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Abstract

Representing data that changes over time in concep-
tual data models is required by various application
domains, and requires a language that is expressive
enough to fully capture the operational semantics of
the time-varying information. Temporal modelling
languages typically focus on representing and rea-
soning over temporal classes and relationships, but
have scant support for temporal attributes, if at all.
This prevents one to fully utilise a temporal concep-
tual data model, which, however, is needed to model
not only evolving objects (e.g., an employee’s role),
but also its attributes, such as changes in salary and
bonus payouts. To characterise temporal attributes
precisely, we use the DLRUS Description Logic lan-
guage to provide its model-theoretic semantics, there-
with essentially completing the temporal ER language
ERV T . The new notion of status attribute is intro-
duced to capture the possible changes, which results
in several logical implications they entail, including
their interaction with temporal classes to ensure cor-
rect behaviour in subsumption hierarchies, paving the
way to verify automatically whether a temporal con-
ceptual data model is consistent.
Keywords: temporal conceptual data models, tempo-
ral attributes, dynamic data

1 Introduction

The representation of temporal information has re-
ceived attention from diverse fields. In conceptual
modelling, this may be informal or ‘hidden’, such
as UML’s “freeze” attribute (Object Management
Group, 2012) and informal business rules about time
in ORM2 (Halpin, 2008), restricted to those that fit
in a non-temporal UML (McBrien, 2008), annotation-
based ad hoc formal constraints without a specifica-
tion of the model (Khatri et al., 2014), a survey of
earlier temporal ER models (Gregersen and Jensen,
1999), and spatio-temporal aspects (e.g., (Parent
et al., 2006)). From a viewpoint of logic-based tem-
poral knowledge representation and reasoning at the
concept-level for UML and ER or EER, there are,
a.o., (Artale et al., 2002; Lutz et al., 2008), who
use temporal logic to describe object behaviour in an
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object oriented specification language, Troll (Hart-
mann et al., 1994), and extensions to the case with
the presence of data (Artale et al., 2013; Baader et al.,
2013). The linking of a temporal logic to a conceptual
data modelling language is an ongoing effort, with no-
table achievements with the Description Logic (DL)
language DLRUS and the temporally extended ER,
called ERV T , Entity Relationship model with Valid
Time, (Artale et al., 2002, 2008, 2007; Keet and Ar-
tale, 2010), which covers mainly the temporal be-
haviour of classes and relationship. However, for a
temporal conceptual data model to be fully useful in
information system development that has to deal with
changing information, a proper treatment of temporal
attributes is also necessary. Such information has to
be captured also at the conceptual model layer during
design instead of being ignored or only encoded in an
implementation. For instance, if an employee is sus-
pended for fraud investigation, the employee should
(at least temporarily) not receive a salary either; once
the boolean attribute for having received a transplant
is set from no to yes, it must not be changed anymore;
and modelling of attribute-based access rights that
may change by time of day and changing role of the
user. While one can bury such data characteristics for
a universe of discourse in the application, the under-
standability and maintainability, and, hence, software
quality, will be better if such information is properly
encoded in the conceptual data model first.

This paper introduces temporal attributes for tem-
poral conceptual data models. Attributes are a type
of binary relations, restricted to linking objects to
data values. A “temporary attribute” was formalised
in (Artale et al., 2007) to the extent to say what it
is, but it had no effect on modelling in ERV T , due
to the absence of operational semantics and its in-
teraction with temporal classes. More recent results
have been obtained for temporal ontology-based data
access (Artale et al., 2013), for which attributes (or:
OWL data properties) are important, but it omits
temporal attributes, and recent comprehensive logic-
based treatments of attributes considered only the
atemporal case (Artale et al., 2012; Savkovic and Cal-
vanese, 2012). To the best of our knowledge, no logic-
based characterisation, including constraints on the
subsumption hierarchy in the temporal setting, ex-
ists for temporal attributes (note: a temporalisation
of relationships does exist (Artale et al., 2008; Keet
and Artale, 2010)). This hampers its potential usabil-
ity for temporal knowledge representation, reasoning,
and information system development. DLRUS was
extended recently to represent temporal attributes
(Ongoma et al., 2014), but this has not been in-
tegrated with the modelling of temporal attributes



especially in the conceptual data modelling setting
and the consequences for class subsumption are un-
explored.

In order to fill this gap in understanding and repre-
sentation of temporal attributes, we approach it from
a modelling expressiveness viewpoint, instead of the
a priori limitation to a computationally well-behaved
logic (of low expressiveness) or no logic. We propose
a comprehensive treatment of temporal attributes us-
ing the extended DLRUS as a foundation to formalise
precisely the notion of temporal attributes and their
interaction with temporal classes in subsumption hi-
erarchies. The comprehensive formalisation has not
only the assertion of temporary attribute and ‘freez-
ing’ of an attribute, but, more importantly, a full set
of constraints including status attributes, their logi-
cal implications, and the axioms and proofs for the
subsumption cases. These results can be easily trans-
ferred to temporal relations to show the interaction
between status relations and status classes. With this
formal characterization for temporal attributes, the
ERV T language—which has its logic reconstruction
for ER’s (temporal) classes, (temporal) relationships,
and plain attributes also with DLRUS—now has be-
come a fully temporalised extended ER language.

While DLRUS is undecidable, it is also sufficiently
expressive to enable one to obtain insight into the lan-
guage features required for a full temporalization of
attributes. The natural next step is the investigation
on scalability trade-offs, which then can be informed
also by modelling trade-offs in addition to computa-
tional trade-offs and finally thick graphical interface.

The remainder of the paper is structured as fol-
lows. We provide examples of application areas of
temporal attributes in Section 2 and the extended
DLRUS in Section 3. Status attributes, their seman-
tics, and logical implications are described in Sec-
tion 4. We discuss in Section 5 and conclude in Sec-
tion 6.

2 Application areas

Time is ingrained in every aspect of our lives, and,
hence, ought to be dealt with in information systems
that have to handle such data. However, traditional
databases do not have the ability to show this change,
as, most of the time, old attributes and attribute val-
ues are replaced by newer ones which eliminates his-
tory in the database. Many applications do need to
store the history of events by capturing how to repre-
sent this changing state, and there are business rules
on what can change, and how, which a database or
software application is supposed to adhere to. Ex-
amples of such applications that require temporal at-
tributes include:

- Administration: a business rule that states that
when an employee is on leave or facing fraud
charges, some of his attributes (e.g., Salary) are
suspended, or a CEO evolves to a non-executive
board member and then no longer earns a salary,
but will receive a yearly bonus, i.e., one attribute
(Salary), becomes ‘disabled’ and another (‘sched-
uled’) attribute (hasBonus) becomes active upon
migration of the object.

- Medical Information Systems with patient
records to monitor the attributes that change
with time, for example a HIV positive patient
evolves to an AIDS patient after the attribute
value of CD4 count drops below 180, or once the
value for the boolean attribute transplant-received
is set to ‘yes’, it cannot be changed anymore (it
is so-called ‘frozen’). A related application area
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Figure 1: An ERV T diagram showing temporal at-
tributes and the interaction between status classes
(rectangles) and status attributes (ovals); a “T” after
the name denotes it is a temporal class or attribute.

is in pharmacovigilance (Lora et al., 2012), which
aims to monitor adverse effects of drugs on pa-
tients.

- Security systems that monitor and authorise
users as they log into systems. Temporal at-
tributes here are typically time-bound passwords
the users are given, and disallowing to reuse
the previous passwords. For large databases
that use millions of users, security admin-
istrators can use attribute-based data access
(ABAC) (Priebe et al., 2007) to authenticate its
users. More recently, it also covers specifica-
tion of different attribute-based access privileges
across time in mobile applications.

- Financial institutions need to record the history
for future use, e.g. before giving a credit facil-
ity. Temporal attributes are used to determine
the amount a client can receive and the time in
which it can be repaid. Banks need to record
the history of customer transactions ((deposit)
and (withdrawal)), thus the need for temporal at-
tributes.

We give a practical example in administration, for ex-
ample in offices, schools, and companies, to manage
information about employees, with a temporally ex-
tended ER diagram in Fig. 1, where a “T” after the
name denotes temporal, as in ERV T (Artale et al.,
2007).

Example 1. An employee in a company may
have the following attributes: name, Access, Salary,
EdLevel, and the identifier as EmpNumber. Employees
may be promoted (‘dynamically extend’) to manager.
A manager manages one of several departments, for
example, a HR manager manages the HR department,
IT manager manages the IT department and the Fi-
nance manager manages the finance department, and
each departments has a different Information system,
e.g. HRISaccess is the attribute assigned to the HR
manager to access that system. Different managers
also belong to different levels of management, from
low level, mid-level to upper management. If an IT
manager takes up the position of Finance manager,
the ITISaccess attribute must change (‘dynamically
evolve’) to FinanceISaccess. ♦

Practical examples with instances will be illus-
trated at the end of Section 4.2.



3 Preliminaries: The Temporal DL DLRUS
with Attributes

To provide a precise semantics of temporal attributes,
we use a logic reconstruction for temporal con-
ceptual data models in the temporal Description
Logic DLRUS extended with the operators Since
and Until, which has been used for that purpose al-
ready (Artale et al., 2002, 2008, 2007; Keet and Ar-
tale, 2010), including how the temporally extended
ER, ERV T , maps into DLRUS (Artale and Keet,
2008). DLRUS (Artale et al., 2002) is an expres-
sive fragment of FOL that combines the proposi-
tional temporal logic with Since and Until operators
with the (non-temporal) description logic DLR (Cal-
vanese and De Giacomo, 2003) so that relationships,
classes, and attributes can be temporalised. Details of
DLRUS can be found in (Artale et al., 2002, 2007; On-
goma et al., 2014); as usual, we have classes C (start-
ing from atomic ones CN), n-ary relationships R (DL
roles, with n ≥ 2, RN), binary attributes A between
a class and a datatype, DL role components (U , of
which F denotes a role component in an attribute,
F ⊆ U, and F = {From, To}). The selection expres-
sion Ui/n : C denotes an n-ary relation whose i-th ar-
gument (i ≤ n) is of type C and [Uj ]R denotes the j-
th argument (j ≤ n)—i.e., DL role component, which
can be seen intuitively as a projection over the role—
in role R (subscripts i and j are omitted if it is clear
from the context). For F , which concerns the DL role
components in an attribute, we thus have F : C, with
F denoting the role component From that relates to
class C, and [F ]A denoting the role component F of
A, where if To is used, it is the DL role component
that associates with the datatype of the attribute,
and if From is used, it is the DL role component that
associates with the class of the attribute. Thus, for
each A ∈ A and denoting with Literal the top for
data types (i.e., for the domain of values ∆ID; see be-
low), the DLRUS axiom A v From : >uTo : Literal
holds. Finally, Until and Since together with ⊥ and
> suffice to define the temporal operators: ♦+ (some
time in the future) as ♦+C ≡ > U C, ⊕ (at the next
moment) as ⊕C ≡ ⊥U C, and likewise for their past
counterparts; �+ (always in the future) and �− (al-
ways in the past) are the duals of ♦+ and ♦−; the
operators ♦∗(at some moment) and its dual �∗(at all
moments) can be defined as ♦∗C ≡ C t ♦+C t ♦−C
and �∗C ≡ Cu�+Cu�−C, respectively. The syntax
and semantics of the extended DLRUS are included
in Fig. 2. The model-theoretic semantics of DLRUS
assumes a flow of time T = 〈Tp, <〉,where Tp is a set
of countably infinite time points also referred to as
chronons and < is isomorphic to the usual ordering
on the integers. The language of DLRUS is inter-
preted in temporal models over T , which are triples
in the form I = 〈T ,∆I , ·I(t)〉, where ∆I is the union
of two non empty disjoint sets, the domain of objects,
∆IO, and domain of values, ∆ID, and ·I(t) the inter-
pretation function such that, for every t ∈ T (t ∈ T
will be used as a shortcut for t ∈ Tp), every class C,

and every n-ary relation R, we have CI(t) ⊆ ∆IO and

RI(t) ⊆ (∆IO)n; also, (u, v) = {w ∈ T | u < w < v}.
A knowledge base is a finite set Σ of DLRUS ax-

ioms of the form C1 v C2 and R1 v R2, and with R1
and R2 being relations of the same arity. An inter-
pretation I satisfies C1 v C2 (R1 v R2) if and only
if the interpretation of C1 (R1) is included in the in-

terpretation of C2 (R2) at all time, i.e. C
I(t)
1 ⊆ C

I(t)
2

(R
I(t)
1 ⊆ R

I(t)
2 ), for all t ∈ T .
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Figure 3: An EER diagram showing the interac-
tion between status classes (rectangles) and status
attributes (ovals).

4 Temporalizing Attributes

To effectively manage and present temporalised at-
tributes, it is important to state a time-scale and
give the constraints to manage the evolution of data.
Timestamping (Artale et al., 2007) ensures that data
can be distinguished, while evolution constraints put
restriction on the movement of data. These are rules
that govern the valid state of the database or logic-
based temporal conceptual data model. To represent
temporal attributes to the level of detail required and
to have them interact with temporalised classes, we
extend the notion of status classes and status rela-
tions to status attributes to specify the operational
semantics of temporal attributes.

Status models the normal behaviour in the real
world: items either exist or not, also known as lifecy-
cle (Artale et al., 2007; Hartmann et al., 1994), and
models the evolution of data. Status classes were in-
troduced in (Artale et al., 2007) and status relations
in (Artale et al., 2008), but it fell short of status at-
tributes to constrain the permissible states of affairs.
Status attributes also can have four different statuses:
they either exist and are scheduled, active, or sus-
pended, or they are disabled. We describe each one
of them informally and illustrate that they are rel-
evant for conceptual modelling (and knowledge rep-
resentation), and subsequently present the formali-
sation. Fig. 3 shows an integrated EER diagram of
status classes extended with status attributes.

– Scheduled: an attribute is scheduled if it belongs
to an active class or a scheduled class. For in-
stance, a bonus payout to an employee occurs
only after passing the probationary period suc-
cessfully.

– Active: the status of an attribute is active if it
fully instantiates the type-level attribute, thus,
these are the normal attributes and they only
belong to an active class and can be changed or
deleted at any time in the class; e.g., an access
level to certain information, date of birth, an em-
ployee’s salary attribute.

– Suspended: These are attributes that belong to
either a suspended class or an active class. They
are temporarily inactive and will become active
after a given period of time or until the sus-
pended class becomes active. For instance, an
employee is suspended due to an ongoing fraud
case, so its attributes are suspended, too.



C → > | ⊥ | CN | ¬C | C1 u C2 | ∃≶k[Uj ]R | ∃[F]A |
♦+C | ♦−C | �+C | �−C | ⊕C | 	C | C1 U C2 | C1 S C2

R→ >n | RN | ¬R | R1 u R2 | Ui/n : C |
♦+R | ♦−R | �+R | �−R | ⊕R | 	R | R1 U R2 | R1 S R2

A→ >A | AN | ¬A | F : C |
♦+A | ♦−A | �+A | �−A | ⊕A | 	A | A1 U A2 | A1 S A2

>I(t) = ∆IO
⊥I(t) = ∅

CNI(t) ⊆ >I(t)
(¬C)I(t) = >I(t) \ CI(t)

(C1 u C2)I(t) = C
I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj ]R)I(t) = { o ∈ >I(t) | ]{〈o1, . . . , on〉 ∈ RI(t) | oj = o} ≶ k}
(∃ [F]AI(t) = { o ∈ >I(t) | ]{〈o,d〉 ∈ AI(t) ≥ 1}}

(C1 U C2)I(t) = { o ∈ >I(t) | ∃v > t.(o ∈ C
I(v)
2 ∧ ∀w ∈ (t, v).o ∈ C

I(w)
1 )}

(C1 S C2)I(t) = { o ∈ >I(t) | ∃v < t.(o ∈ C
I(v)
2 ∧ ∀w ∈ (v, t).o ∈ C

I(w)
1 )}

(>n)I(t) = (∆IO)n

RNI(t) ⊆ (>n)I(t)

(¬R)I(t) = (>n)I(t) \ RI(t)

(R1 u R2)I(t) = R
I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈o1, . . . , on〉 ∈ (>n)I(t) | oi ∈ CI(t)}
(R1 U R2)I(t) = { 〈o1, . . . , on〉 ∈ (>n)I(t) | ∃v > t.(〈o1, . . . , on〉 ∈ R

I(v)
2 ∧ ∀w ∈ (t, v). 〈o1, . . . , on〉 ∈ R

I(w)
1 )}

(R1 S R2)I(t) = { 〈o1, . . . , on〉 ∈ (>n)I(t) | ∃v < t.(〈o1, . . . , on〉 ∈ R
I(v)
2 ∧ ∀w ∈ (v, t). 〈o1, . . . , on〉 ∈ R

I(w)
1 )}

(♦+R)I(t) = {〈o1, . . . , on〉 ∈ (>n)I(t) | ∃v > t. 〈o1, . . . , on〉 ∈ RI(v)}
(⊕R)I(t) = {〈o1, . . . , on〉 ∈ (>n)I(t) | 〈o1, . . . , on〉 ∈ RI(t+1)}

(♦−R)I(t) = {〈o1, . . . , on〉 ∈ (>n)I(t) | ∃v < t. 〈o1, . . . , on〉 ∈ RI(v)}
(	R)I(t) = {〈o1, . . . , on〉 ∈ (>n)I(t) | 〈o1, . . . , on〉 ∈ RI(t−1)

(>A)I(t) = ∆IO ×∆ID
ANI(t) ⊆ (>A)I(t)

(F : C)I(t) = { 〈o,d〉 ∈ (>A)I(t) | o ∈ CI(t)}
(A1 U A2)I(t) = { 〈o,d〉 ∈ (>A)I(t) | ∃v > t.(〈o,d〉 ∈ A

I(v)
2 ∧∀w ∈ (t,v).〈o,d〉 ∈ A

I(w)
1 )}

(A1 S A2)I(t) = { 〈o,d〉 ∈ (>A)I(t) | ∃v < t.(〈o,d〉 ∈ A
I(v)
2 ∧∀w ∈ (v, t).〈o,d〉 ∈ A

I(w)
1 )}

(♦+A)
I(t)

= {〈o,d〉 ∈ (>A)I(t) | ∃v > t.〈o,d〉 ∈ AI(v)}
(⊕A)I(t) = {〈o,d〉 ∈ (>A)I(t) | 〈o,d〉 ∈ AI(t+1)}

(♦−A)
I(t)

= {〈o,d〉 ∈ (>A)I(t) | ∃v < t.〈o,d〉 ∈ AI(v)}
(	A)I(t) = {〈o,d〉 ∈ (>A)I(t) | 〈o,d〉 ∈ AI(t−1)}

Figure 2: Syntax and semantics of DLRUS , modified to include attributes (in bold face); o denote objects, d
domain values, v, w, t ∈ T , F is a role component in an attribute.

– Disabled: These belong to either a disabled class
or an active class. When the membership of the
class has expired, its attributes are also disabled,
and it can also be true for an active class that
no longer requires the use of that attribute. For
instance, an employee dies, so her profile is dis-
abled, or a software company decides to change
the application from for-payment to free and
open source, so that the price attribute becomes
disabled.

Concerning the formalization, the subsumption
hierarchy and disjointness depicted in Fig. 3 are
straightforward and omitted from the presentation
here for brevity. We give both the model-theoretic
semantics and the DLRUS axiom; a is an element in
A, which can also be written as 〈o, d〉, where o repre-
sents an object in the class and d is the value domain
of the attribute. We assume that the name of the
attribute denotes the set of active attributes.

(Aexists1) An Attribute either Exists or is Dis-
abled.
a ∈ Exists-AI(t) → ∀t′>t.a ∈ (Exists-AI(t′) ∨
Disabled-AI(t′))
Exists-A v �+(Exists-A t Disabled-A)

(Aexists2) Exist attribute involves scheduled, sus-
pended or active attributes.
a ∈ Exists-AI(t) → ∀t′>t.a ∈
(Scheduled-AI(t′) ∨AI(t′) ∨ Suspended-AI(t′))
Exists-A v �+(Scheduled-A t A t Suspended-A)

(Aexists3) Existing attributes belong to an existing
class.

〈o, d〉 ∈ Exists-AI(t) → o ∈ Exists-CI(t)

Exists-A v From : Exists-C

(Aact1) Active attributes belong to an active class
only.
〈o, d〉 ∈ AI(t) → o ∈ CI(t)

A v From : C

(Asch1) Scheduled attribute will eventually become
active.
a ∈ Scheduled-AI(t) → ∃t′>t.a ∈ AI(t′)

Scheduled-A v ♦+A

(Asch2) Scheduled attribute can never follow active.

a ∈ AI(t) → ∀t′>t.a /∈ Scheduled-AI(t′)

A v �+¬Scheduled-A

(Asusp1) Suspended attribute was active in the past.

a ∈ Suspended-AI(t) → ∃t′<t.a ∈ AI(t′)

Suspended-A v ♦−A

(Asusp2) Suspended attributes belong to active or
suspended class.
〈o, d〉 ∈ Suspended-AI(t) → o ∈
(Suspended-CI(t) ∨ CI(t))
Suspended-A v From : (Suspended-C t C)

(Adisab1) Disabled persists.

a ∈ Disabled-AI(t) → ∀t′>t.a ∈ Disabled-AI(t′)

Disabled-A v �+Disabled-A

(Adisab2) Disabled attribute was active in the past.

a ∈ Disabled-AI(t) → ∃t′<t.a ∈ AI(t′)

Disabled-A v ♦−A



(Adisab3) Disabled attributes belong to a disabled or
active class.
〈o, d〉 ∈ Disabled-AI(t) → o ∈ (Disabled-CI(t) ∨
CI(t))
Disabled-A v From : (Disabled-C t C)

(Adisab5) Disabled will never become active again.

a ∈ Disabled-AI(t) → ∀t′ > t.a /∈ AI(t′)

Disabled-A v �+¬A
(Csusp3) Freezing attributes of suspended classes /

Suspended class has suspended attributes only.
o ∈ Suspended-CI(t) → 〈o, d〉 ∈
Suspended-AI(t)

Suspended-C v ∀[From]Suspended-A

(CactiveA) An active class contains exists or dis-
abled attributes.
o ∈ CI(t) → 〈o, d〉 ∈ (Exists-AI(t) ∨
Disabled-AI(t))
C v ∀[From](Exists-A t Disabled-A)

Henceforth, we denote with Σsa the above set of
DLRUS axioms that formalise status attributes, and
the two for status classes.

Some of these axioms are quite similar to those for
relationships that were introduced in (Artale et al.,
2008), others are specific to attributes. Similar ones
are: Aact1 corresponds to (Artale et al., 2008)’s
Act, Adisab1 to Rdisab1, Adisab2 to Rdisab2,
Asusp1 to Rsusp1, Asusp2 to Rsusp2, Asch1 to
Rsch1, and Asch2 to Rsch2. The new ones specific
to attributes are: Aexists1, Aexists2, Aexists3,
Adisab3, and CactiveA.

Csusp3 requires some explanation, for we use this
one instead of (Artale et al., 2007)’s freez axiom.
Artale et al.’s freez intends to capture “Freezing
attributes of suspended classes” so as “to make un-
changeable the attributes of suspended objects, the
unchangeability starting at the time instant the ob-
ject becomes suspended” (Artale et al., 2007) whose
idea originated from (Etzion et al., 1998), and has the
following semantics: o ∈ Suspended-CI(t) ∧ 〈o, a〉 ∈
AI(t) → 〈o, a〉 ∈ AI (t+1) and in DLRUS notation
Suspended-C v ¬∃[From](Au	A) (Artale et al., 2007).
However, suspended requires that it was active in the
past, which applies to classes, relationships, and at-
tributes (Asusp1), and it is not just that the attribute
may not be ‘not-active’, but, precisely, it has to be
suspended, too. Hence, Csusp3 captures the ‘freez-
ing’ more precisely.

Observe that, as with act for relations (Active
relations involve only active classes) (Artale et al.,
2008), Aact1 cannot be proved and therefore had
to be added to the set of basic constraints: while
by Aexists3, we know an attribute has to be either
scheduled, active, or suspended, and one can exclude
suspended thanks to Csusp3, one cannot contradict
a ∈ Scheduled-AI(t) due to Asch3, as scheduled
attributes may belong to either scheduled or active
classes.

4.1 Status Attributes: Logical Implications

Logical implications are important to be able to de-
rive new constraints. From the DLRUS axioms above
(Σsa), we can obtain the following logical implications
for status attributes.

Proposition 1. (Status Attributes:
Logical Implications) Given the
set of axioms Σsa and an attribute,
A v From : C u To : D, with D a data type, the
following logical implications hold:

(Csch) Scheduled class has scheduled attributes only.
Σsa |= Scheduled-C v ∀[From]Scheduled-A

(Asch3) Scheduled attribute belongs to an active or
scheduled class.
Σsa |= Scheduled-A v From : (Scheduled-C t C)

(Cdisab4) Disabled class has only disabled at-
tributes.
Σsa |= Disabled-C v ∀[From]Disabled-A

(Asch4) Scheduled attribute persists until active.
Σsa |= Scheduled-A v Scheduled-A U A

(Asch5) Scheduled attribute cannot evolve directly to
disabled.
Σsa |= Scheduled-A v ⊕¬Disabled-A

(Aact2) Active attribute will possibly evolve into
suspended or disabled.
Σsa |= A v �+(A t Suspended-A t Disabled-A)

(Asusp3) Suspended attributes can never be followed
by scheduled or disabled.
Σsa |= Suspended-A v ⊕(¬Scheduled-At
¬Disabled-A)

(Adisab4) Disabled attribute cannot belong to a
scheduled or suspended class.
Σsa |= Disabled-A v
¬(From : Scheduled-C t From : Suspended-C)

Proof. See Appendix A.

The analogues of the logical implications for at-
tributes to those for temporal relations are that
Asch4 corresponds to Rsch3 and Asch5 to Rsch4
in (Artale et al., 2008). The new one specific to
attributes are: Csch, Cdisab4, Asch3, Aact2,
Asusp3, and Adisab4.

4.2 Inheritance and Temporal Attributes

Class hierarchies are relevant for conceptual mod-
elling, and even more so for ontologies. Five subsump-
tion (isa) implications for temporalised class sub-
sumption with respect to status classes were proven
in (Artale et al., 2007), with A and B being classes:

(isa1) Objects active in B must be active in A, i.e.
B v A,

(isa2) Objects suspended in B must be either sus-
pended or active in A, i.e.,
Suspended-B v (Suspended-A t A),

(isa3) Objects disabled in B must be either disabled,
suspended or active in A, i.e.,
Disabled-B v (Disabled-A t A t Suspended-A),

(isa4) Objects scheduled in B must exist in A, i.e.,
Scheduled-B v Exists-A,

(isa5) Objects disabled in A, and active in B in the
past, must be disabled in B, i.e.,
Disabled-A u ♦−B v Disabled-B.

For attributes, one cannot simply replace ‘object’
with ‘attribute of object’, however, because class A
may not have that attribute. Moreover, the represen-
tation of attribute hierarchies is uncommon, but at-
tribute inheritance is important, and therewith the in-
teraction between the permissible statuses in the tem-
poral class subsumption with the temporal attributes.
Such consequences for subsumption and their interac-
tion with classes in a hierarchy have not been speci-
fied for status relations yet either (Artale et al., 2008;
Keet and Artale, 2010).



Table 1: Illustrations of logical implication of status attributes’ interaction with status classes in the subsump-
tion hierarchy, as they may be declared for some conceptual model for an application in an organisation.
Logical Implication Examples of the intended behaviour it can enforce

(isa1A) Attributes of objects disabled in C, and
active in D in the past, are disabled in D

When the production of a product is discontinued, the whole object and
its attributes are disabled therefore the same attributes in the subclasses
are also disabled

(isa2A) Attributes active in D must be either ac-
tive in C or is not present in C

These are normal (temporal) attributes; e.g., salary, price of a product

(isa3A) Attributes suspended in D must be either
suspended in C, or is not present in C

Going on leave, the manager’s access rights can be suspended, and also as
employee the access rights are suspended (but not the object itself)

(isa4A) Attributes of objects suspended in D must
be either suspended in C, or is not present in C

A manager is target of a fraud case, so the object and its attributes are
suspended, and as a result its attributes are suspended also as an employee

(isa5A) Attributes disabled in D must be either
disabled in C, or is not present in C

When a company that produces software applications makes one of its
software applications open source, the price attribute is disabled therefore
the attribute price in the superclass is also disabled

(isa6A) Attributes of objects disabled in D must
be either disabled in C or is not present in C

A manager leaves the company, hence, becomes a member of the Disabled-
Manager class, and so will its attributes be disabled. Then also the ob-
jects’ attributes for it’s superclass Employee must be disabled.

(isa7A) Attributes scheduled in D must be either
scheduled in C or is not present in C

Attributes can be scheduled when an employee expects to get his usual
salary after probation period: attribute prob salary is used during proba-
tion and after probation, the scheduled salary becomes active.

(isa8A) Attributes of objects scheduled in D must
be either scheduled in C, or is not present in C

A manager is scheduled to start work in a few weeks, the attribute salary
will be scheduled in the employee class.

To prove the logical implications for subsumption
with respect to temporal attributes, we first recall the
very notion of class (entity type) subsumption. Let
C and D be classes, and D v C, which means that all
instances of D are also instances of C. This is achieved
in a logical theory iff D has either one of the following:
1) the same attributes as C and possibly more 2) more
relationships than C, 3) more constrained attributes
or relationships than C, 4) If the attribute is active
in C, then it must be active in D, otherwise it would
deduce C v D, and trivially, if D does not have some
attribute A or relationship R, then neither does C. We
call this the subsumption premise.

We obtain 8 logical implications and their proofs,
which are included in Proposition 2. General, high-
level examples of real world scenarios that illustrate
the intuition of the logical implications are shown in
Table 1, and more detailed examples are described af-
terward. Attributes of a class—e.g., where a ∈ AI(t)

and a denotes the tuple 〈o, d〉 ∈ AI(t) and o ∈ CI(t)—

are written in shorthand notation, like A
I(t)
C or in

DL notation AC, and to prevent wieldy subscripts,
we use the following abbreviations for classes: Active
C, Scheduled Sch-C, Suspended Sus-C, and Disabled

Dis-C; so, e.g., a ∈ Disabled-A
I(t)
Dis-C represents a dis-

abled attribute in a disabled class C.

Proposition 2. (Status Attributes and Status
Classes: isa Logical Implications) Given the
set of axioms Σsa, attribute A and D v C, where,
D v [From]AD and, if present, C v [From]AC, at time
t, o is the object and a = 〈o, d〉 is the attribute of the
object in the class, the following logical implications
hold:

(isa1A) Attributes of objects disabled in C, and
active in D in the past, are disabled in D.
Disabled-ADis-C u ♦−AD v Disabled-ADis-D t
¬Top-ATop-C

(isa2A) Attributes active in D must be either active
in C or is not present in C.
AD v AC t ¬Top-ATop-C

(isa3A) Attributes suspended in D must be ei-
ther suspended in C, or is not present in C.
Suspended-AD v Suspended-AC t ¬Top-ATop-C

(isa4A) Attributes of objects suspended in D must
be either suspended in C, or is not present in C.
Top-ASus-D v Suspended-ASus-C t ¬Top-ATop-C

(isa5A) Attributes disabled in D must be either dis-
abled in C, or is not present in C.
Disabled-AD v Disabled-AC t ¬Top-ATop-C

(isa6A) Attributes of objects disabled in D must
be either disabled in C or is not present in C.
Top-ADis-D v Disabled-ADis-C t ¬Top-ATop-C

(isa7A) Attributes scheduled in D must be ei-
ther scheduled in C or is not present in C.
Scheduled-AD v Scheduled-AC t ¬Top-ATop-C

(isa8A) Attributes of objects scheduled in D must
be either scheduled in C, or is not present in C.
Top-ASch-D v Scheduled-ASch-C t ¬Top-ATop-C

Proof. See Appendix B.

We illustrate the effects of isa3A and isa7A and
isa8A with two practical examples of a conceptual
model and a corresponding database with some sam-
ple data. Note that the status classes and status at-
tributes are orthogonal to the standard active classes
and attributes, and are therefore not drawn in the
diagram.

Example 2. Consider the ER diagram fragment on
the left in Fig. 4 and a possible database state on
the right, where t0 and t1 are represented in a sepa-
rate column in the desired granularity (such as day,
month, or hour—not shown). The basic DLRUS ax-
ioms are shown on the left-hand side of the figure,
where Name is rigid, so that the key is not allowed
to change (the “�∗Name”-part) and bonuses may
change (the “♦+Bonus”). Employee Joanne Soap
is a manager earning 6 000 000 a year, and as a
manager—unlike regular employees—she also receives
a bonus, which is set to 50 000, and she is in the table
of ‘active’ managers. At some point in time, she, the
object as instance of the Manager entity type, is sus-
pended due to a fraud investigation and moves to the
table for suspended managers, mgrSuspended, (step
1). The suspension of the object induces suspension
of its attributes (because of Csusp3), hence Joanne’s
Name, Salary, and Bonus attributes are suspended,
and thus cannot be modified (step 2). By the ob-
ject’s suspension as member of the Manager entity



Manager T

Employee Salary T

Bonus T

Name emp(JoanneSoap,6000000) at t0

emp(JoanneSoap,6000000) at t1

mgr(JoanneSoap,6000000,50000) at t0

mgrSuspended(JoanneSoap,6000000,50000) at t11. JS gets 
suspended due 
to fraud allegations 2. JS's attributes get suspended [by CSUSP3]

3. JS as employee 
is suspended or 
active [by ISA2]4. JS's emp attributes 

suspended [by ISA3A]

Figure 4: Depiction of a scenario on attribute suspension; left: section of an extended ERV T diagram and the
basic DLRUS axioms; right: possible database states with illustration of a change. There are several options
to adorn diagrams with temporal information and to encode the statuses and time in the database and one is
arbitrarily chosen here.

type, the object as an instance of its super entity
type, Employee, can either remain active or be also
suspended, thanks to isa2 (step 3). Further, because
of the suspension of attributes in the the subtype, the
attributes that are also present in the supertype, be-
ing Name and Salary, will also be suspended, thanks
to isa3A (step 4). (note: strictly speaking, steps 3
and 4 follow concurrently from step 2).

It may look ‘odd’ that Joanne remains a member of
the active emp, whereas as manager she is suspended.
The reason for this is, that it cannot be proven that
if an attribute is suspended, then therefore the object
must be suspended, and likewise for relationships. It
depends on the business rule what should happen. ♦

Example 3 illustrates the effects of isa7A and
isa8A with a practical example, also intended only
to illustrate in an intuitive manner the effect of the
axioms.

Example 3. Using the motivating example in Sec-
tion 2, a manager, Joe Soap, is recruited and is
scheduled to start work sometime in the future, say
t1, so all his attributes are scheduled at t0 (where
t0 < t1), thanks to Csch, until he becomes active
in the database, i.e., starts working for the company.
The employee details can be added into the database
at time t0, with the manager details recorded as
scheduled, being an employee ID JS123 and salary
of 6 000 000 (step 1 in Fig. 5). Thanks to isa8A,
both the object and the attribute Salary in the em-
ployee class (database table in the implementation)
will automatically become scheduled (step 2) until
the object, an instance of Manager, becomes active
(step 3), ensuring that the new employee will not be
paid before commencing to work. Put differently: it
would result in an inconsistency to have Salary active
in the employee class and scheduled in the manager
class, thanks to isa7A. At time t1, when the object is
activated (step 3), isa1 forces the employee instance
to become active as well (step 4), and by isa2A, we
see that the attribute Salary is active in the employee
class, after the manager class is active (step 5). ♦

These examples show the need for temporal at-
tributes and their status in databases, which now can
be modelled at the conceptual modelling layer. Also,
additional business rules can be specified and manu-
ally added, yet adhering to the logical implications.

This completes the logical implications with re-
spect to subsumption in the context of status classes
and status attributes. The interaction between sub-
sumption for status classes that participate in status
relations is expected to yield similar implications.

5 Discussion

The main contribution—and focus—of this pa-
per is the comprehensive temporalisation of

attributes with a rigorously defined seman-
tics, which has shown to be feasible within the
well-researched framework with DLRUS and
ERV T . The full treatment of temporal attributes
was the remaining gap towards obtaining a logic-
based fully temporalised modelling language, which
is an essential component for designing temporal
databases and knowledge bases. An advantage of
using DLRUS over another logic, is that the temporal
attributes integrate well with the temporal entity
types and relationships already characterised with
DLRUS axioms, compared to having to start from
scratch with a new logic. The major benefit will be
reaped for the modelling of temporal information in
such a way that it is consistent, therewith preventing
bugs in the information system, thanks to the logic-
based reconstruction of the temporally extended
conceptual data modelling language in DLRUS , the
status classes, relationships, and attributes, and their
logical implications.

With the new insights presented in this paper, one
can successfully build a complete temporal ER model
that would be translated from the temporally ex-
tended EER to DLRUS and therewith enable the op-
tion to check the consistency of a conceptual schema,
hence, improve or guarantee its quality. For instance,
it will disallow the undesirable state where all employ-
ees and their attributes are suspended but managers
still receive a salary, or forcing a customer through
a payment procedure for a payment of 0.0 Rand to
download free software. Similarly for Example 3,
where the employee is recorded in the database but
has not yet commenced working: our temporal model
can spot inconsistencies by having the scheduled class
which would then cause some attributes in the em-
ployee class to be scheduled until the manager is ac-
tive at work. Finally, recall Example 1 from Section 2
regarding a manager’s access rights: now if a system
administrator mistakenly gave a manager a higher ac-
cess than he is allowed to have, our results can spot
the consistency and recommend the correct solutions
to be addressed. For instance, suppose an HRMan-
ager’s HRISaccess is not active but his manager access
profile is active, we see by (isa2A), it would automat-
ically show this inconsistency and alert the system
administrator.

The results presented here are the final theoreti-
cal step toward creation of a tool that would check
automatically the consistency of temporal data mod-
els and thus would be able to spot such issues. Al-
though the notation chosen here is in EER, the results
can be transferred easily to other conceptual models,
such as UML Class Diagrams and ORM2, thanks to
the unifying metamodel from (Keet and Fillottrani,
2013) and similar formal and conceptual unification
attempts.
DLRUS is undecidable, however, with the known

consequences for a potential automated reasoner for



Manager T

Employee Salary TempID empScheduled(JS123,6000000) at t0

emp(JS123,6000000) at t1

mgrScheduled(JS123,6000000) at t0

mgr(JS123,6000000) at t1

1. JS accepted job offer but has 
not started yet [by CSCH]

3. JS starts working

2. JS as employee 
is scheduled 
[by ISA8A]

5. JS's emp attributes 
also active [by ISA2A]

4. JS as employee 
becomes active 
[by ISA1]

Figure 5: Center: Partial extended ERV T diagram for a scenario for scheduled attributes in a scheduled
subclass and Manager and Salary declared temporal; Left: a DLRUS notation; Right: some sample data
informally demonstrating the effect of the axioms.

it. While time-consuming computation is an accept-
able trade-off for a modeller focussing on expressive-
ness, a slightly less expressive temporal language and
better performance with the reasoner may be pre-
ferred by others. At the other end of this spec-
trum are results obtained with TDL-Lite and tem-
poral Ontology-Based Data Access (OBDA) (Artale
et al., 2013). It would be useful to conduct a detailed
investigation as to what would be the best trade-off
between a subset of temporal constructs that is most
desired from a viewpoint of conceptual data modelling
and the complexity ‘costs’ and what can be imple-
mented in temporal OBDA. Once a temporal concep-
tual data modelling tool is available, one can obtain
quantitative results as to how often a construct is ac-
tually used, which further can inform the notion of
‘preferred constructs’ and the further development of
decidable temporal logics.

Finally, DLRUS being in the DL family of lan-
guages, the advances described here can be relatively
easily transferred to an ontology engineering setting.

6 Conclusion

A refined description logic language DLRUS was
used to properly include temporal constructors for
attributes in its syntax and semantics. These con-
structors enabled the specification of a logic-based se-
mantics for fully temporalised attributes, aided by the
notion of status common in temporal conceptual data
modelling. In addition, the logical implications for
subsumption have been proven, in particular the in-
teraction between status classes and status attributes
in a subsumption hierarchy, thereby providing rules
for effectively modelling and managing temporal data.

With these results obtained, the next natural step
is to extend the ERV T graphical component of the
temporal conceptual data modelling language and de-
velop a modelling tool to make the features easily
available to modellers. A further step is to check au-
tomatically the properties of the temporal schema for
satisfiability and subsumption.
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Appendix A

Proof of Proposition 1: ‘Status Attributes: Logical
Implications’.

Proof. The proof for Asch4 is similar to the proof of
sch3 in (Artale et al., 2007), and Asch5 is similar to
sch4, so we prove here only the other ones.

(Csch). Let o ∈ Scheduled-CI(t),
then if 〈o, d〉 ∈ AI(t), then o ∈ CI(t) by
Aact1, which contradicts the premise; if
〈o, d〉 ∈ Suspended-AI(t), the o ∈ CI(t) or
o ∈ Suspended-CI(t) (by Asusp2), which also
contradicts; if 〈o, d〉 ∈ Disabled-AI(t), it con-
tradicts likewise due to Adisab3; therefore
〈o, d〉 ∈ Scheduled-AI(t) (which does not con-
tradict Asch3).

(Asch3). Let 〈o, d〉 ∈ Scheduled-AI(t), then
o /∈ Disabled-CI(t) because by Aexists3, o ∈
Exists-CI(t), and Exists-CI(t) is disjoint from
Disabled-CI(t); if o ∈ Suspended-CI(t) it contradicts
Csusp3, for it would force 〈o, d〉 ∈ Suspended-AI(t),
which contradicts the premise; hence 〈o, d〉 ∈
Scheduled-AI(t) → o ∈ (Scheduled-CI(t) ∨ CI(t)).

(Cdisab4). Let o ∈ Disabled-CI(t), then if
〈o, d〉 ∈ AI(t), o’s status contradicts because of
Aact1; if 〈o, d〉 ∈ Suspended-AI(t), it leads to
a contradiction because of Asusp2; if 〈o, d〉 ∈
Scheduled-AI(t), likewise a contradiction because of
Asch3; therefore 〈o, d〉 ∈ Disabled-AI(t) (which does
not contradict Adisab3).

(Asusp3). Let a ∈ Suspended-AI(t), then by

Asusp1, ∃t′<t.a ∈ AI(t′), so a was active in the
past; by Asch1 ∃t′>t′′.a ∈ AI (t′′) (with a ∈
Scheduled-AI (t′′)), but there cannot be a t′′′ such
that t′′<t′′′<t′ due to Asch4, i.e., a must first be-
come active before any possible migration to an-
other status, and by Adisab1 disabled persists, so
a /∈ Disabled-AI (t+1).

(Aact2). An attribute remaining active, becom-
ing suspended, or disabled is the same as saying
it cannot become scheduled anymore. By Asch2,
if a ∈ AI(t) then ∀t′>t.a /∈ Scheduled-AI(t′),
therefore ∀t′>t.a ∈ (AI(t′) ∨ Suspended-AI(t′) ∨
Disabled-AI(t′)).

(Adisab4). Let 〈o, d〉 ∈ Disabled-AI(t), then
if o ∈ Scheduled-CI(t), it contradicts Adisab3 as
it says that either o ∈ Disabled-CI(t) or o ∈ CI(t),
thus also if o ∈ Suspended-CI(t), it contradicts
Adisab3 too, therefore, a /∈ Scheduled-AI(t) and
a /∈ Suspended-AI(t).

Appendix B

Proof of Proposition 2: ‘Status Attributes and Status
Classes: isa Logical Implications’.

Proof. (isa1A) Attributes of objects disabled in C,
and active in D in the past, are disabled in D.

Given: o ∈ Disabled-CI(t0), by Cdisab4, we

have a ∈ Disabled-A
I(t0)
Dis-C and a ∈ A

I(t1)
D , where

t1 < t0. By Subsumption premise, A is also
an attribute of D and by Aact1, for any a ∈
AI(t1), then o ∈ DI(t1), i.e. ♦−D. By isa5,
Disabled-C u ♦−D v Disabled-D; thus, because o ∈
Disabled-CI(t0), then also o ∈ Disabled-DI(t0).

Therefore by Cdisab4, a ∈ Disabled-A
I(t0)
Dis-D.

(isa2A) Attributes active in D must be either ac-
tive in C or is not present in C.

Given: o ∈ DI(t), and its active attribute, a ∈
A
I(t)
D .
part 1. From isa1, we get D v C, and thus

by Cactive, C v From : (Exists-A t Disabled-A),
and thus (Scheduled-A t A t Suspended-A) or
Disabled-A (Aexists2).

part 2. We prove by contradiction that if a ∈
A
I(t)
D , we have a ∈ A

I(t)
C . If attributes in C are:

• a ∈ Disabled-A
I(t)
C , it contradicts: by Adisab5,

a /∈ AI(t′) where t′ > t, together with isa1A, if

a ∈ Disabled-A
I(t)
C , forces a ∈ Disabled-A

I(t)
D ,

therefore a /∈ Disabled-A
I(t)
D .

• a ∈ Scheduled-A
I(t)
C , it contradicts: by Asch1,

a ∈ AI(t′), where t′ > t, but we have a ∈ A
I(t)
D ,

which means that it must have been active in
C, but by Asch2, a /∈ AI(t′), therefore a /∈
Scheduled-A

I(t)
C .

• a ∈ Suspended-A
I(t)
C , contradicts: a ∈ A

I(t′)
C ,

where t′ > t, due to Asusp1, and the subsump-
tion premise would deduce AC v AD.

• a ∈ A
I(t)
C does not contradict, by Aact1,

A v From : C, since D v C by isa1.

Therefore, if a ∈ A
I(t)
D , then a ∈ A

I(t)
C , or it is not

present in C.



(isa3A) Attributes suspended in D must be either
suspended in C, or is not present in C.

Given: o ∈ DI(t) with an attribute that is sus-
pended: a ∈ Suspended-A

I(t)
D , then, if the at-

tribute is present also in C, it is existing or dis-
abled (refer to isa2A, part 1). We prove that if

a ∈ Suspended-A
I(t)
D , we have a ∈ Suspended-A

I(t)
C .

Suppose the attribute in C is:

• a ∈ Disabled-A
I(t)
C . By Adisab1, a ∈

Disabled-AI(t′), where t′ > t, then from isa1A, if

a ∈ Disabled-A
I(t)
C , it forces a ∈ Disabled-A

I(t)
D ,

but by premise, a ∈ Suspended-A
I(t)
D , therefore

a /∈ Disabled-A
I(t)
C .

• a ∈ Scheduled-A
I(t)
C . By Asch1, a ∈ AI(t′),

where t′ > t, but we have a ∈ A
I(t)
D , which

means that it must have been active in C.
But by Asch2, a /∈ AI(t′) therefore a /∈
Scheduled-A

I(t)
C .

• a ∈ AI(t). By Asusp1, ∃t′ < t.a ∈ AI(t′), but by

subsumption premise if a ∈ Suspended-A
I(t)
D and

a ∈ A
I(t)
C , then C would have more constrained

attributes than D, forcing the deduction C v D,
which contradicts the premise. Therefore a /∈
AI(t).

• a ∈ Suspended-AI(t) does not lead to a
contradiction: by Asusp2, Suspended-A v
From : (Suspended-C t C).

Therefore, if a ∈ Suspended-A
I(t)
D , it must be a ∈

Suspended-A
I(t)
C or it does not exist in C, or: if the

attribute exists in C, then Sus-AD v Sus-AC.
(isa4A) Attributes of objects suspended in D must

be either suspended in C, or is not present in C.
Given: o ∈ Suspended-DI(t), then from Csusp3

we get a ∈ Suspended-A
I(t)
Susp-D and from isa2, o ∈

Suspended-CI(t) or o ∈ CI(t). We prove by con-

tradiction that if a ∈ Suspended-A
I(t)
Susp-D, we have

a ∈ Suspended-A
I(t)
Susp-C .

• Csusp3, i.e., Suspended-C v From : Suspended-A,

forces a ∈ Suspended-A
I(t)
Susp-C .

• If o ∈ CI(t), then by isa3A, a ∈ Suspended-AI(t)

if the attribute is exists in D.
Therefore attributes in C can only be suspended else
it is not present in C.

(isa5A) Attributes disabled in D must be either
disabled in C, or is not present in C.

Given: o ∈ DI(t) and its disabled attribute a ∈
Disabled-A

I(t)
D , then C has existing or disabled at-

tributes (refer to isa2A, part 1). We prove by con-

tradiction that if a ∈ Disabled-A
I(t)
D , then a ∈

Disabled-A
I(t)
C . Now suppose the attribute in C is:

• a ∈ Scheduled-AI(t). Asch1 implies a ∈ AI(t′),

where t < t′. But if a ∈ Disabled-A
I(t)
D then

a ∈ A
I(t0)
D with t0 < t (from Adisab2), i.e.,

it must have been active before, and therefore

a ∈ A
I(t0)
C (thanks to isa2A), but by Asch2 this

cannot happen, therefore a /∈ Scheduled-A
I(t)
C .

• a ∈ Suspended-AI(t) or a ∈ AI(t), contradicts
because of the subsumption premise (if D does
not have some attribute A or relationship R, then
neither does C).

Therefore, if a ∈ Disabled-A
I(t)
D , then a ∈

Disabled-A
I(t)
C , or it is not present in C.

(isa6A) Attributes of objects disabled in D must
be either disabled in C or is not present in C.

Given: o ∈ Disabled-DI(t) and its attributes are
disabled by Cdisab4, a ∈ Disabled-A

I(t)
Dis-D, From

isa3, we have (Disabled-C t C t Suspended-C). We

prove by contradiction that if a ∈ Disabled-A
I(t)
Dis-D,

the attribute can only be a ∈ Disabled-A
I(t)
Dis-C

• We start with o ∈ Suspended-CI(t), by Csusp3,
it must be that a ∈ Suspended-AI(t), but this

contradicts isa5A, because if a ∈ Disabled-A
I(t)
D ,

then a ∈ Disabled-A
I(t)
C .

• Next, o ∈ CI(t). By Cactive, C v From :
(Exists-A t Disabled-A), then if a ∈
Disabled-A

I(t)
Dis-D, the attribute in D can

only be disabled by isa5A, because if Exists-A
then it violates the subsumption premise.
• Last, o ∈ Disabled-CI(t). Cdisab4 forces a ∈
Disabled-AI(t), which holds.

Therefore if a ∈ Disabled-A
I(t)
Dis-D, then it must be

a ∈ Disabled-A
I(t)
Dis-C else, it does not exist.

(isa7A) Attributes scheduled in D must be either
scheduled in C or is not present in C.

Given: o ∈ DI(t) and its attribute scheduled, a ∈
Scheduled-A

I(t)
D . C has existing or disabled at-

tributes (see isa2A, part 1). We prove by contra-
diction that if a ∈ Scheduled-AD, we must have
a ∈ Scheduled-AC . Now suppose:

• a ∈ A
I(t)
C , then, by the subsumption premise,

a ∈ A
I(t)
D , but by Asch2, a ∈ AI(t) → ∀t′>t.a /∈

Scheduled-AI(t), hence, a contradiction;

• a ∈ Suspended-A
I(t)
C , then because of Asusp1,

∃t′<t.a ∈ AI(t′), hence, the same argument as in
the previous item applies.

• a ∈ Disabled-A
I(t)
C , which means there must be

a time t′ < t, s.t. a ∈ AI(t′) (from Adisab2)
that contradicts (see first item);

Therefore, either a ∈ Scheduled-A
I(t)
C or the at-

tribute is not present in C.
(isa8A) Attributes of objects scheduled in D must

be either scheduled in C, or is not present in C.
Given: o ∈ Scheduled-DI(t), therefore also a ∈

Scheduled-A
I(t)
Sched-D (by Csch) and

Scheduled-D v Exists-C, i.e., Scheduled-D v
(Scheduled-C t C t Suspended-C) from isa4. We

prove that if a ∈ Scheduled-A
I(t)
Sched-D, then

a ∈ Scheduled-A
I(t)
Sched-C must hold.

• If o ∈ Suspended-CI(t), then by Csusp3,
a ∈ Suspended-AI(t), which contradicts: by
Asusp1, ∃t′<t.a ∈ AI(t′) but by Asch2, a ∈
AI(t) → ∀t′>t.a /∈ Scheduled-AI(t).

• If o ∈ CI(t), then by isa7A, a ∈ Scheduled-AI(t)

if the attribute exists in C.
• If o ∈ Scheduled-CI(t), by Csch
Scheduled-C v [From]Scheduled-A, we have
a ∈ Scheduled-AI(t).

Therefore if a ∈ Scheduled-A
I(t)
Sched-D, then a ∈

Scheduled-A
I(t)
Sched-C else it is not present in C.


