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Abstract. Modularity is being increasingly used as an approach to solve for the information overload problem in ontologies.
It eases cognitive complexity for humans, and computational complexity for machines. The current literature for modularity
focuses mainly on techniques, tools, and on evaluation metrics. However, ontology developers still face difficulty in selecting the
correct technique for specific applications and the current tools for modularity are not sufficient. These issues stem from a lack of
theory about the modularisation process. To solve this problem, several researchers propose a framework for modularity, but alas,
this has not been realised, up until now. In this article, we survey the existing literature to identify and populate dimensions of
modules, experimentally evaluate and characterise 189 existing modules, and create a framework for modularity based on these
results. The framework guides the ontology developer throughout the modularisation process. We evaluate the framework with a
use-case for the Symptom ontology.
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1. Introduction

Modularity in ontology engineering is applied as a solution for dealing with information overload for
both machines and humans, as it eases computation tasks and simplifies the understanding and interpreta-
tion of knowledge by offering smaller subsets of an ontology. In the early years, even manual reorganisa-
tion of an ontology’s content (“normalisation”) was proposed to make extracting modules less hard (Rec-
tor (2003)), but much has been achieved since. A rapid increase in the use of modularity for dealing with
large ontologies has resulted in an abundance of approaches and tools in the field. Notable advances in
the field include automated tools, such as SWOOP (Kalyanpur et al. (2006)) and OWL module extractor
(Cuenca Grau et al. (2008)) and evaluation metrics to assess the quality of modules (d’Aquin et al. (2007,
2009); Pathak et al. (2009); Tartir et al. (2005)). While there is some research that provides information
about some modularity criteria (d’Aquin et al. (2009); Schlicht and Stuckenschmidt (2006)), there is a
lack of a foundational theory for ontology modularity; e.g., it is unclear which evaluation metrics are to
be considered for different module types and what type of modules different techniques produce. d’Aquin
et al. (2009) found that the evaluation of a modularisation depends on an application’s requirements, that
there is no universal modularisation, and that a formal well-defined framework for modularity is lacking.
This opens up a number of issues and questions; e.g., difficulty in selecting the appropriate modularity
technique, insufficient modularity tools for applications, and it is unclear which one should be applied for
which scenario. For instance, we tried to modularise the Data Mining OPtimization (DMOP) ontology
(Keet et al. (2015)) with several modularisation tools, but all modules were too large to use (Keet et al.
(2014)), and extracting content on object properties from DOLCE with the ‘copy’ feature, their asserted
characteristics such as transitivity were not extracted (Keet et al. (2013)). Also, existing techniques are
not sufficient in creating compact modules (d’Aquin et al. (2009); Khan and Keet (2013)). Evaluation of
modularisation techniques reveal that some tools fail to partition large ontologies because they focus on
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preserving the logical properties of the modules while others lose some of the relational properties of the
ontologies, and that most tools generate views instead of module file outputs (Oh et al. (2010); Oh and
Yeom (2011)).

In praxis, it also remains largely unclear how to manage ontology modules once they are generated
and start leading their own life, being merged with or imported into another ontology. For instance, one
may have slimmed a highly axiomatised module into an OWL 2 EL fragment of it or extracted only two
main branches of the class hierarchy and their relations: in the former case, it would not matter for one’s
project if the original ontology was augmented with axioms whose expressiveness is beyond OWL 2 EL,
in the latter case, one may have to re-generate the module to reflect the changes made to the original one.
Currently, there is no way of knowing this automatically, and modules are typically not even annotated
with such type of information (unless they were created for certain experiments), let alone annotated in a
structured way across modules.

These issues raise a plethora of questions not only from an engineering viewpoint to create tools, but
also, still, from a conceptual and ontology engineering viewpoint. Some of the unanswered questions
regarding modularity are:

Q1: What are the use-cases, techniques, types, and annotation features that exist for modules?
Q2: How do module types differ with respect to certain use-cases?
Q3: Which techniques can we use to create modules of a certain type?
Q4: Which techniques result in modules with certain annotation features?
Existing literature on modularity provides information about such aspects of modularity but an explicit

and comprehensive list of the dimensions of modularity is lacking. In this paper, we wish to seek the
solutions to the issues, and answers the questions, by 1) identifying the dimensions to be taken into con-
sideration for ontology modularity, 2) populating the dimensions with criteria, which are surveyed from
research on and application of modularity, 3) assess usage of modules in ontology engineering by survey-
ing and analysing existing modules using the extracted dimensions, and 4) using the results of the two
surveys, to create an ontology modularity framework by creating relations between the criteria that reveal
dependencies, and hence suggestions on which dimensions fit well together and which do not.

The resultant framework of the module dimensions and dependencies can be used to steer the modular-
isation process, and form the basis for metadata for ontology modules, which promotes ontology reuse. In
addition, the current state of ontology modularity with respect to tools has been refined, and reveals that
tools are not sufficient nor maintained, resulting in that there is still a heavy reliance on manual methods.

The remainder of the paper is structured as follows. We describe the preliminaries and state of the art in
Section 2. The ontology modules’ dimensions are described in Section 3 and the experimental evaluation
of module usage is described in Section 4. The modularity framework is described in Section 5. We discuss
in Section 6 and conclude in Section 7.

2. Preliminaries

In order to identify and populate the dimensions of modularity, it is necessary to provide a clear defini-
tion for modularity and to summarise the state of the art with regard to advances in modularity.

2.1. What is modularity?

While existing literature does provide some definitions of modularity, no definition is universally ac-
cepted. It seems the case that the existing definitions are unique to the problem at hand. In order to define
what an ontology module is, we consider first the main existing definitions.

Definition 1 (Parent and Spaccapietra (2009)): In its most generic meaning, it denotes the possibility to
perceive a large knowledge repository (be it an ontology or a database) as a set of modules, i.e. smaller
repositories that, in some way, are parts of and compose the whole thing.
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Definition 2 (Doran et al. (2007)): An ontology module is a reusable component of a larger or more
complex ontology, which is self-contained but bears a definite association to other ontology modules,
including the original ontology.

Definition 3 (d’Aquin et al. (2007)): We define an ontology module in a very general way as a part of an
ontology: a moduleMi(O) of an ontology O is a set of axioms, such that Σ(Mi(O)) ⊆ Σ(O).

Definition 4 (Del Vescovo et al. (2013)): Modules are suitably small subsets of an ontology O that behave
for specific purposes like the original ontology over a given signature Σ, i.e., a set of terms (classes and
properties).

Definition 5 (Tsarkov (2012)): A module is a subset of an ontology that captures all the knowledge the
ontology contains about a given set of terms.

In Definition 1, modules are parts and require a whole thing, but there need not be a ‘whole’ ontology;
e.g., BioTopLite (Schulz and Boeker (2013)) and GFO-basic (Herre (2010)) are lighter versions of a larger
ontology, without being part of a set of inter-related modules. Definitions 2, 3, and 4, refer to an original
ontology, but not all modules have a source ontology; e.g., the myExperiment ontology (Newman et al.
(2009)) is a decomposition of the domain into structural modules, hence there is no source ontology.
Definition 5 is far too strict to hold for all types of modules that exist, and is focused on modules with
the condition of logical completeness. The module definitions hold for their respective application areas
but there are some gaps in the existing modularity definitions. We fill in such gaps with our own more
comprehensive definition for modularity.

Definition 6 Module: A module M is a subset of a source ontology O, M ⊂ O, either by abstraction,
removal or decomposition, or module M is an ontology existing in a set of modules such that, when
combined, make up a larger ontology. Module M is created for some use-case U , and is of a particular
type T . T is classified by a set of annotation features P , and is created by using a specific modularisation
technique MT , and has a set of evaluation metrics EM which is used to assess the quality of module M .

This definition aims to cover the gaps in Definitions 1-5: 1) It does not restrict modules to those that
exist in a set and together compose a whole, 2) it allows that modules need not have a source ontology, and
3) it does not restrict modules to those that capture all the knowledge of an ontology over a given signature
(locality modules). It also introduces modularity dimensions such as use-cases, techniques, annotation
features, and evaluation criteria which have not been previously defined but are important because they
guide the modularisation process.

2.2. State of the art

There are several studies on the properties and dimensions of ontology modules. Abbès et al. (2012)
presents preliminary results on characterising modular ontologies based only on three structural crite-
ria (size, cohesion, and coupling), leading to patterns based on ontology imports. Schlicht and Stucken-
schmidt (2006) also created a set of structural criteria for ontology modules—connectedness, size, and
redundancy of representation—which are said to affect efficiency, robustness,and maintainability for the
application of semantics-based peer-to-peer systems. They evaluated SWOOP and PATO tools using those
structural criteria and found that SWOOP favours modules with a good connectedness, i.e., reduction of
communication costs, over modules with suitable size values, while with PATO, as the selected threshold
value is increased, so is the size suitability of the module, while the connectedness value worsens.

Besides structural, there are also logic-based semantic notions of modularisation (Konev et al. (2008,
2009)), which have a main focus on module inseparability, meaning that the module and the source on-
tology are deemed to be inseparable if they give the same answers to any query. Loebe (2006) proposed a
number of requirements for logical modules that could be used to guide the modularisation process, such
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as logical correctness and completeness. However, the author acknowledges that the requirements do not
hold for all applications and that specialised methods should be applied for different applications.

d’Aquin et al. (2009) proposed criteria and evaluation of modularity techniques and conducted an ex-
perimental evaluation using existing modularisation tools, which revealed that, at this stage, it is still un-
clear which evaluation techniques should be associated with which module use-case and properties. The
modules that were generated with the tools were considerably different, and d’Aquin et al. (2009) con-
cluded that modularity techniques are influenced by the properties of an ontology and other criteria, and
that a well-defined benchmark is lacking but required for modularity.

Parent and Spaccapietra (2009) proposed the underlying assumptions and goals for modularity, e.g.,
maintenance anf scalability for reasoning, with the motivation that the way in which modularisation is
approached depends on such goals. There is also a list of strategies that are proposed for creating mod-
ules, e.g., semantic-driven and structure-driven strategies. In a study on the foundational goals of modu-
larity, Borgo (2011) classifies ontology modules as different types. There are several different types, e.g.,
isolating/developing branches of a taxonomy, collecting categories according to a domain, and isolating
patterns.

3. Dimensions of ontology modularity

The state of the art section revealed that there is existing literature on the characteristics regarding
modularity but most of them centre around evaluation metrics, with a strong focus on structural metrics.
Other aspects concerning modularity such as rationale, methods, module types, and annotation features
are lacking, at this stage. In this section, we fill in those gaps by introducing different types of modularity
dimensions. The list of modularity dimensions was created after surveying, analysing, and structuring
the current literature with respect to modules. We describe and populate each dimension with relevant
subdimensions.

3.1. Use cases

Modularisation may be applied to an ontology for a number of goals, or purposes which include ontol-
ogy maintenance, partial reuse, among others, mentioned in existing works (d’Aquin et al. (2007, 2009);
Pathak et al. (2009); Schlicht and Stuckenschmidt (2008); Turlapati and Puligundla (2013)). We define
these as use-cases for modularity placed into three orthogonal groups.

3.1.1. Ontology usage use-cases
Sometimes ontologies are difficult to use due to the fact that they are too large, or contain information

that is irrelevant for the application at hand. For this, the use-cases for modularisation are centered around
ontology usage.

U1: Maintenance Ontologies are constantly evolving resulting in a need for constant maintenance. Large
ontologies cannot be easily maintained by one person. It is a task that is prone to error and omission.
Ontology developers often face difficulty in building large ontologies due to sensemaking, searching and
exploration of an ontology. Such problems are related to the loss of contextual awareness when traversing
an ontology (Vigo et al. (2014)). Dividing an ontology into modules can assist with the maintenance of
large and complex ontologies. In the case of updates in domain knowledge, not all the modules in a system
need to be modified; the evolution could be localised within the relevant module(s). Maintenance also
enables collaboration among a team, which is discussed as a use-case in a subsequent paragraph.

U7: Reuse For some applications, developers only require a small component of an ontology for reuse
in another application. For instance, in the Subcellular Anatomy Ontology (SAO) ontology (Larson et al.
(2007)), there are only whole entities, and no process entities. As such, the BFO-Continuant ontology of
the ROMULUS repository (Khan and Keet (2013)) can be used rather than the entire BFO ontology.
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3.1.2. Human factor use-cases
These use cases support human cognitive abilities by simplifying an ontology into modules.

U3: Validation Validation deals with checking an ontology for errors and whether it meets requirements.
A single expert performing validation of a large ontology is not feasible, because identifying errors, such
as inconsistency and redundancy, and guaranteeing that the ontology meets all the functional requirements
in large ontologies is a difficult process (Vigo et al. (2014)). Having smaller modules would ease the
burden of a large domain into smaller, simpler components for the expert.

U5: Comprehension It is confusing for humans to understand and use ontologies with thousands of
terms. Keet (2007) proposes to use abstraction by removing some knowledge from the system to assist
with comprehending the ontology. Since ontologies are sometimes designed and created by domain ex-
perts without expertise in logic, they use visual ontology engineering tools for development. Such tools
aids with development but have drawbacks with large ontologies, thereby making it difficult to compre-
hend the complete ontology. Some approaches propose model exploration techniques to assist with com-
prehension whereby the concepts with corresponding relations of an ontology are visually generated in or-
der to understand them (Bauer et al. (2009); Bergh et al. (2011)). For large ontologies, model exploration
techniques could be problematic because of the challenge with ontology processing explained previously
(U4).

Note that comprehension differs from validation. For validation, all components of the ontology are
considered. However, for comprehension, simpler views omitting unnecessary components are considered.

U6: Collaborative efforts Collaborative efforts allows a team of developers to work together in creating
an ontology. Modularisation enables the division of work tasks. In order to avoid conflict between different
versions of the ontology by different developers, the ontology is divided into different components to
allow specific people to create and modify modules without altering the entire system. For instance, the
set of myExperiment ontology modules (Newman et al. (2009)) promotes collaboration among scientists
for publishing workflows and experiment plans, in order to share them, and, on a grander scale, the OBO
Foundry ontologies (Smith et al. (2007)).

3.1.3. Ontology tool use-cases
At times, the nature of ontologies, such as its size, or computational complexity of the language, can

put a strain on ontology tools. In light of this, there are use-cases for modularity based on ontology tool
performance.

U2: Reasoning Ontology reasoners perform poorly when reasoning complex and large ontologies of
thousand of concepts (Vigo et al. (2014)); e.g., the data mining optimisation ontology (DMOP) has a
classification time of approximately 10 minutes (Keet et al. (2014)). Reasoner performance decreases as
the ontology size and number of axioms and rules increases. Consequently, reasoners will perform better
with regard to efficiency if there is less knowledge to infer. In some cases, one will only be required to
reason over modules that have been evolved since the last reasoning task.

U4: Processing Ontology related tools such as development, mediation, and metrics tools perform
poorly when processing large ontologies (Antezana et al. (2009); Belloze et al. (2012); Paulheim (2008)).
For instance, with the NCI cancer ontology by Golbeck et al. (2003), the BioPortal visualisation tool
(Whetzel et al. (2011)) took several minutes to load the ontology, and using the OWL metrics tool1 to com-
pute its metrics took 12 minutes to process before it returned an ontology parsing error, using a machine
with an Intel Core 2 Duo Processor with 4GB of RAM. These types of scalability issues are a challenge
for developers when using these large ontologies. As demonstrated, the complexity of processing for large
ontologies is known to be critical. Since smaller ontologies take a shorter time to open, load, and use with
tools, having smaller interrelated modules instead of large and complex ontologies could possibly improve
the performance of the processing tools.

1http://mowl-power.cs.man.ac.uk:8080/metrics/owlmetrics
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3.2. Annotation features

A module is described by one or more annotation features. These annotation features provide informa-
tion about things that occur in modules, and how they are related to each other and interact.

3.2.1. Modification annotation features
These annotation features describe the ways in which an ontology is modified in order to create a new

module.

P1: Seed signature A seed signature occurs when the user specifies some input entity to base the result-
ing module on (Cuenca Grau et al. (2008); Del Vescovo (2011); Del Vescovo et al. (2011)). All entities
related in some way to the entity chosen as seed signature are included in the module. For instance, for
modularising the DOLCE ontology for a module with only wholly-present objects, the ‘endurant’ entity
is selected as a seed signature (Khan and Keet (2013)).

P2: Information removal Information removal is when parts of the ontology are selected to be removed
from the ontology, resulting in a module without all the detail of the original ontology. For information
removal, an input entity need not be selected as a basis for modularisation as in the case for the seed
signature characterisation above. For instance, the NCS ontology on Bantu noun classes (Chavula and Keet
(2015)) reuses only part of the GOLD ontology, as it has no need for, among others, phonetic properties.

P3: Abstraction Abstraction is hiding undesirable knowledge from an ontology at different levels
(Giunchiglia et al. (1997); Keet (2005)). It is used to provide a simplified view of the ontology. Hence,
there are modules with more/less detail in the system. However, the source ontology with the original
knowledge still exists in the system as a related module.

P3.1: Breadth abstraction This occurs in a module where some relational properties of entities in the
module are removed in order to provide a simpler view of the structure of the ontology, therefore
the ‘breadth’ of the ontology is reduced.

P3.2: Depth abstraction This occurs in a module where high-level classes from the original ontology exist
and lower-level classes are removed, therefore the ‘depth’ of the ontology is reduced.

P4: Refinement Refinement occurs in ontology modules where new alternate axioms are added to the
module, as a result of the modularisation process. This could be to assist with inter-module links, or when
computationally-expensive ontology language features are modified resulting in new axioms. For instance,
to reduce reasoning time for the DMOP ontology, the InverseObjectProperties axiom was removed
and replaced with the OWL ObjectInverseOf axiom (Keet et al. (2014)).

3.2.2. Relational properties
These properties describes how a module is related to other modules.

P5: Stand-alone This describes a module that has no external links or imports with other ontologies,
and can exist on its own. It is self-contained and can be modified without having dependencies on other
modules. For instance, the BioTopLite module (Schulz and Boeker (2013)), a top-domain level ontology
for the life sciences domain, does not contain any inter-module relations with other ontologies nor does it
have any import statements linking other ontologies to it.

P6: Source ontology A source ontology describes cases where there is an original ontology which has
been modularised in some way resulting in the module. For instance, the DMOP-profile-EL module has
the source ontology DMOP (Keet et al. (2014)).

P7: Proper subset This describes a module that contains a subset of entities that are contained in another
source ontology. The module has fewer entities than the source ontology. For instance, the FMA_subset
ontology module omits all relationships other than is_a, part_of, and has_part and thus has fewer
entities than the original FMA ontology (Rosse and Mejino (2003)).
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P8: Imports This describes a module that contains other ontology components, by using the
owl:import statement declared for importing another ontology. For instance, the Spatial Ontology mod-
ule (Hois et al. (2009)) from the set of architectural design modules that imports the DOLCE ontology
(Masolo et al. (2003)).

3.2.3. Set annotation features
These annotation features describe the interaction of a set of inter-related modules.

P9: Overlapping Overlapping in modules refer to cases where entities in an ontology system can be
found in more than one module of the system (Parent and Spaccapietra (2009)). These modules partially
cover the same concepts. In overlapping modules, entities in different modules may have dependencies on
one another. Thus changes to one module may have an effect on others.

P10: Mutual exclusion Mutual exclusion, or disjointness in modules, refers to the case where en-
tities in a system of ontology modules are found in exactly one of the modules; i.e., modules have
no entities in common (Parent and Spaccapietra (2009)), with the exception of owl:Thing and
owl:TopObjectProperty in case of OWL ontologies. While this is easier in maintenance as it avoids
duplications, it is difficult to create due to those axioms that relate entities.

P11: Union Equivalence Union equivalence occurs when the union of a set of modules is semantically
equivalent when compared to the original ontology.

P12: Partitioning Partitioning occurs in large ontology whereby it is structurally divided into a set of
independent modules, thereby allowing concurrent reuse in distributed systems (d’Aquin et al. (2009)).
Independence is meant that the modules cover sufficiently different knowledge of the domain; e.g., repre-
senting the anatomical knowledge about the limbs and about the eyes of an animal.

P13: Inter-module interaction This describes modules that have links to other modules to relate enti-
ties in a similar way to their existence in the original ontology to ensure that the knowledge is preserved.
Inter-module interaction among modules exist if there are either bridge ontologies in the set to link to-
gether modules, or linking languages are explicitly used within the modules. For instance, in the EDAM
bioinformatics ontology (Ison et al. (2013)), the object property is_format_of has as domain the class
Format and range Data. When it was partitioned with SWOOP for this study, the Data class was present
in the first partition while Format and is_format_of were present in the third partition, having used
ε-connections to create interaction among these entities that existed in different modules.

P14: Pre-assigned number of modules This occurs when the number of modules to be created or gener-
ated in a system is known prior to development. For instance, the modularisation tool requires one to state
the number of to-be-generated modules upfront, or an ontology is to be divided into a number of modules
based on the developers that will collaboratively create and maintain the ontology.

There are some obvious combinations and exclusions of features for a module, such as that P11 implies
P6, P8 implies P9, a module cannot have both features P9 and P10, P5 exclude P9-P15, P7 excludes P10,
and P2 and P3 do not go with P10, P11, and P13. Conversely, P7, P9, and P14 may apply to a single
module, as may P2, P7, and P12.

3.3. Types

Ontology modules can be classified into different types, based on how modularisation of the ontology
occurs. Besides using and refining Borgo’s module subtypes, mentioned in Section 2, we have identified
new subtypes: locality, privacy, axiom abstraction, type abstraction, high-level abstraction, weighted ab-
straction, expressiveness sub-language, and expressiveness feature modules which are further described in
the following sections.

3.3.1. Functional modules
For these type of modules, the users identify the functional components within an ontology to be sepa-

rately modularised, which assists with selective re-use of an ontology.



8 Z.C. Khan and C.M. Keet / Ontology modules

T1: Ontology design pattern modules An ontology is to be modularised by identifying a part of the
ontology that can be reused as a best practice for recurring ontology issues; hence, one can isolate a new
ontology design pattern (ODP) (Gangemi and Presutti (2009)) for general reuse. For instance, the Set ODP
(Ciccarese and Peroni (2014)) can be reused for any domain instead of starting from scratch, and there are
several content ODPs. However, not all ODPs are considered modules; e.g., the Lexico-Syntactic ODPs
are not.

T2: Subject domain modules A large domain must be subdivided according to the subdomains present
in the ontology. For instance, the set of architectural design modules (Hois et al. (2009)) such as Spatial
ontology, Building construction, among others.

T3: Isolation branch modules A subset of entities from an ontology is extracted. However, entities
with weak dependencies to the signature are not to be included in the module. For instance, to isolate
the ‘endurant’ branch of DOLCE (Masolo et al. (2003)), the dolce:physical-endurant entity is a
direct subclass of dolce:endurant to include but not the dolce:perdurant because it is linked to
dolce:endurant in terms of participation.

T4: Locality modules A subset of entities from an ontology is extracted. However, all entities that
are dependent on the subset are included in the module. For the example in T3, this means that
the dolce:perdurant entity is to be included in the module, along with others that are related to
dolce:perdurant.

T5: Privacy modules Some information must be hidden or removed from an ontology so that modules
can be kept private from each other.

3.3.2. Structural modules
Structural modules are those ontologies that have been partitioned into modules based on structure. The

focus of the modularisation is on the syntax of the ontology graph. Each module is to be separate from one
another; and ideally to have disjoint modules so that the union of all modules is equivalent to the original
ontology.

T6: Domain coverage modules There is a large ontology, and developers wish to facilitate ontology
maintenance by dividing ontologies structurally, without considering the semantics of the ontology. Hence,
the modules are divided by their graphical structure and placement of entities in the taxonomy such that
similar size modules could be generated. If the ontology modules are to be maintained collaboratively
among a team with a specific number of ontology developers, the number of modules to be created could
be specified and the structure of the ontology is exploited to create modules. For instance, the Founda-
tional Model of Anatomy Ontology (Rosse and Mejino (2003)) contains contains over 100 000 entities
describing the exhaustive biomedical informatics domain. This could be modularised structurally for ease
of use.

T7: Ontology matching modules An ontology must be modularised to assist with ontology matching
by partitioning it into disjoint modules so that there is no repetition of entities when matching occurs.
Most matching techniques implement structural or string-matching techniques, hence the semantics of
the original ontology need not necessarily be preserved. For instance, the Common Anatomy Reference
Ontology (CARO) (Haendel et al. (2008)) aims at aligning existing anatomy ontologies. To assist with
aligning it to domain ontologies, CARO could be partitioned to smaller modules.

T8: Optimal reasoning modules A large ontology is to be divided into smaller modules to assist with
overall reasoning over the ontology and to ensure that reasoners do not malfunction. The DMOP ontology
contains over 758 entities and over 4000 axioms and takes almost 10 minutes for the reasoner to perform
classification; it would be less time-consuming to maintain and extend if localised reasoning in a module
would be possible. This differs from creating modules that are of a less-expressive ontology language
which is discussed later.
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3.3.3. Abstraction modules
For abstraction modules, some detail must be hidden from the ontology to create a simpler view of the

ontology with less detail.

T9: Axiom abstraction modules This is a module having fewer axioms with object properties relating
classes, thereby decreasing the horizontal structure of the ontology. For instance, to create taxonomies for
classification purposes from ontologies.

T10: Entity type modules This is a module where a certain type of entity is removed from the ontology,
e.g., data properties or object properties. For instance, removing the application-specific instance data
(individuals) from an ontology to reuse in another application.

T11: High-level abstraction modules This is a module where only higher-level classes of the ontology
are required, thereby decreasing the vertical structure of the ontology. For instance, the DMOP-branch-
Toplevel module (Keet et al. (2014)) containing only the high-level entities of DMOP.

T12: Weighted modules The developer decides on entities in the ontology that are more important than
others. For instance, using abstraction rules to assign higher weighting to entities that are deemed more
important than others (Campbell et al. (1996); Keet (2005)).

3.3.4. Expressiveness modules
For expressiveness modules, an ontology is modularised according to an ontology sub-language by

removing some expressiveness power.

T13: Expressiveness sub-language modules These modules contains limited language features that are
captured in a sub-language of a core ontology language.For instance, the OpenGalen (Rector et al. (2003))
module in OWL 2 EL was created to test the lightweight ELK (Kazakov et al. (2012)) reasoner for EL
ontologies.

T14: Expressiveness feature modules These modules contains limited language features that are not
necessarily defined by any sub language and consider modelling alternatives to preserve the meaning of
the ontology. For instance, the DMOP-WithoutInverseRoles modules was created by removing the OWL
InverseObjectProperties language feature and replaced with the OWL ObjectInverseOf axiom
(Keet et al. (2014)).

Understanding the type of a particular module is of interest towards creating a foundation for ontology
modularity.

3.4. Techniques

We identify the techniques used by approaches to create modules, and classify them into categories.
Such techniques are not only restricted to the ontology field, but also more broadly, such as from graph
theory and statistical approaches.

3.4.1. Graph theory techniques
These approaches are designed to solve the general problem of community detection. In graphs, com-

munities are clusters of nodes that are fairly independent of each other with links between them.

MT1: Graph partitioning Graph partitioning is the problem of dividing a graph into partitions with the
condition that vertices are not shared across different partitions, and the number of partitions is known.
For ontologies, graph partitioning algorithms would be most useful in cases where structural division of
the ontology modules is a driving force for it would generate modules of equal size.

There are several examples of the application of graph partitioning to ontology modularisation (Ahmed
et al. (2015); Amato et al. (2015); Kalyanpur et al. (2006); Schlicht and Stuckenschmidt (2008)). In the
PATO partitioning tool (Schlicht and Stuckenschmidt (2008)), graph partitioning is performed by using
maximal line islands (Batagelj (2003)) to compute partitions. A maximal line island checks that for a set
of nodes, the strength of the connection between the nodes inside the set is higher than the strength of any
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connection those outside the set. Unlike traditional graph partitioning, in PATO, the number of partitions
to be created is unknown and automatically generated (Schlicht and Stuckenschmidt (2008)).

MT2: Modularity maximisation Modularity maximisation methods (Newman (2004)) aim at optimising
the connection between nodes in graphs by using a modularity function Q. Q measures the concentration
of edges within modules compared with random distribution of links between all nodes regardless of
modules. For ontologies, this means that irrespective of the location of the concepts in the hierarchy,
modules will be created based on concepts that have strong axiomatic relations with others.

3.4.2. Statistical techniques
This approach uses statistical equations to create ontology modules. To do so, the entities in the ontology

are converted to data and statistical methods and functions are applied onto the data with the aim of
creating modules.

MT3: Hierarchical clustering Hierarchical clustering is used to group together data, when little is known
about it, such as the number of partitions. It is aimed at building a hierarchy of clusters, by an agglom-
erative or divisive strategy. An agglomerative strategy is one in which each data point is placed in sepa-
rate clusters, and clusters are merged based on a distance function between data points in clusters while
divisive strategy is one in which data is divided recursively as one moves down the hierarchy.

There is an application of using hierarchical clustering for ontology modularisation (Garcia et al.
(2012)), where two hierarchical clustering algorithms obtained similar results when compared to other
graph theory approaches. However, other approaches had better results, at least for the case of modular-
ising a version of the pizza ontology because their modules grouped together vegetarian, non-vegetarian,
and general pizza entities while the modules of the hierarchical approach did not.

3.4.3. Semantic techniques
For these approaches, the entities and axioms of the ontology are used to drive the modularity approach.

The common aspect in each of these approaches is that it is user driven, i.e., a user provides initial infor-
mation about entities to drive the modularisation process.

MT4: Locality-based modularity This approach is used to generate modules based on a signature with
the condition that conservative extension holds for the given module. Conservative extension (Cuenca
Grau et al. (2008)) means that every axiom’s meaning from the original ontology is preserved in the mod-
ule and is greatly influenced by the atomic structure of the ontology. For instance, the biological ontolo-
gies from the BioPortal repository (Whetzel et al. (2011)) have been proven to modularise well using
locality methods (Del Vescovo et al. (2011)), thanks to them having on average 2 axioms per atom. On
the other hand, to generate a locality module of endurant entities (whole objects) from the DOLCE ontol-
ogy (Masolo et al. (2003)), many perdurant entities (entities unfolding in time) would also be contained
in the module, because there exists an axiom endurant v ∃ participant-in perdurant ,in the
DOLCE ontology. Therefore the module would not only contain endurant entities because the conserva-
tive extension of the original ontology is guaranteed. The atoms in the DOLCE ontology are large and
therefore not suitable for locality approaches, as shown by Khan and Keet (2013).

MT5: Query-based modularity These approaches require that the user initially creates a query with a
language such as SPARQL and a module is automatically created based on that query. Noy and Musen
(2009) use queries to create ontology views by selecting an input entity and traversing the ontology to
select other relevant entities to be included in the module until a particular depth is reached. Similarly,
given an input entity, the KMI tool (d’Aquin et al. (2006)) recursively inspects the ontology to include the
other relevant elements found in the definition of the entity.

MT6: Semantic-based abstraction Abstraction, the principle of simplifying complex models by remov-
ing some unnecessary details, is applied to ontologies to create simpler modules. Semantic-based abstrac-
tion is an approach whereby the semantics of the model is analysed using a set of pre-defined rules to
determine key entities, where the key entities are deemed more important than others (Campbell et al.
(1996); Keet (2005)). For instance, for the Blood and Bacteriocins ORM models (Keet (2005)), mandatory
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Table 1
Modularisation techniques implemented by each tool.

Modularity Tool Modularisation Technique
SWOOP MT1: Graph partitioning
TaxoPart MT1: Graph partitioning
OWL module extractor MT4: Locality-based
Protégé copy/move/delete axioms MT4: Locality-based
PATO MT1: Graph partitioning
PROMPT MT5: Query-based

roles are weighted with 10 points while single-role set constraint are weighted with 5 points. Similarly,
this could be applied to ontologies by designing a set of weighted rules to guide the ontological abstraction
process.

MT7: A priori modularity An a priori modularity method (Thakker et al. (2011)) is one in which the
modular structure of the domain is decided and the modules are created at the onset.

MT8: Manual modularity For manual modularity, the ontology developer decides which entities and ax-
ioms should be removed from an ontology, and manually creates a ‘custom’ module based on this. Unlike
the a priori modularity method, here the modules are not created at the onset of development, but created
later on, based on some existing ontology. For instance, for the DMOP-WithoutInverseProperties module,
some language features of the ontology were manually removed to improve the reasoning (Keet et al.
(2014)).

The existing modularisation tools are displayed in Table 1 alongside their underlying modularisation
techniques. For the techniques not listed, we could not find tools.

3.5. Evaluation metrics

It is necessary to evaluate the resultant modules of the ontology modularisation techniques, in terms of
the quality of the generated module and the features of the tool. Existing studies (d’Aquin et al. (2007,
2009); Schlicht and Stuckenschmidt (2006)) mention some techniques such as size, logical correctness,
cohesion, etc. Identifying and populating evaluation metrics with sub-dimensions is intended for future
work as it also requires an application component with which to quantitatively measure ontology modules.

The heterogeneous dimensions that we have identified, discussed and populated demonstrates that on-
tology modularity is not a straight-forward, solitary concept but rather a methodological approach with
specific conditions resulting in different ontology modules. The dimensions described in this section form
the answer to our first research question regarding modularity, “1) What are the use-cases, techniques,
types, and annotation features that exist for modules?”. The next step is to categorise a set of real modules
using these dimensions towards creating dependencies between the dimensions.

4. Usage of modules by ontology developers: a quantitative assessment

The purpose of the experimental evaluation is to classify existing modules available on the web with the
modularity dimensions, and to determine the dependencies between them towards creating a framework
for modularity that will be able to assist ontology developers in working with ontology modules.
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4.1. Materials and methods

The method for the experiment is as follows:
1. Collect ontology modules from ontology repositories and existing literature on modules.
2. Classify each ontology module according to the proposed module dimensions.
3. Conduct a statistical analysis to determine the frequency of dimensions occurring in each module.

The materials used for the experiment were as follows: Protégé v4.3 (Gennari et al. (2003)), SWOOP
v2.3 (Kalyanpur et al. (2006)), OWL Module Extractor (Cuenca Grau et al. (2008)), TaxoPart (Hamdi
et al. (2009)), and a set of ontology modules. The sample size was 189 ontology modules of varying
domains, such as architectural, data mining, biological, chemical, linguistic, among others. Of these 189
modules, 146 belonged to 11 sets of inter-related modules. A set of inter-related modules is when a large
subject domain is represented by a set of modules rather than a large ontology. For instance, one of the 11
sets is the 10 modules of the myExperiment (Newman et al. (2009)) ontology. All the test files used for
this evaluation can be downloaded from www.thezfiles.co.za/Modules/testfiles.zip.

4.2. Results and Discussion

Modules that were found on the web include those of type T1, T2, T3, T8, T11, T12, T13, and T14.
We could not find any modules of type T4, T5, T6, T7, T9, and T10, so we generated them by using tools
(SWOOP, OWL Module Extractor, and TaxoPart) or manually. 74 of the modules were publicly available
and the rest were generated for this study.

Thereafter, each of the modules were classified according to the characteristics: its type, use-case(s),
annotation feature(s), and technique.

4.2.1. Analysis by dimension
A statistical analysis was conducted to determine the frequency of each characteristic, which we de-

scribe here.

Frequency of use-case The frequency of each use-case among the set of ontology modules is shown
in Figure 1. The dominant use-case or purpose among the modules was U6 (collaborative efforts) which
accounted for over 70% of the use-cases. Modules of U6 in the sample set include the myExperiment
(Newman et al. (2009)) and Gist (McComb (2010)) ontologies. Indeed, ontology modularisation has been
motivated by the need for collaboration among multiple ontology developers in a number of publications
(Pathak et al. (2009); Cuenca Grau et al. (2007); Thakker et al. (2011)). One of the success factors of the
SNOMED ontology project (Lee et al. (2013)) is collaboration which is unsurprising because it is large,
containing over 300 000 entities and thus requires a team of experts for development.

Thereafter, U4 (processing) followed with 49.74% of the modules. There were many such modules in
this set because the Spatial (Dahdul et al. (2014)) and Common Anatomy Reference Ontology (CARO)
(Haendel et al. (2008)) ontologies were automatically split with a specialised ontology alignment parti-
tioning tool, TaxoPart. This resulted in a large number of modules containing, in most cases, fewer than 5
entities, that would allow for easy processing for use with automatic alignment tools.

Next, U7 (reuse), U1 (maintenance), and U3 (validation) use-cases account for 35.45%, 28.57%, and
28.57% of the modules, respectively. Modules motivated by all three of these use-cases include the data
mining OntoDM (Panov et al. (2008)), myExperiment (Newman et al. (2009)), and OntoSpace (Bateman
et al. (2003)) ontology modules whereby a large domain was divided according to subject domains.

U2 (reasoning) and U5 (comprehension) were the least popular use-cases, with 5.82% and 4.76% of
the set, respectively. For reasoning, there was some split domain DMOP ontology modules motivated for
divide-and-conquer reasoning as well as a less-expressive EL language module for DMOP (Keet et al.
(2014)). For comprehension, there were lighter versions of ontologies with less knowledge, such as Bioto-
plite based on Biotop (Schulz and Boeker (2013)), and GFO-Basic based on GFO (Herre (2010)).

From the set of modules, all the use-cases are exhibited for both the natural modules and the artificially
created modules for the study.
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Fig. 1. The frequency of each use-case for the set of 189 modules.

Frequency of type Figure 2 shows the frequency of each type for the set of 189 modules is skewed toward
module type T7 (ontology matching modules). From the 189 modules, almost half of them were ontol-
ogy matching modules; this is because the TaxoPart tool generated a large number of ontology matching
modules for the two source ontologies, CARO and Spatial ontologies, where each generated module con-
tained less than 5 entities in most cases. Second, there were a considerable number of T2 modules (subject
domain modules), 22.22% (n= 42 modules); these were freely available in ontology repositories.

Fig. 2. The frequency of each type for the set of 189 modules; exp. = expressiveness, abs. = abstraction.

For the remaining types of modules in the set, there were very few of each type, ranging from 6.88% to
0.53%. These module types were difficult to find in existing repositories, and in cases where publications
described such modules, alas the test files were not referenced, or not available at the given URLs. Many
of these modules were generated for this experiment.

The natural modules were T1 (Ontology design pattern), T2 (Subject domain), T3 (Isolation branch), T8
(Optimal reasoning), T11 (High level abstraction), T12 (Weighted abstraction), T13 (Expressiveness sub-



14 Z.C. Khan and C.M. Keet / Ontology modules

language), and T14 (Expressiveness feature). The module types that could not be found naturally, hence
generated for this study, were types T4 (Locality), T5 (Privacy), T6 (Domain coverage), T7 (Ontology
matching), T9 (Axiom abstraction), and T10 (Entity type abstraction).

Frequency of technique For the frequency of techniques among modules, as displayed in Figure 3, it is
apparent that MT1 (graph partitioning) is the most popular of the techniques, with over half, or 54% of
the modules. This is because graph partitioning techniques were used by the TaxoPart tool for the large
portion of Spatial and CARO ontology matching modules, discussed in the previous section. Furthermore,
graph partitioning approaches was applied in the SWOOP partitioning algorithm for splitting up the large
domain modules for the Amino Acid (Stevens and Lord (2012)), Edam bioinformatics (Ison et al. (2013)),
and MEO Metagenome and Microbes Environmental2 domain ontologies.

Fig. 3. The frequency of each technique for the set of 189 modules.

Next, MT7 (a priori) modularity techniques were used for 27% of the modules. These sets of modules
include the set of aforementioned Architectural, Gist, and OntoDM modules. MT8 (manual methods),
accounted for 15% of the modules, including, the Biotoplite ontology, and the Set ontology design pattern
(Ciccarese and Peroni (2014)). Lastly, MT4 (locality-based) techniques accounted for the smallest number
of modules, 4%. These included a module with the seed signature seizure_types, based on the Epilepsy
ontology (Sahoo et al. (2014)). Indeed, the locality-based modularity technique and principles have been
discussed in a number of existing works (Cuenca Grau et al. (2008); Del Vescovo (2011); Del Vescovo
et al. (2013); Sattler et al. (2009)) but evidence of such modules in applications is scarce.

The techniques that were used for the natural modules include MT8 manual, MT4 locality, and MT7 a
priori techniques. The techniques that were used for generating the artificial modules for the study were
MT1 graph partitioning, MT4 locality, and MT8 manual techniques.

Frequency of annotation feature For the frequency of annotation features among modules, as displayed
in Figure 4, annotation feature P5 (stand alone) and P6 (source ontology) is exhibited in most of the
modules (73.02%). Indeed a large number of modules in the set contain no links or imports to other
modules and are thus stand-alone, and most modules in the set are based on an original source ontology.

Annotation feature P2 (information removal) is present in 68.25% of the modules, meaning that some
detail is removed resulting in a smaller module with less knowledge. Annotation feature P7 (proper sub-
set) is also present in 68.25% of the modules. The remaining annotation features, P1, P3, P4, P5, P6,
and P10, are present in only a few of the modules ranging from 19.04% to 0.53%. P3.1 (breadth abstrac-
tion) is only exhibited in 1 module, in the FGA_taxonomy module, that was generated for this study for

2http://mdb.bio.titech.ac.jp/meo
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Fig. 4. The frequency of each annotation feature among modules.

creating a bare taxonomy from the original Fungal Gross Anatomy (FGA) ontology3. For the refinement
annotation feature, P4, its low presence (4.23%) in the set is no surprise because refinement is concerned
with adding more detail to a module, thus refining it, and going against the basic definition of modu-
larity in which a module is a smaller subset of a source ontology. Refinement existed in the DMOP-
WithoutInverseProperties module because some OWL language features of the ontology was removed to
improve the reasoning but new axioms were added to preserve the semantics of the ontology. Refinement
also occurred in most of the modules that were created by partitioning using SWOOP because new axioms
were introduced to enable linking among them.

There were 11 sets of inter-related modules. 72.73% of them, exhibit P9 (overlapping), whereby entities
in a set overlap exist in more than 1 module of a set. The overlapping annotation feature in a module
ensures the knowledge preservation within a set of modules, but poses other challenges such as module
maintenance and consistency. Annotation feature P12 (partitioning) was also a prevalent annotation feature
among sets of inter-related modules, consisting of 45.45%. Since most of the modules were generated
using graph partitioning techniques (recall the CARO and Spatial alignment modules), this is no surprise.
Annotation feature P14 (pre-assigned number of modules), was present in 45.45% of the modules in the
set, whereby the number of modules to be created for the system is known. Such modules include the
set of Gist modules, and the set of myExperiment modules. Annotation feature P10 (mutual exclusion)
was present in 27.27% of the module set, whereby entities were not shared across modules; the MEO,
CARO, and Spatial ontology module sets exhibited this annotation feature. Annotation feature P13 (inter-
module interaction) is exhibited in 18.18% of the ontology module sets; it is present in the set of Amino
acid modules (Stevens and Lord (2012)), and the set of EDAM bioinformatics modules, thanks to the
ε-connections links generated by the SWOOP partitioning tool to allow interaction.

Annotation feature P11 (union equivalence) was not present in any of the sets of modules as existing
tools fail to ensure such an annotation feature. When the module sets were merged to check for the union
equivalence, there were two reasons for the lack of union equivalence. Firstly, there were extra axioms
added to the modules using ε-connections for inter-module interaction; thus, for some sets, the union of

3http://www.yeastgenome.org/fungi/fungal_anatomy_ontology/
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the modules was larger than the original ontology. Secondly, SWOOP did not preserve the annotation
axioms of the original ontology; thus, for some sets, the union of the modules was smaller than the original
ontology.

For the natural modules, all the annotation features except P10 (Mutual exclusion), P11 (Union equiv-
alence), P12 (Inter-module interaction), and P13 (Pre-assigned number of modules) exist. For the artifi-
cially created modules, all the annotation features except P3.2 (depth abstraction), P8 (imports), and P11
(Union equivalence) exist.

5. Toward a framework for modularity

Given the insights obtained with the literature review in Section 3 to elucidate modularity dimensions
and annotation features, and with the assessment of actual usage of ontology modules and modularisation
by ontology developers (Section 4), we go one step further with this survey by elucidating observed
dependencies between the annotation features. This leads to a basic framework for modularity, of which
the high-level view is shown in Figure 5.

Fig. 5. A high-level view of the framework for modularity.

The dependencies are used to refine and answer the earlier proposed questions:

2. Given that we wish to create an ontology module with a certain purpose or use-case in mind, which
modularity type of module could this result in? (How do module types differ with respect to certain
use-cases?)

3. If we wish to create a module of a certain type, which is the best technique to use? (Which techniques
can we use to create modules of a certain type?)

4. By using a particular technique, which annotation features will the resultant module exhibit? (Which
techniques result in modules with certain annotation features?)

The dimensions of the framework are related as follows. A module’s use-case results in modules of a
certain type. A module of a certain type is created by a modularisation technique. Modularisation tech-
niques result in modules with certain annotation features.

Answers to these questions are mentioned in following diagrams. For instance, regarding question 2,
if we wish to create an ontology for the use-case of U5 comprehension, this could result in a T9-T12
abstraction type module (see Figure 6). Thereafter, for question 3, if the module type is either one of
T9-T12 abstraction, the technique for modularisation is MT8 (manual methods); see Figure 7. Lastly, for
question 4, when MT8 manual methods are used, the resulting modules exhibit the following annotation
features: P1 (seed signature), P2 (information removal), P3 (abstraction), P3.1 (breadth abstraction), P3.2
(depth abstraction), P4 (refinement), P5 (stand-alone), P6 (source ontology), P7 (proper subset), or P8
(imports) (see Figure 8).

We will illustrate the framework’s usage in the following example.

Example 1 Let us assume that we wish to reuse the Symptom ontology (Baclawski et al. (2004)), a
domain ontology about symptoms and signs of diseases.

Use-case Create a module about symptoms on the skin for reuse in a domain ontology about dermatology.
Type Check which type of modules result from reuse: all subtypes of functional modules. Since we need

only skin symptoms, we consider an isolation branch, or locality module. We wish to preserve all
entities with dependencies to the skin entities, so we create a locality module.
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Technique For the locality module, a locality-based technique is selected, using the OWL Module extrac-
tor tool to extract a module containing knowledge about the skin symptoms, with a seed signature
skin and integumentary tissue symptom.

Annotation feature Modules created with locality-based techniques could have these annotation features:
information removal, seed signature, source ontology, proper subset, stand-alone, and overlapping.
The generated module exhibits all these annotation features, except overlapping (since it is not a
set).

Three other use cases are described in (Khan and Keet (2015)), notably verifying the QUDT modules
(Hodgson and Keller (2011)), which were not part of the ‘test set’ of the previous section, a scenario
of reusing a small section of the FMA (Rosse and Mejino (2003)) for an ontology about infections, and
how OpenGalen (Rector et al. (2003)) may be modularised in the light of tractability of reasoning over it.
These use cases, like the one just described, all start with the use case, and the rest follows from that in
a step-wise fashion using the links between use case, type, technique, and annotation feature. With more
software support for the actual modularisation and easy software-based guidance alike a recommender
system based on module requirements, a more comprehensive evaluation can be undertaken.

6. Discussion

The modularity dimensions led to the creation of the ontology modularity framework which can be used
to answer the earlier proposed questions thanks to the dependency relations among modularity dimen-
sions. The framework can be used to solve the first issue concerning modularity: difficulty in modularity
technique selection. This is solved by referring to the framework to check which technique results from the
use-case of the module. The problem of insufficient modularity tools still exists, but the framework has re-
fined it. In particular, there is no tool to implement modularity maximisation, semantic-based abstraction,
and hierarchical clustering techniques.

For the tools that are available, they are not sufficient. They are hardly maintained and sometimes not
usable. We had hoped to generate modules from partitioning large ontologies. However, the SWOOP
partitioning tool could not be applied for large ontologies such as the FMA ontology (Rosse and Mejino
(2003)) as it could not open it, despite manually changing the java heap space parameters. We had also
hoped use PROMPT traversal views with Protégé (Noy and Musen (2009)) for query-based modularity,
but it malfunctioned and returned a null pointer exception. OWL module extractor was considered for
extracting DMOP modules. It extracts modules by using an input set of terms as a signature while ensuring
the logical completeness of the module. This means that for every axiom of the original ontology, the
meaning of the axiom is preserved in the module. Due to dependencies between entities in the DMOP
ontology and the logical completeness constraint, OWL module extractor generated too large a module to
use to improve reasoning.

There is a heavy reliance on using manual methods for module creation. For 9 out of the 14 module
types, manual methods were used for module creation. The implementation of tool-based methods as a
technique for some of the abstraction and expressiveness type modules is within reach, given the recent
advancements in ontology API libraries such as the OWL API (Horridge and Bechhofer (2011)).

The example of the application of the framework to the Symptom ontology module extraction demon-
strate that the framework is promising for guiding the modularisation process, as were other case studies
(Khan and Keet (2015)). The framework provided guidance in classifying the module according to its
type, which technique to use for modularity, and in addition, which annotation features the module should
exhibit. While the framework currently does not define module types in terms of a set of distinguishing
annotation properties, we hope that with more usage and testing with a larger set of real-world modules,
this will emerge.

The annotation features can be used for ontology annotation towards improved metadata. Metadata pro-
motes ontology discovery and reuse, and repositories such as BioPortal (Whetzel et al. (2011)), Ontohub



Z.C. Khan and C.M. Keet / Ontology modules 19

(Mossakowski et al. (2014)), and ROMULUS (Khan and Keet (2013)) use metadata models. There is
limited metadata concerning modular ontologies (Khan and Keet (2013)), which now can be refined and
improved further. If a module is not annotated with some annotation features, it will indeed be difficult to
figure out its annotation features, but, in theory at least, it may be possible to determine them when either
the source ontology or the other modules in the set are known.

Given the amount of publicly available modules that were found for the study (n=74), it appears that
many modules were created specifically for this study and would thus affect the results of the framework.
However, a large amount of the generated modules, 78.3%, (n=90) of the modules were created as M7:
Ontology matching modules, each with fewer than 5 entities, from just 2 source ontologies using the
TaxoPart tool. It appears that the nature of ontology matching modules is to have many tiny modules to
promote processing for the ontology matching tools. For the rest of the generated modules, there was
10.4%, (n=12) generated with SWOOP, 8.7%, (n=10) manually created, and 2.6%, (n=3) generated with
OWL Module extractor. They, in hindsight after modules analysis, seem to be creating modules more
in line with publicly available ontology modules. A further issue is the quality of the modules that do
exist. There is a dearth of guidance on evaluation metrics and characterisation of what constitutes a ‘good’
module, and whether such an analysis can be automated. Here, we have assumed that a module created
and used is what the developer wanted.

Considering the results of the literature survey, the experimental evaluation, and taking into account its
limitations, we now return to the answers for the questions posed in the introduction.

Q1: What are the use-cases, techniques, types, and annotation features that exist for modules?
The use-cases, techniques, types, and annotation features have been identified and categorised in
Section 3. In short, the use-cases identified are: maintenance, reasoning, validation, processing,
comprehension, collaborative efforts, and reuse. The techniques identified are: graph partitioning,
modularity maximisation, hierarchical clustering, locality-based modularity, query-based modular-
ity, semantic-based abstraction, a priori modularity, and manual modularity. The types are: ODPs,
subject domain-based, isolation branch, locality, privacy, domain coverage, ontology matching, op-
timal reasoning, axiom abstraction, entity type, high-level abstraction, weighted, expressiveness
sub-language, and expressiveness feature modules. Finally, the list of annotation features: seed sig-
nature, information removal, abstraction (breadth and depth), refinement, stand-alone, source ontol-
ogy, proper subset, imports, overlapping, mutual exclusion, union equivalence, partitioning, inter-
module interaction, and pre-assigned number of modules.

Q2: How do module types differ with respect to certain use-cases?
The manner in which a module use-case affects the the type of module that will be created is shown
by the dependencies between the use-cases and types in Figure 6.

Q3: Which techniques can we use to create modules of a certain type?
The manner in which a module type affects the technique that should be used is shown by the
dependencies between the type and technique in Figure 7.

Q4: Which techniques result in modules with certain annotation features?
The manner in which the module technique affects the annotation features that it exhibits is shown
by the dependencies between the module technique and annotation features in Figure 8.

Overall, this is, to the best of our knowledge, the, thus far, most comprehensive list of aspects of ontology
modules and a first insight into the dependencies between all those dimensions and criteria.

7. Conclusion

We have identified issues and questions concerning modularity. To address them, we identified and
populated dimensions concerning modularity which was used in an experimental evaluation with a set
of 189 ontology modules resulting in dependencies among the modularity dimensions. The classification
of the modules using the dimensions led to the creation of a framework for ontology modularity which
can be used to solve the developer’s issue concerning modularity technique selection, to refine the issue
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concerning insufficient tools for modularisation, and to systematically guide the entire modularisation
process.

Several open issues to address have been noted in Section 6, such as tooling support. We are currently
filling the evaluation metrics gap, and will look into surveying the developers of the modules used in the
test set.
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