reasoner. While running our evaluation
with multiple reasoners would have been interesting, such an investigation is not neces-
sary to ascertain the price we pay for reasoning with defeasible (in addition to classical)
subsumption. We chose to utilise a single OWL 2 DL reasoner for our evaluation. In
particular, we would ideally like to use the fastest and most robust implementation.

Consulting the latest results of the OWL Reasoner Evaluation Workshop (dl.kr.
org/ore2014/results.html), we identified the top three OWL 2 DL reasoners for
the standard reasoning tasks of: classification, consistency checking and satisfiability
testing (in terms of performance and robustness). Robustness was measured as the num-
ber of ontologies that were successfully processed in the allotted time. The top reasoners
were Konclude (derivo.de/produkte/konclude.html), HermiT, MORe (cs.ox.
ac.uk/isg/tools/MORe), Chainsaw (chainsaw.sourceforge.net), FaCT++ and
TrOWL (trowl.org). As we shall see in Section 3.2, we require to check incoher-
ence of ontologies before introducing defeasible subsumptions into them. Modern OWL
reasoners are optimised for classification (computing the subsumption relationship be-
tween each pair of class names in the ontology), and identifying unsatisfiable class
names (incoherence) is usually performed by first classifying the ontology, and then
“reading” the unsatisfiable class names from the results. Thus, we chose to focus on the
reasoners which performed best in OWL 2 DL classification. These were respectively,
Konclude, HermiT and MORe. Konclude, unfortunately, does not yet support the OWL
API. Therefore, our choice was to select the next best reasoner - HermiT.

Given our choice of tools for manipulating and reasoning with the ontologies in
our dataset, we filtered out the ontologies that could be loaded and parsed by the OWL
API (each within an allotted 40 minutes). The resulting ontologies were then tested to
determine if they were classifiable by HermiT within an additional 40 minutes each.
Those ontologies which did not pass this test were also removed from the data. In order
to remove some of the trivial cases we elected to remove ontologies with less than
100 logical axioms (ignoring annotations and other axioms carrying meta-information).
Finally, we stripped the ontologies of ABox data because our defeasible reasoner is
currently purely equipped with (D)TBox entailment procedures. This leaves us with
252, 440 and 2335 ontologies in Bioportal, OOL and MOWLCorp respectively.

3.2 Defeasible Dataset

In this section, we describe a systematic technique to introduce defeasible subsump-
tions into the ontologies of our dataset, thereby making them amenable to defeasible
reasoning evaluation.
Methodology: Our approach hinges upon an important correspondence between class
exceptionality (as described in Section 2.2) and classical class unsatisfiability:

Lemma 1. If a class C is exceptional w.r.t. a defeasible KB 〈T ,D〉 then C is unsatisfi-
able w.r.t. T ∪ D′, where D′ is the classical translation of D.

dl.kr.org/ore2014/results.html
dl.kr.org/ore2014/results.html
 derivo.de/produkte/konclude.html
cs.ox.ac.uk/isg/tools/MORe
cs.ox.ac.uk/isg/tools/MORe
chainsaw.sourceforge.net
trowl.org

9

Lemma 1 states that if a class is exceptional in a defeasible ontology then it will nec-
essarily be unsatisfiable in the classical translation of the ontology. This result is useful
because we can use it to identify possible exceptional classes in classical ontologies.
Taking the contrapositive of Lemma 1, we obtain the result that if a class is satisfi-
able w.r.t. a classical ontology then it is necessarily not exceptional w.r.t. any defeasible
translation of the ontology. Therefore, we can eliminate ontologies from our dataset
without LHS-classes of subsumptions that are unsatisfiable, because these could never
become exceptional by turning classical subsumption into defeasible ones.

The next definition is a generalisation of standard incoherence to axioms with com-
plex left hand side (LHS) concepts:

Definition 1. A classical TBox T is LHS-coherent if each C v D ∈ T is s.t. T 6|=
C v ⊥. T is LHS-incoherent if it is not LHS-coherent.

Eliminating all ontologies from our dataset that are LHS-coherent leaves us with
11, 46 and 77 ontologies in the Bioportal, OOL and MOWLCorp corpora respectively.
Figure 1 provides some average properties of the ontologies in our dataset.

Fig. 1: Ontology metrics for the LHS-incoherent cases in the dataset.

Thus, in total we have 134 ontologies for our performance evaluation. Now, the task
is to relax some of the subsumptions of our ontologies to be defeasible. The obvious
naı̈ve approach to introducing defeasibility would be to convert all subsumptions to
defeasible ones. Naturally, this is not likely to be the general approach of defeasible-
ontology engineers in practice. The other extreme would be to develop an approach to
identify the minimal (for some defined notion of minimality) amount of defeasibility to
introduce into the ontology in order to successfully “cater for all the exceptions”. The
latter approach would be ideal, and we are currently investigating such an approach;
however, we propose that a reasonable approximation of such an “ideal” procedure
yields more meaningful data for performance evaluation.

The approach that we discuss here is in the spirit of such an approximation. We
illustrate the problem by means of an example:

Example 5. Consider the following TBox T about different types of mechanics (Mech),
general (GenMech), car (CarMech) and mobile (MobileMech):
{1. Mech v ∃hasWorkshop.>, 2. Mech v ∃hasSpecialisation.>,
3. MobileMechtGenMechtCarMechvMech, 4. MobileMechv¬∃hasWorkshop.>,
5. MobileMech u ¬∃status.OnStandBy v ∃hasWorkshop.>,
6. GenMech v ¬∃hasSpecialisation.>, 7. CarMech v ∃hasSpecialisation.Car}

10

The classes MobileMech, GenMech and the class expression MobileMech u
¬∃status.OnStandBy are unsatisfiable w.r.t. T . An intuitive analysis of T tells us that
the ontology engineer probably intended to model that mechanics usually have a work-
shop (Mech @∼ ∃hasWorkshop.>) and usually specialise in certain types of equipment
that they repair (Mech @∼ ∃hasSpecialisation.>). This translation of Axioms 1 and 2 in
Example 5, is a minimal and intuitive way to introduce defeasibility into T , catering for
exceptional types of mechanic - i.e., mobile and general mechanics.

However, we also have an exceptional type of mobile mechanic in T (an “exception-
to-an-exception”). That is, mobile mechanics who are no longer “on standby” or “on
call” (MobileMech u ¬∃status.OnStandBy). These mechanics would then be assigned
a workshop for their repair tasks. To cater for such mechanics we would have to relax
Axiom 4 as well of Example 5 to express that mobile mechanics usually don’t have a
workshop (MobileMech @∼ ¬∃hasWorkshop.>).

We now define a general defeasible translation function (DTF) for converting clas-
sical subsumptions to defeasible subsumptions in classical ontologies.

Definition 2. (DTF) Let T be a set of classical subsumptions of the form C v D, then
F : T → {C @∼D | C v D ∈ T } ∪ T is a DTF for T .

We also have to formalise what we mean when a particular DTF “caters for all
exceptions” in the TBox. We call such a function a safe DTF.

Definition 3. (safe DTF) Let T be a set of classical subsumptions, let F be a DTF
for T and let D be the special DTF that translates all subsumptions in T to defeasible
ones. Then, F is a safe DTF for T if C is totally exceptional w.r.t. D(T) if and only if
C is totally exceptional w.r.t. F (T), for each C v D ∈ T .

We try to define a safe DTF that places a small upper bound on the subset of ax-
ioms to relax using the well-known notion of justification [12]. A justification for some
entailment α of an ontology is a minimal (w.r.t. set inclusion) subset of the ontology
that entails α. If we compute the justifications for T |= MobileMech v ⊥ (the con-
cise reasons for MobileMech being unsatisfiable and possibly exceptional) we obtain a
single justification {1, 3, 4}. Relaxing these axioms would be sufficient for catering for
mobile mechanics (in fact, it is only necessary to relax Axiom 1 as mentioned earlier).
Simlarly, we arrive at {2, 3, 6} to cater for general mechanics and {4, 5} for mobile
mechanics no longer on call.

The basic idea is thus to take the union of the justifications for the unsatisfiable LHS-
classes and relax these axioms to defeasible ones. We obtain that {1, 2, 3, 4, 5, 6} should
be relaxed in Example 5, which is admittedly a large proportion of our TBox. However,
as we discover in Section 3.4, the proportion is much smaller in practice on larger real-
world ontologies. However, while computing all justifications has been shown to be
feasible in general on real-world ontologies, black-box (reasoner-independent) proce-
dures are known to be exponential in the worst case [12]. To avoid this potential com-
putational blowup, we obtain a small upper bound of the justifications by extracting a
star locality based module [23] for the ontology in question, w.r.t. the set of unsatis-
fiable LHS-classes. A module of an ontology w.r.t. a signature (set of terms from the
ontology) is a small subset of the ontology that preserves the meaning of the terms in

11

the signature. We specifically choose star locality based modules because of two key
properties: (i) they preserve all justifications in the ontology for all entailments (or ax-
ioms) that can be constructed with the given signature (depleting property [23, Section
3]), and (ii) they are smaller in size relative to other modules which have the depleting
property. The pseudocode algorithm of our procedure is given in Algorithm 1.

Algorithm 1: relaxSubsumption
Input: LHS-incoherent TBox T , C = {C | (C v D ∈ T for some D)∧ (T |= C v ⊥)}
Output: Defeasible ontology 〈T ,D〉

1 T := ∅; D := ∅;
2 M := extractStarModule(O, sig(C)); T := O\M;
3 foreach X v Y ∈M do
4 D := D ∪ {X @

∼ Y };
5 return 〈T ,D〉;

Theorem 1. (safety of our DTF) Let F be the DTF defined by Algorithm 1 and let T
be a set of classical subsumptions, then F is a safe DTF for T .

Discussion: There are two conflicting issues with the procedure we have presented for
introducing defeasibility into OWL ontologies: (i) minimality of modification to the
original ontology and (ii) the representative quality of the resulting defeasible ontol-
ogy as something that might be built by a ontology engineer with access to defeasible
features. While (i) and (ii) would be the ultimate goal for a methodology automating
the introduction of defeasible features into OWL ontologies, our approach does not yet
meet such desiderata. It is clear that the minimal axioms to relax in Example 5 would
be {1, 2, 4}, yet we relax {3, 5, 6} as well. On a related note, the resulting ontology
should ideally resemble a naturally occurring ontology with defeasible features intro-
duced where explicitly needed by the ontology engineer. For instance, in Example 5, it
does not make sense (from an intuitive point of view) to relax MobileMech v Mech
(all mobile mechanics are mechanics) to MobileMech @∼Mech (typical mobile mechan-
ics are mechanics). Such constraints should ideally remain strict.

Furthermore, a critical observation is that incoherence in classical ontologies may be
caused by erroneous modelling. In ontology development tools, large emphasis has been
placed on debugging incoherence by making modifications to the ontology to remove
the “unwanted” entailments such as C v ⊥. This is likely to have prevented many
developers publishing incoherent ontologies.

Given the above main shortcomings of our approach, we do not argue that our ap-
proach is the ideal methodology. Rather, we hope that it serves as a stepping stone from
purely synthetic approaches to investigate and develop more suitable methodologies.
Hypotheses: Our general predictions for the evaluation are that (i) the ranking com-
putation will be dramatically more performance intensive than testing entailment, (ii)
that entailment testing will be feasible for on-demand use and (iii) that the number of
incoherent LHS-classes (and the number of defeasible subsumptions) will affect the per-
formance significantly, (iv) we anticipate the occurrences of totally exceptional LHS-
classes to be rare and minimal, (v) since these cases also require recursive execution

12

of the ranking procedure, we also anticipate such cases to be significantly harder for
reasoning and (vi) in terms of the ranking of the defeasible subsumptions in the ontolo-
gies, we expect there to be not more than 2 levels of exceptionality (or 3 ranks in total).
I.e., we expect there to be exceptions-to-exceptions in the data, although we anticipate
that there will be very few of these cases. We expect the majority of cases to have either
no exceptions or 1 level of exception (2 ranks in total). Of course, we also predict a
general trend of the higher the number of (logical) axioms in the ontology, the longer
to compute inferences.

3.3 Experiment Setup

Our setup, methodologies and design choices for the experimental evaluation can be
summarised as follows:
Data summary: The input data for our experiments are 134 LHS-incoherent ontologies
(curated as described in Section 3.1) from the Manchester OWL Repository. The on-
tologies are divided across three corpora: 11 , 46 and 77 in Bioportal, OOL and MOWL-
Corp respectively. The average ratio of defeasible to strict axioms in each ontology is
8%, the median being 1.5%, the minimum ratio being 0.01% and the maximum being
98%. The DL expressivity distribution of the data ranges from variants of ALC all the
way up to SROIQ. There are 35 DL variants in total represented in the data.

Additionally, we generated a set of entailment queries (defeasible subsumptions
of the form C @∼D and strict subsumptions of the form C v D) for each ontology
to present to our defeasible reasoner. For the C’s, we choose to focus on all LHS-
incoherent classes in the ontology. The motivation is two-fold: (i) if we chose instead
to focus on C’s that are satisfiable, then we would not require execution of Lines3-4 of
Algorithm RationalClosure in Section 2.2 because C could never be exceptional (see
Lemma 1). Thus, we choose to focus on incoherent C’s since these are the only ones
which could possibly be exceptional and result in harder cases for reasoning. Instead of
generating such incoherent C’s, we use the existing LHS-concepts that are unsatisfiable
in the ontology as a preliminary strategy. Admittedly, generating incoherent C’s might
also be interesting for future evaluation.

For the D’s we first take the ⊥-syntactic locality module for the ontology w.r.t. to
the signature of C (including ⊥), and then take all nested class expressions present in
the axioms of this module. The reason is being that we want to preserve entailments
over the signature of C in the module. We collect all LHS-incoherent classes C from
the ontology and then collect all class expressions in the ⊥-module for C to be the con-
sequentsD. We then test if C @∼D (and C v D) is in the RC of the defeasible ontology.
All our data is available for download in ZIP format (cair.za.net/ontologies).
Tasks: The first task is to precompile the exceptionality rankings of each ontology in
the dataset. The rankings are then stored on file for later use in entailment testing. It
is important to note that the computation of the ranking is considered as an offline,
precompilation process for each stable version of an ontology. Such a task is not meant
to be executed on-demand during defeasible entailment tests. Lemma 1 is used as an
optimisation in the ranking procedure. We only need to check exceptionality ofC @∼D’s
where C is unsatisfiable w.r.t. the classical translation of 〈T ,D〉 (see Lines 2 to 4 of
procedure Exceptional in Section 2.2).

cair.za.net/ontologies

13

The entailment tests are then performed on the precomputed rankings and the re-
sults of both tasks are recorded. We recorded the average time it took to compute the
rankings, and to answer entailment questions, with some additional metrics which we
present in Section 3.4. For entailment tests, we made no use of any optimisation.
Equipment: The evaluation was carried out on an Intel Core i7 2.5Ghz processor run-
ning MacOSX 10.10. 8GB of memory is allocated to the Java Virtual Machine (Java
version 1.6 is used). HermiT is the classical OWL 2 DL reasoning implementation.

3.4 Results and Analysis

The overall results for computing the rankings and testing entailment have proven to be
extremely promising. Figure 2 gives an overview of some of the more pertinent results
w.r.t. the computation of the rankings.

Fig. 2: Ontology metrics and ranking computation results for the dataset.

Ranking performance: Examining the ranking times in Figure 2, we notice that on
average over the entire dataset, it takes 10 minutes to rank a single ontology. However,
looking at the “median” column of the ranking times, shows us that the majority of
rankings were computed in less than a second. There are just four “outlier” ontologies
which breach the 2000 second mark, while the maximum ranking time for the remainder
of the data is 1000 seconds. This shows that there are relatively few cases which our
reasoner found difficult. It must be stressed that the ranking computation is concerned
with stratifying only the defeasible axioms in the ontologies. Therefore, in general, the
ranking times increase with the number of defeasible axioms (see Figure 3a).

(a) Ranking time vs. the number of defeasible
axioms.

(b) Ranking time v.s. totally exceptional LHS-
classes.

Fig. 3: Ranking computation performance.

14

The most challenging cases, in theory, for our reasoner are those with totally excep-
tional LHS-classes in the ontology. These cases are more intensive because we have to
recursively apply the ranking procedure (see Lines 2-8 of Procedure ComputeRanking
in Section 2.2), until all the totally exceptional information is added to the TBox. In our
dataset of 134 ontologies, 44 of them have totally exceptional LHS-classes.

Figure 3b shows that even restricted to cases with totally exceptional LHS-classes,
the ranking performance is well inside 100 seconds for the vast majority of the ontolo-
gies. We conjecture that the reason for this is that the numbers of defeasible axioms in
these ontologies stay relatively low allowing the performance to stay in check. Figure 4a
illustrates the amount of recursive iterations we have to perform in Procedure Comput-
eRanking for these cases.

(a) Number of recursive iterations required of the
ranking procedure to filter out the totally excep-
tional axioms.

(b) Entailment checking performance over the
ontologies in our dataset.

Fig. 4: Recursion prevalence in ranking procedure and defeasible inference perfor-
mance.

While there are some cases with 3 and 4 repetitions, the majority of cases require
just one repetition. This, together with the fact the average number of defeasible axioms
for these ontologies is just 127, explains the very low impact on performance that these
“hard” cases have. In fact, the average number of defeasible axioms for these cases is
significantly lower than that of any of the 3 general corpora in the dataset (see the table
in Figure 2). Finally, we note that our hypothesis turns out to be correct concerning the
number of ranks in the computed rankings. The average is 2 (single level exceptions),
while there are a sprinkling of cases in which there 3 ranks.

Entailment performance: The performance of defeasible entailment in the data is also
encouraging. It seems that once the ranking of an ontology is obtained, the majority
of defeasible entailment queries can be answered instantly. The average time to decide
a defeasible entailment was 145ms. The median is just 4ms highlighting that most of
the entailments can be be computed almost instantly. As in the case of the ranking
performance behaviour, there are a few “outlier” cases which prove much harder than
in general. In one particular BioPortal ontology (the most difficult ontology in the data),
it takes on average 9.6 seconds to compute a defeasible entailment. There are, however,
421,268 logical axioms in this ontology, of which 6010 are defeasible and 4716 have
LHS-concepts that are classically unsatisfiable. There are just 8 ontologies in our dataset
that take more than 200ms on average to decide defeasible entailment.

15

It is not surprising that the prevalence of totally exceptional concepts does not sig-
nificantly impact the performance of defeasible inference. This is likely because such
information was moved to the TBox in the ranking step and therefore of little impor-
tance performance-wise during inference. In fact, the hardest ontology discussed above,
actually had no totally exceptional information. The dominant factor in performance
(for both ranking compilation and query performance) remains ontology size and in
particular, the number of defeasible axioms in the ontology (see Figure 4b). Because
of the low variance in the number of ranks in ontology rankings (between 0 and 3),
it is not surprising that this does not significantly impact performance, although we
omit the graph illustrating this due to space constraints. Overall, we find that defeasible
inference is just 1 order of magnitude slower than classical entailment (for the vast ma-
jority of cases). In the outlier cases, this goes up to 3 orders of magnitude slower. These
conclusions can be drawn from Figure 4b.

4 Related Work

From a practical standpoint, the most closely related work is that of Bonatti et al. [2].
They introduce a new DL called DLN for handling exceptions by allowing or blocking
inheritance of certain properties to these exceptions. While the extra features of DLN
can be built on top of any classical DL, the authors apply their evaluation to ontologies
of EL-variants [1]. They also use an underlying classical OWL reasoner ELK (cs.
ox.ac.uk/isg/tools/ELK) which is highly optimised for such logics. In addition,
they exploit incremental reasoning capabilities of ELK so unnecessary repetition of
computations is not required with small changes to the ontology.

The authors use two approaches for extending the Gene Ontology (GO) (geneontology.
org), with defeasible features. The first, is a principled injection of purely synthetic de-
feasible inclusions into GO, and the second is the translation of a random subset of clas-
sical inclusions in GO to defeasible ones. We have, ourselves, also employed synthetic
generation of data [7] in the past. All of the data in this evaluation were ALC ontolo-
gies and had between 150 and 5150 axioms. We also know of some mature Circum-
scriptive [20] approaches that have been implemented [3,4]. However, the performance
results of such implementations remain unpublished to the best of our knowledge.

5 Conclusions and future work

We have presented a systematic and intuitive approach to introduce defeasible subsump-
tion into real-world OWL ontologies. Applying our approach to the Manchester OWL
Repository, we were able to generate test cases to evaluate the performance of our Ra-
tional Closure implementation in DIP (Defeasible-Inference Platform). We report that
this kind of defeasible reasoning is surprisingly feasible on our principally generated
data. While there are some mentioned limitations of our approach, we argue that the
data we generate can give more meaningful insight into the performance of RC for real-
world ontologies. In conclusion, we hope that our approach provides a stepping stone to
developing more sophisticated methodologies for introducing defeasible features into

cs.ox.ac.uk/isg/tools/ELK
cs.ox.ac.uk/isg/tools/ELK
geneontology.org
geneontology.org

16

real-world ontologies, and that it will spur more investigations into the performance of
defeasible reasoning in general.

Acknowledgements. Part of the work of Giovanni Casini has been supported by
the Fonds National de la Recherche, Luxembourg, and cofunded by the Marie Curie
Actions of the European Commission (FP7-COFUND) (AFR/9181001).

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge Univ. Press, 2003.

2. P. Bonatti, M. Faella, I. Petrova, and L. Sauro. A New Semantics for Overriding in Descrip-
tion Logics. Articial Intelligence, 2015.

3. P. Bonatti, M. Faella, and L. Sauro. Defeasible Inclusions in Low-Complexity DLs. JAIR,
42:719–764, 2011.

4. P. Bonatti, C. Lutz, and F. Wolter. Description Logics with Circumscription. In Proc. of KR,
pages 400–410, 2006.

5. K. Britz, G. Casini, T. Meyer, K. Moodley, and I. J. Varzinczak. Ordered Interpretations and
Entailment for Defeasible Description Logics. Technical report, CAIR, CSIR Meraka and
UKZN, South Africa, 2013.

6. K. Britz, T. Meyer, and I. Varzinczak. Semantic Foundation for Preferential Description
Logics. In Proc. of AI, pages 491–500, 2011.

7. G. Casini, T. Meyer, K. Moodley, and I. Varzinczak. Towards Practical Defeasible Reasoning
for Description Logics. In Proc. of DL, 2013.

8. G. Casini and U. Straccia. Rational Closure for Defeasible Description Logics. In Proc. of
JELIA, pages 77–90, 2010.

9. B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL
2: The Next Step for OWL. Web Semantics: SSAWWW, 6(4):309–322, 2008.

10. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Preferential Description Logics. In
Proc. of LPAR, pages 257–272, 2007.

11. Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base Systems.
Web Semantics: SSAWWW, 3(2):158–182, 2005.

12. M. Horridge. Justification Based Explanation in Ontologies. PhD thesis, University of
Manchester, 2011.

13. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL Ontologies. Semantic
Web, 2(1):11–21, 2011.

14. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description Logics.
In Proc. of LPAR, pages 161–180, 1999.

15. P. Ke and U. Sattler. Next Steps for Description Logics of Minimal Knowledge and Negation
as Failure. In Proc. of DL, 2008.

16. D. Lehmann and M. Magidor. What Does a Conditional Knowledge Base Entail? Art. Intell.,
55(1):1–60, 1992.

17. T. Lukasiewicz. Expressive Probabilistic Description Logics. Art. Intell., 172(6):852–883,
2008.

18. N. Matentzoglu, S. Bail, and B. Parsia. A Snapshot of the OWL Web. In Proc. of ISWC,
pages 331–346. 2013.

19. N. Matentzoglu, D. Tang, B. Parsia, and U. Sattler. The Manchester OWL Repository: Sys-
tem Description. In Proc. of ISWC, pages 285–288, 2014.

20. J. McCarthy. Circumscription - A Form of Non-Monotonic Reasoning. Art. Intell., 13(1–
2):27–39, 1980.

17

21. T. Meyer, K. Moodley, and U. Sattler. DIP: A Defeasible-Inference Platform for OWL. In
Proc. of DL, 2014.

22. R. Reiter. A Logic for Default Reasoning. Art. Intell., 13(1):81–132, 1980.
23. U. Sattler, T. Schneider, and M. Zakharyaschev. Which Kind of Module Should I Extract?

In Proc. of DL, 2009.

	Introducing Defeasibility into OWL Ontologies

