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Abstract. To improve database system quality as well as runtime use of
conceptual models, many logic-based reconstructions of conceptual data
modelling languages have been proposed in a myriad of logics. They each
cover their features to a greater or lesser extent and are typically moti-
vated from a logic viewpoint. This raises questions such as what would be
an evidence-based common core and what is the optimal language profile
for a conceptual modelling language family. Based on a common meta-
model of UML Class Diagrams (v2.4.1), ER/EER, and ORM/2’s static
elements, a set of 101 conceptual models, and availing of computational
complexity insights from Description Logics, we specify these profiles.
There is no known DL language that matches exactly the features of
those profiles and the common core is small (in the tractable ALNI).
Although hardly any inconsistencies can be derived with the profiles, it
is promising for scalable runtime use of conceptual data models.

1 Introduction

Database and information system development and use can be aided by concep-
tual data models that have a logic-based underpinning, both at the analysis stage
and during runtime. Automated reasoning over isolated conceptual data models,
such as EER and UML Class Diagrams, to improve their quality and avoid bugs
aims to tackle this problem by various means. Notably, Description Logics (DLs)
is used (among many: [1, 5, 10]), but also other techniques, such as constraint
programming [8], OCL [27], CLIF [26], and Alloy [7]. There are also scenarios for
using the models at runtime, such as for scalable test data generation [28] and for
designing [6] and executing [13] queries with the conceptual model’s vocabulary
rather than quirky database table names and columns. Logic-based approxima-
tions of conceptual models are used also for querying databases during the stage
of query compilation [32].

All these efforts face the same issue: how to formalise the diagrams in which
logic? Even just zooming in on DLs shows that at times it is claimed that any
one of the languages in the DLR family is good for representing and unifying
the conceptual data modelling languages [12], the much leaner DL-Lite family



of languages [1], or using SROIQ (OWL 2 DL) instead [33]. While one could
choose one’s pet language, from a scientific viewpoint, it would be good to know
which DL (or other logic) is most appropriate, and why? Here, ‘most appropriate’
is cast in the light of the needs from the viewpoint of the modelling languages,
and what features those conceptual modellers bother to use in their models. This
raises the following questions:
1. What is the profile of a common core of language features among the main

conceptual data modelling languages (CDMLs)?
2. Is there an optimal language profile to capture each of UML, ER and EER,

and ORM and ORM2, based on a set of publicly available diagrams?
3. Are any language features missing from the many extant DL languages, given

a set of actual conceptual models, or too much in any case?
To establish a common core, harmonisation of terminology across CDMLs is
needed. This has been done with a unifying metamodel of the static, struc-
tural entities (including constraints) of UML v2.1.4 (Class Diagrams), ER, EER,
ORM, and ORM2 [16, 20]. The feature overlap that can be determined from the
metamodel is augmented by a classification of the entities in the models of a
dataset of 101 conceptual data models of the three language families. These
models were collected from projects, scientific papers, textbooks, and online
diagrams; the dataset and analysis are available online [15, 21]. Together with
the known computational complexity of various DL languages and formalisa-
tion trade-offs, a common core and profiles for each of the UML, ER/EER, and
ORM/ORM2 families have been specified. This ranges from ALNI of the core
to the “DLRifd without disjointness and completeness” for ORM2, with a good
approximation with CFDI∀−nc . Remarkably, these conceptual model profiles/DL
fragments are all tractable, and therewith are very suitable for scalable runtime
usage of conceptual models. The only possible complication are the (sparsely
occurring) advanced datatype constraints, which DLs do not support well, and
promising computational complexity results are yet to be obtained.

The remainder of the paper is structured as follows. We first introduce pre-
liminaries about the metamodel, the dataset, and fundamental formalisation
choices (Section 2). The core and CDML profiles are described and motivated in
Sections 3 and 4, respectively. Related works are analysed in each profile section.
We discuss in Section 5 and conclude in Section 6.

2 Preliminaries

To put the profiles in context, we first describe the input we used, being the uni-
fying metamodel, the dataset, motivation for the logic chosen, and some insights
from philosophy that clarifies CDML formalisations. We assume the reader is
familiar with the basic DL notation; see [4] for details.

2.1 Unifying metamodel and dataset

As the three CDML families under consideration—UML v2.1.4 Class Diagrams,
ER and EER (henceforth abbreviated as (E)ER), and ORM and ORM2 (hence-



forth abbreviated as ORM/2)—originate from different sub-fields in database
and information systems development, they each have their own vocabulary with
syntactic and semantic differences. This has been investigated and a terminology
comparison table and a unified metamodel are presented in [20], which there-
with facilitates cross-language comparisons as well as categorisation of entities
of models in those languages into the harmonised terminology. Further, it neatly
demonstrates the intersection of entities across the languages, which has been
extended in [16] also with constraints. Its top-type is Entity, which has four direct
subclasses: Relationship with 11 subclasses, Role, Entity type with 9 subclasses, and
Constraint with 49 subclasses. All entities also have constraints specified among
them on how they may be used, e.g., each relationship must have at least two
roles and a disjoint object type constraint is only declared on class subsumptions.

We have used this metamodel to classify the entities of the models in a set
of 101 UML, (E)ER, and ORM/2 models. Their average ‘model size’ (vocabu-
lary+subsumption) is about 50 entities/model, with at total of 8036 entities of
which 5191 (i.e., 64%) are entities that were classified in an entity (language fea-
ture) that appears in all three language families and 1108 (13.8%) in ones that
are unique to a language family (e.g., UML’s aggregation) [21]. While one would
prefer industry models, they are not publicly available. Only one paper presents
quantitative results on industry models, being a set of 168 ORM diagrams that
were made by a single engineer in the proprietary modelling tool from LogicBlox
[28]. Our model data for ORM is similar to theirs [21].

2.2 General logic-based reconstruction design choices

There are two important considerations: which logic family to use, and what to
do with the relationships.

Concerning the language(s) to create a logic-based reconstruction of the three
main CDML families under consideration, and to compare them, one could go for
some ‘arbitrary’ very expressive logic, such as FOL, or one of its serialisations
(e.g., Common Logic’s CLIF), or a priori a decidable one (DLs) with CDM
features (DLR family of DLs) or in line with the Semantic Web (OWL species).
There is no best fit with respect to various requirements, as the comparison in
Table 1 demonstrates, other than that DLs give us a view on decidability and
computational complexity of concept satisfiablity, which is therefore chosen.

A formalisation decision that applies to each CDML family concerns the
relationships, which is due to two distinct ontological commitments as to what
they are, being the so-called standard view and positionalism. The standard view
uses directionality—or: a natural language ‘reading’ direction—of the relation-
ship where the participating objects have a fixed order, as formalised with the
n-ary predicate (n ≥ 2), conflating the verbalisation with the name of the rela-
tionship. In the positionalist commitment, relationships have (are composed of)
argument places that are entities of themselves, which are filled by the partic-
ipating objects, and those positions have no order in the relationship; refer to
[18, 22] for theoretical details. The three selected CDML families are positional-
ist [20]—UML associations have association ends, ORM/2 fact types have roles,



Table 1. Selection of languages, requirements, and their evaluation for formalising
UML, (E)ER, and ORM/2; “–”: negative evaluation; “+”: positive. (OntoIOP is in the
process of standardisation with OMG, which aims to link logical theories represented
in the same or different languages.)

DLRifd OWL 2 DL FOL

– no implementation + several reasoners, relatively
scalable

– few reasoners, not really
scalable

– no interoperability + linking with ontologies doable – no interoperability with
existing infrastructures

– no integration + ‘integration’ with OntoIOP + ‘integration’ with On-
toIOP

+ formalisation exist – formalisation to complete ± formalisation exist

+ little feature mis-
match

– what to do with OWL 2 DL fea-
tures not in the CDM languages
and vv.

+ little feature mismatch

– modularity infrastruc-
ture

+ modularity infrastructure – modularity infrastruc-
ture

± EXPTIME-complete ± N2EXPTIME-complete – undecidable

(E)ER has components of a relationship—, but most DLs are standard view,
except for the DLR family. The DLR family has only one proof-of-concept im-
plementation [9], however, whereas the former do in so far as they are OWL 2
DL or proper fragments thereof. Therefore, we need to assess how to convert
positionalist relationships into standard view ones. There are several options,
each with its trade-offs that may affect the complexity of the language. We use
the diagrams in Fig. 1 as illustration to discuss them.

staffNo: String
name: String

Professor
code: String
name: String
year: Date

Course
0..*1..*

teachertaughtBy

Professor Courseteaching name

code

yearname

staffNo (0,n) (1,n)

Professor
(staffNo)

Course
(code)

UML diagram

ER diagram

ORM2 diagram

… teaches … / … taught by … 

Fig. 1. Sample UML, EER and ORM2 diagrams, representing that a course is taught
by at least one professor, and a professor may teach zero or more courses (for space
limitations, some value types in the ORM diagram are suppressed).

The UML standard v2.4.1 [25] and earlier versions require named association
ends (DL role components), like the teacher and taughtBy in Fig. 1, but not a
name of the association (DL role). Options to formalise it:
(1) make each association end a DL role, teacher and taughtBy, then choose:

(a) declare them inverse of each other with teacher ≡ taughtBy−,



(b) do not declare them inverses.
(2) choose to ‘bump up’ either teacher or taughtBy from association end to DL

role, and use the other through a direct inverse (ObjectInverseOf() in OWL
2) and omit the extension of the vocabulary with the other (e.g., teacher
and teacher− cf. adding also taughtBy).

The explicit inverses (Item 1a) is essentially a workaround for having made two
relationships where only one existed, trying to keep the two somehow related so
as to make up for the ‘splitting’. Arguably, declaring them inverses is not strictly
necessary, and omitting it could be considered comparable to omitting the iden-
tification constraint across the roles of a reification of an n-ary into n binaries
in OWL, which is generally tolerated. Either way, one can deterministically and
automatically generate a formalisation of the UML Class Diagram.

Item 2’s need for a choice among association ends can be done econom-
ical in the formalisation by taking the one that requires a cardinality con-
straint; in the example, the preference is for taughtBy, not teacher (the latter
has only a 0..∗), generating a domain and a range axiom for taughtBy, and a
Course v ∃taughtBy.Professor. This can be automated for cases like the ex-
ample, but not if Professor were to have also a 1..∗ (or more) multiplicity, which
then would make it an arbitrary choice again, and therewith, still not a single,
unique formalisation.

In favour of the latter main option, is that it has been shown that using
Item 2-inverses compared to Item 1a-inverses results in better automated rea-
soner performance, reducing time by more than a third [19]. Adding inverses to a
language may change its computational complexity, however, and a few popular
ones do not have inverses; e.g., ALCQ and ALCQI are both PSpace-complete
[29], and OWL 2 EL [24] does not have inverse object properties.

ER is also positionalist, but it has a different practical issue cf. UML. It
is customary to give the relationship a name that is ‘non-directional’, like the
teaching in Fig. 1 or its infinitive, rather than naming the relationship compo-
nents. Morphing it into the standard view then requires either:

(i) a renaming of the relationship to prevent an ambiguous DL role name in
the formalisation, or

(ii) an arbitrary domain and range assignment.

This user-mediated step favours using an ObjectInverseOf() rather than adding
a second new name if more than one cardinality constraint is not (0, n), but this
means also here it cannot be guaranteed it will result in exactly one formali-
sation of the diagram. (Some UML models have association names, not named
association ends, but the same problem does not exist, for an association name
has a filled arrow-tip for the reading direction.)

ORM’s fact type readings can be useful candidates for naming DL roles, but
only one is required in a diagram, not n for the n participating entities. The
software assigns auto-generated identifiers to the ORM roles and to the fact
types (relationships) by default, but a modeller also can name them, which is
then shown in the diagram. Due to this freedom in modelling, one single rule is



not possible, but a sequence of possible cases—and choices—is needed. Thus, it
cannot be guaranteed that there will be only one formalisation.

In sum, no matter which formalisation option is chosen regarding relation-
ships, the CDML families each require their own transformation algorithm, and
due to the options, it is possible to construct different profiles based on the
formalisation choices. We will return to this in Sections 4 and 5.

3 Core Profile

The Core Profile is composed by the elements of the metamodel that belong to
the three main families of languages: UML Class Diagrams, (E)ER and ORM/2,
and that are extensively used in the analysed models. Interoperability of model
semantics between models expressed in these different modelling languages can
be assured by restricting models to this set of entities. An important criterion
here was to find a ‘simple’ a language as possible whilst covering the main
common entities used in conceptual data models.

– Object Type C. This is represented by concept C in DL.
– Binary Relationship R between object types C and D. This is represented

by a DL role R together with the inclusion assertion > v ∀R.C u ∀R−.D
to type the relationship. This formalisation reflects the standard view of
relationships. We restrict it to binary relationships only, because general n-
ary relationships are rarely used in the whole set of analyzed models. (The
(E)ER and ORM/2 models exhibit a somewhat higher incidence of n-aries,
so they are included in the respective profiles; see below.)

– Attribute a of datatype T within an object type C, including the transfor-
mation of ORM’s Value type following the transformation rule given in [17].
This is represented in a DL by a role a between concepts C and T , together
with the inclusion axiom C v ∀a.T . Formalisation of CDM datatypes in DL
as concrete domains or datatypes [3, 23] generally translate a datatype into
a DL concept, and a datatype value as a DL nominal or instance, which lead
to high undecidability results. Although datatypes and concepts share some
properties (both can participate in inheritance and conjunction, both can be
attached with cardinality constraints), there are also important differences
between them: a datatype cannot participate in relationships, cannot be de-
fined by quantifiers or negation over other datatypes, while concepts cannot
be composed (which is not the same as union) and cannot be filtered with
facets. Identity of a nominal is inherently different as identity of a datatype
value, and this is reflected in counting quantifiers.

– Subsumption between two object types C and D. This is represented in DL
by the inclusion axiom C v D.

– Object Type cardinality m..n in relationship R with respect to object type.
This is represented by the inclusion axiom C v≥ nR′.>u ≤ mR′.> where
R′ is either R or R− depending on C being the first or the second object
type in R. R is a unique name in the conceptual model (otherwise qualified
cardinality is needed).



– Mandatory constraint. This is a special case of the previous one, with n = 1.
It is interpreted as C v ∃R′.>, with R′ as before.

– Single identification (in object types with respect to an attribute, and 1:1
mandatory). Let C be an object type identified by attribute a. Then this
is interpreted in a DL by the inclusion axioms C v ∃a.>u ≤ 1 a.> and
> v≤ 1 a−.C

In total, all the entities in the core profile sum up to 87.57% of the entities in all
the analysed models, covering 91.88% of UML models, 73.29% of ORM models,
and 94.64% of EE/EER models. The following entities, despite that they belong
to all three CDMLs, are not part of the core profile because of their very low
participation in the dataset: Role and Relationship Subsumption, Completeness
constraints, and Disjointness constraints. Note that this means that it is not
possible to express union of concepts in this Core Profile.

Reasoning over this Core Profile is quite simple. Since completeness and
disjointness constraints are not present, negation cannot be directly expressed.
It is possible to code negation only with cardinality constraints [4, chapter 2], but
then we need to reify each negated concept as a new idempotent role. Another
form of getting contradiction in this context is by setting several cardinality
constraints on the same relationship participation, which is unusual in modelling
languages. In any case, the main reasoning problems on the conceptual model
only are class subsumption and class equivalence. The description logic ALNI
(which is called PL1 in [14], and has polynomial subsumption) is expressive
enough to represent this profile, since we only need >, u, inverse roles and
cardinalities constraints. Its data complexity is unknown.

The core profile shows that a relatively small set of entities concentrates most
usage on conceptual models, and that these entities are consistent by assuming
just single pairs of maximum and minimum cardinality constraints.

4 Specific CDML profiles

We describe first the extension of the core so as to cover UML Class Diagrams
v2.4.1, and subsequently (E)ER and ORM/2.

4.1 UML Class Diagram Profile

The UML Class Diagram Profile is composed by the Core Profile plus the fol-
lowing entities:

– Shared, Composite Aggregation. No axiomatisation is added for these re-
lationships since the UML 2.4.1 standard [25] does not include additional
static constraints, so they are coded as simple binary relationships.

– Subsumption between two UML associations R and S. Since we only have
binary relationships, this can be represented in DL as role inclusion R v S.



– Attributive Property Cardinality and Attribute Value Constraint. Cardinal-
ities on attributes can be represented as cardinalities on relationships, but
in order to represent value constraints it is necessary to include in the for-
malisation some datatype facilities to define new datatypes. The attribute
is assigned a new datatype which is derived from the original one plus the
constraining facets (in terms of XML Schema) on its values.

In total, 99.44% of all the elements in the analysed UML models are covered
by this profile. To formalise this profile in DLs we need to add role hierarchies
and datatypes (concrete domains) to the ALNI logic for the Core Profile. This
yields the logic ALNHI(D) that, as far as we know, has not been studied yet.
If we assume unique names and some reasonable (at least from the conceptual
modelling point of view) restrictions on the interaction between role inclusions
and cardinality constraints, we can represent this profile in DL-LiteHNcore, which
is NLOGSPACE for subsumption and AC0 for data complexity [2].

Typical UML elements like qualified relationship, completeness constraints,
and disjointness constraints do not belong to this profile. On the one hand, it is
possible to say that the extra expressiveness that is not being used by modellers
limit the formal meaning of their models. But since two of these rarely used
features are necessary for proving the EXPTIME-hardness of reasoning on UML
class diagrams [5], then reasoning over such limited diagrams becomes much
more efficient.

4.2 (E)ER Profile

The (E)ER Profile is composed by the Core Profile plus the following entities:

– Composite and Multivalued attribute. Multivalued attributes can be repre-
sented with attribute cardinality constraints, and composite attributes with
the inclusion of the union datatype derivation operator.

– Weak Object Type, Weak Identification. Each object type (entity type) in
(E)ER is assumed by default to have at least one identification constraint. In
order to represent external identification, we can use functionality constraints
on roles as in DLRifd [11], or in CFD [31].

– Ternary relationships. This is described below and in Algorithm 1.
– Associative Object type. This is formalised by the reification of the associa-

tion as a new DL concept with two binary relationships.
– Multiattribute identification. This can be formalised as a new composite

attribute with single identification.

99.06% of all the elements in the set of (E)ER models belong to this profile.
The only DL language family with arbitrary n-aries and the advanced identi-

fication constraints is DLRifd , which happens to be positionalist. However, the
DL role components are not strictly needed for (E)ER, and one may wish to pur-
sue an n-ary DL without DL role components but with identification constraints,
like in the CFD family of languages. Therefore, we provide here Algorithm 1,



which summarises the procedure to go from (E)ER straight to the standard
view. The main steps involve binaries vs. higher arities, and recursive ones that
generally do have their named relationship components vs ‘plain’ binaries that
have only the relationship named.

Algorithm 1 (E)ER to standard view and common core

DR: domain of R; RR range of R; n set of R-components
if R is binary and DR 6= RR then

Rename R to two ‘directional’ readings, Re1 and Re2
Make Re1 and Re2 a DL role each
Type role with > v ∀Re1.DR u ∀Re−1 .RR

Declare inverses with Re1 ≡ Re−2
else

if R is binary and DR = RR then
for all i, with i ∈ n do

if i is named then
Rei ← i

else
Rei ← user-added label or auto generated label

end if
Make Rei a DL role

end for
Type one Rei, i.e., > v ∀Rei.DR u ∀Re−i .RR

Declare inverses among all Rei
end if

else
Reify R into R′ v >
for all i, 3 ≥ i ≥ n do

Rei ← user-added label or auto generated label
Make Rei a DL role,
Type Rei as > v ∀Rei.R

′ u ∀Re−i .RR, where RR is the player ((E)ER entity
type) in n
Add R′ v ∃Rei.> and R′ v≤ 1Rei.>

end for
Add external identifier > v≤ 1 (tiRei)

−.R′

end if

Using this translation, and since we do not have covering constraints in the
profile, we can represent the (E)ER Profile in the description logic DL-LiteNcore
[2] which has complexity NLOGSPACE for the satisfiability problem. This low
complexity is in no small part thanks to its unique name assumption, whereas
most logics operate under no unique name assumption. A similar result is found
in [1] for ERref , but it excludes composite attributes and weak object types.

4.3 ORM/2 Profile

For ORM, there is no good way to avoid the ORM roles (DL role components),
as they are used for several constraints that have to be included. They can be



transformed away (discussed below) such that an ORM/2 Profile is obtained by
joining the features of the Core Profile. The following entities from the unifying
metamodel are added, noting that the starred ones include the formalisation
after the transformation from positionalist to standard view:

– Unary role, which is formalised as a boolean attribute. ?
– Subsumption between roles; formalised by using DL role hierarchies. ?
– n-ary relationships (n ≥ 2). This is formalised similarly as for (E)ER (see

Algorithm 1).
– Subsumption between relationships. This is formalised with an inclusion as-

sertion between the reified concepts.
– Disjoint constraints between ORM roles R and S. This is formalised as two

inclusion assertion for roles: R v ¬S and S v ¬R. ?
– Nested object type. The nested object type is identified with the reified

concept of the relationship.
– Value constraints. We need to define a new datatype with the constraints,

as done in UML profile.
– Disjunctive mandatory constraint for object type C in roles Ri. This is for-

malised as the inclusion axiom C v ti ∃Ri. ?
– Internal Uniqueness constraint for roles Ri, 1 ≤ i ≤ n over relationship

objectified with object type R as described below. We need an identification
axiom (id C 1R1 . . . 1Rn) as in DLRifd .

– External Uniqueness constraint between roles Ri, 1 < i ≤ n not belonging to
the same relationship. Let C be the connected object type between all the
Ri, if it exists, or otherwise a new object type representing the reification
of a new n-ary relationship between the participating roles. Then we can
formalise the constraint with the identification axiom (id C 1R1 . . . 1Rn).

– External identification. This is the same as the previous one, with the ex-
ception that we are now sure such C exists (i.e., the mandatoryness is added
cf. simple uniqueness).

This profile contains 98.69% of all the elements in the analysed ORM/2 models.
This is still a high coverage considering the assortment of entities available in
the language. We decided not to include any ring constraint in this profile.
Although the irreflexivity constraint counts for almost half of all appearances of
ring constraints, its participation is still too low to be relevant.

In order to formalise this ORM/2 profile we need both n-aries and identifi-
cation constraints, as in the (E)ER Profile. It differs from the (E)ER profile, in
that ORM needs the argument positions for some constraints. We map this posi-
tionalist commitment into a standard view. This is motivated by the observation
that typically fact type readings are provided, not user-named ORM role names,
and only 9.5% of all ORM roles in the 33 ORM diagrams in our dataset had a
user-defined name, with a median of 0. We process the fact type (relationship
R) readings and ignore the role names as follows. DLR’s relationship is typed,
w.l.o.g. as binary and in DLR-notation, as R v [rc]C u [rd]D, with rc and rd
variables for the ORM role names and C and D the participating object types.
Let read1 and read2 be the fact type readings, like the teaches and taughtby in



Fig. 1, then use read1 to name DL role Re1 and read2 to name DL role Re2, and
type R as > v ∀Re1.Cu∀Re2.D. This turns, e.g., a disjoint constraints between
ORM roles rc of relationship R and sc of S into Re1 v ¬Se1 and Se1 v ¬Re1.

Concerning complexity of the ORM/2 Profile, this is not clear either. The
EXPTIME-complete DLRifd is the easiest fit, but contains more than is strictly
needed: neither concept disjointness and union are needed (but only among
roles), nor its fd for complex functional dependencies. The PTIME CFDI∀−nc
[30] may be a better candidate if we admit a similar translation as the one given
in Algorithm 1, but giving up arbitrary number restrictions and disjunctive
mandatory on ORM roles.

5 Discussion

As mentioned in Section 2.2, other design choices could have led to another
‘core profile’. This concerns two choices in particular: i) we used inverses and
therewith could avoid qualified cardinality restrictions (thanks to typing of the
relationship), and ii) transforming the positionalist into a standard view repre-
sentation. The advantages are that there are clear indications that the current
core profile is computationally better behaved and it can be used more easily
with most implemented languages. A disadvantage is that for the ORM/2 profile,
a positionalist DL language is needed and for (E)ER, it would make it easier for
it fits more nicely with a known language (DLRifd ). Transformations are very
well doable, as shown in Algorithm 1, but it adds an extra step in any imple-
mentation. The alternative is to create a ‘positionalist core’, but this is likely to
be computationally less well-behaved, and does not enjoy wide software support
when it comes to formal characterisations of the CDMLs.

5.1 On missing and ‘useless’ features

As will be clear, there is no ‘ideal’ DL language for the CDMLs, not one that
captures exactly and only the needed features, that is positionalist to avoid forc-
ing the artificial standard view encoding, and has a usable implementation. The
major mismatches regarding implementations have to do with n-aries, DL role
components, advanced identifiers, and attributes with their data types, dimen-
sions and value constraints. Data types are being investigated for DLs (e.g., [3,
23]), and the results obtained here may serve as a motivational use case. Further,
dimensional value types are yet to be addressed; e.g., a ternary ‘attribute’, say,
height, consisting of the class it is measured for, the data type, and its measure-
ment unit. Others could be a ‘nice to have’, notably arbitrary n-aries and, for
ease of transformation algorithms from CDMLs to a logic, more implementations
of positionalism (a DL with DL role components).

Viewed from the perspective as to what can safely be omitted from a logic
for CDMLs, then, notably, nominals—computationally costly—are certainly not
needed (recall also Section 3), and disjointness and completeness are used re-
markably few times. Whether the latter is due to a real perceived irrelevance



for conceptual data modelling or merely due to unfamiliarity by modellers is a
separate line of investigation. The few disjointness and completeness constraints
encountered, however, were predominantly in models taken from courses, text-
books, and from the UML standard. Also, there are multiple relationships in
the models where properties, such as transitivity and reflexivity, certainly could
apply, and if one can declare them (as in ORM) it is done, but it is unclear
why it has been done so few times (23 in total in the 33 ORM/2 models). A
conjecture is that this is due to their limited implementation support.

5.2 Answering the research questions

The results obtained in the previous sections provide the answers to the three
questions posed in the introduction. Concerning question 1, the profile of a com-
mon core of language features among the main CDMLs has been specified in
Section 3, covering UML Class diagrams v2.4.1, ER and EER, and ORM and
ORM2. Although an important criterion was to keep the logic as ‘simple’ as
possible, it is, perhaps, remarkable that a language with such low expressiveness
as ALNI sufficed when taking into account the intersection of the languages
and the usage of the CDML features in actual conceptual data models. ALNI
in in PTIME, and possibly even better computationally well-behaved with the
unique name assumption, as no unique name assumption together with number
restrictions increases complexity, as shown with the DL-Lite family in [2]. Either
way, this makes it certainly promising for scalable implementations for interop-
erability or conceptual model-mediated analysis and management of large scale
data systems, including Ontology-Based Data Access, and to augment query
compilation with the ‘background knowledge’ of the conceptual model, meeting
requirements such as aimed for in [6, 13, 17, 28, 32].

Regarding question 2 on CDML profiles: based on the profiles defined that
took input from the set of 101 conceptual models, there is no optimal language
with known complexity that matches exactly a CDML profile to capture each of
the UML, (E)ER, and ORM/2 languages (recall Section 4), where each profile
had its own version of a mismatch. Of the three profiles, the one for UML is
closest to the core profile, mainly thanks to the removal of relational proper-
ties of the aggregation associations from the UML standard (transitivity and
asymmetry were asserted in earlier versions of the standard), and that qualified
associations were hardly used.

This brings us to the answer to Question 3 on missing features and too many.
A shortcoming of the available DLs is the limited support for constraints on
datatypes. Conversely, nominals, negation and union, and most relational prop-
erties do not seem to be needed. Using nominals to encode values is suboptimal
(see Section 3), whose in-depth argument is omitted due to space limitations.

6 Conclusions

Conceptual data model language-specific profiles for their logic-based reconstruc-
tion have been defined, as well as a common core. No CDM profile matches fully



with an existing DL language. The common core capturing most entities occur-
ring in the dataset of models amounts to ALNI which is PTIME. This means
that efficient translations between models in these languages can be done pre-
serving most of their elements and meaning. Even for the most expressive CDM
language ORM2, the vast majority of entities can be captured with a DLRifd
without disjointness and union or CFDI∀−nc with arbitrary number restrictions.
No features are really missing from any DL, other than advanced datatype con-
straints, but rather tend to have too many constructs. Given the absence of nega-
tion, there is little TBox reasoning of interest, other than cardinality constraints.
The lean common core and profiles pave the way for a modelling-informed sin-
gle language for model interoperability, and for their runtime usage in scalable
databases and information systems.
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