
A Parallel Multidimensional

Weighted Histogram Analysis Method

Andrew Potgieter

Minor Dissertation presented in partial fulfilment

of the requirements for the degree of

Masters of Information Technology

Supervisor: Michelle Kuttel

Department of Computer Science

University of Cape Town

October 11, 2014

Abstract

The Weighted Histogram Analysis Method (WHAM) is a technique used to

calculate free energy from molecular simulation data. WHAM recombines biased

distributions of samples from multiple Umbrella Sampling simulations to yield

an estimate of the global unbiased distribution. The WHAM algorithm iterates

two coupled, non-linear, equations, until convergence at an acceptable level of

accuracy. The equations have quadratic time complexity for a single reaction

coordinate. However, this increases exponentially with the number of reaction

coordinates under investigation, which makes multidimensional WHAM a compu-

tationally expensive procedure. There is potential to use general purpose graphics

processing units (GPGPU) to accelerate the execution of the algorithm. Here we

develop and evaluate a multidimensional GPGPU WHAM implementation to in-

vestigate the potential speed-up attained over its CPU counterpart. In addition,

to avoid the cost of multiple Molecular Dynamics simulations and for validation

of the implementations we develop a test system to generate samples analogous to

Umbrella Sampling simulations. We observe a maximum problem size dependent

speed-up of approximately 19× for the GPGPU optimized WHAM implementa-

tion over our single threaded CPU optimized version. We find that the WHAM

algorithm is amenable to GPU acceleration, which provides the means to study

ever more complex molecular systems in reduced time periods.

Plagarism Declaration

‘I know the meaning of plagiarism and declare

that all of the work in the dissertation, save for

that which is properly acknowledged, is my own’.

i

Acknowledgements

I would like to thank two friends, Andrew and Theresa, who

sacrificed their weekend for last minute proofreading. I would also

like to express my deepest gratitude to my supervisor Michelle

Kuttel for her guidance, patience and extensive support throughout

this entire process. Her commentary and ideas helped improve my

work far beyond what I could ever have hoped to achieve alone.

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Aims and Objectives . 4

1.3 Approach . 4

1.3.1 Test Harness . 5

1.3.2 Implementations . 5

1.3.3 Evaluation . 6

1.4 Contribution . 6

1.5 Thesis Overview . 7

2 Free Energy Measurements with Molecular Dynamics 9

2.1 Illustrative Example: Butane . 9

2.2 Molecular Dynamics . 13

2.3 The Boltzmann Factor . 14

2.4 Umbrella Sampling Simulations . 17

3 WHAM 21

3.1 Current Implementations . 22

3.2 WHAM Equations and Algorithm 23

4 GPGPU and CUDA 27

5 Design and Implementation 31

5.1 Test Harness . 34

5.1.1 Samples . 34

v

5.1.2 Validation . 36

5.2 WHAM . 37

5.2.1 Histogram Aggregates . 37

5.2.2 Distribution Biases . 38

5.2.3 Extension to n Dimensions 40

5.2.4 WHAM Implementations . 40

5.2.5 Probability Estimates to PMF 42

5.3 GPU Design . 42

5.3.1 Data Decomposition . 43

5.3.2 SIMT algorithm . 44

5.3.3 Extension to multiple blocks 45

5.3.4 Optimizations and Design Discussion 46

5.4 Measurements and Test Cases . 48

6 Results and Discussion 51

6.1 Validation of the Test Harness . 51

6.2 Validation of the Test Case PMFs 53

6.3 GPGPU WHAM Run-time Profile 55

6.4 Implementation Performance . 57

6.5 Comparison Against Alternative Sequential Implementations 61

7 Conclusions 63

A CUDA kernels 65

vi

Chapter 1

Introduction

The Weighted Histogram Analysis Method (WHAM)[1] is an algorithmic technique

used to solve statistical problems in computational chemistry and biochemistry. In

conjunction with Molecular Dynamics, it has applications in computer-aided drug

discovery[2] and is also widely used in studies of protein folding[3]. Molecular Dy-

namics simulates the microscopic movement, position and structure of molecules to

provide insights into molecular behaviour and interactions. Simulations generate

data on the molecular scale that experiments often cannot provide, such as molec-

ular free energy. Free energy is of primary interest in molecular research since it

contributes to the understanding of phenomena such as the detailed mechanism

of the binding of a drug into a receptor molecule, or the preferred conformations

of complex molecules such as proteins. These phenomena can be explained by

analysis of the Potential of Mean Force (PMF)[4], which describes the free energy

of a molecule with respect to either an external parameter or an internal reaction

coordinate. However, basic Molecular Dynamics simulations are often unable to

sample the full reaction coordinate space in a feasible amount of time, due to high

energy barriers between molecular conformations. The quantity of samples taken

at these energy barriers is often insufficient to obtain acceptable sample distribu-

tions. Efficient calculation of free energy requires special techniques to enhance

sampling rates across these energy barriers. One of the most commonly employed

techniques is Umbrella Sampling[5] simulations, which bias the simulations to re-

strict samples to a narrow window or umbrella region of the PMF. Multiple sample

1

distributions, which span the entire PMF, can then be obtained from a number of

Umbrella Sampling simulations. WHAM combines the sample distributions and

removes the bias to yield a distribution estimate from which the PMF can be

computed across the entire coordinate space. It is a simple and elegant solution

in which all simulations contribute.

Implementations of WHAM currently exist as part of the CHARMM[6] and

GROMACS[7] Molecular Dynamics packages, and as the popular standalone Gross-

field package[8] which supports one- and two-dimensional conformational space.

Multiple reaction coordinates are supported by additional WHAM scripts pack-

aged with the SMOG server[9], a web-based simulation tool, however this is not

optimized for high performance. Improved performance can be achieved with

the Grossfield package since recent enhancements of the two-dimensional script

have dramatically reduced the run-time. A high performance one-dimensional

WHAM implementation, OPT-MHM[10], for Hamiltonian Replica Exchange, uses

the OpenMP API specification for parallel execution. However, there are few ob-

jective validations or evaluations of the current WHAM implementations since the

majority have not prioritised optimization. Currently, a need exists to explore

higher dimensional reaction coordinate spaces as this permits investigation of the

conformational dynamics of larger and more complex molecules. A prerequisite

for these investigations is a high performance, multidimensional implementation

of WHAM, and at present no implementations satisfy these requirements.

1.1 Motivation

There is potential to exploit parallelism to improve on the performance of current

WHAM implementations. At the heart of WHAM are two equations which are

repeatedly evaluated until convergence. Each evaluation of the WHAM equations

has quadratic time complexity, which makes it computationally expensive. Un-

fortunately, quadratic time limits both the size and complexity of problems that

can be attempted, despite the high speeds of modern Central Processing Units

(CPUs). The quadratic time limitation presents opportunity to investigate the

feasibility of a parallel implementation of WHAM and specifically implementing

WHAM on graphics processing units (GPUs).

2

Over the last decade, performance improvements of single-core CPUs have sub-

stantially reduced due to physical limitations such as power consumption and heat

dissipation. Processor manufacturers turned towards the production of multi-core

CPUs which initiated a shift towards multi-core and parallel application develop-

ment. Even before this shift, the Molecular Dynamics community had been at the

forefront of parallel application development due to the magnitude of Molecular

Dynamics simulations (such as the recent 64 million atom simulation of the HIV-1

capsid[11]) which often demand the use of clusters and supercomputers.

As the computational requirements of scientific communities grew, experimen-

tation began on the use of graphics languages to implement heavily computational

algorithms on GPUs. GPUs, designed to take on the high computational demands

of graphics processing, have since started to provide Application Programming

Interfaces (APIs) for general purpose computing on GPUs (GPGPU). These APIs

extend GPUs to allow the execution of non-graphical calculations in a highly par-

allel hardware environment. The rapid maturation of GPGPU and the relentless

demand for computational power has fuelled significant advancements in research

and development of GPU-accelerated Molecular Dynamics[12, 13]. Most of the

development focus is directed towards Molecular Dynamics programs since they

form the primary application domain. Until now there has been little attention

devoted to parallel and GPGPU implementations of tools such as WHAM, but

this requirement will arise simultaneously with the advancement of the simulation

programs. GPGPU substantially increases the speed of computation for certain

classes of problem[14], and WHAM is one of these problems - it is compute inten-

sive, data parallel and there is no branching or recursion.

Development of a multidimensional GPGPU implementation of WHAM re-

quires a benchmark implementation to assess the performance gains. Since the

current implementations are not optimized for performance, an optimized sequen-

tial version will need to be developed to provide realistic benchmark times. Test

data, comprising samples from Umbrella Sampling simulations, run across the en-

tire range of reaction coordinate space, are required to validate the sequential and

parallel implementations. Typically, the test data required can be generated with

standard Molecular Dynamics packages, but this is impractical for two reasons:

primarily because validation requires a known reference result to validate against,

3

but also because large multidimensional test cases would require an infeasible

amount of time to generate. GPGPU algorithm speeds vary with problem size so

satisfactory comparison of run-times requires a varied number of large test cases,

therefore an alternative to Molecular Dynamics is required to efficiently generate

data for the test cases.

1.2 Aims and Objectives

The objective is to develop a fast and correct version of WHAM on GPGPU,

with a notable speed-up over the optimized CPU version. The GPGPU WHAM

implementation must support multidimensional data generated from sampling of

any number of reaction coordinates and must produce verifiable and accurate

estimates of the Potential of Mean Force (PMF).

1.3 Approach

Development of a test environment was the initial objective. To efficiently validate

the algorithm, when a WHAM implementation is executed, it must yield a known

reproducible result. Evaluation is impractically time consuming with long running

Umbrella Sampling simulations and even then validation is challenging since the

PMF is unknown. Hence, a test harness, a system to generate test data from a

known analytic reference PMF, was developed to allow for rapid and reproducible

testing and validation of WHAM implementations. To validate WHAM on both

small, one-dimensional data sets and large, multidimensional data, the number

of dimensions and size of the data is configurable on the test harness which then

generates data efficiently. A complimentary system was also developed to validate

the PMF estimate generated by the implementation by measuring the output

deviation from the known analytic reference PMF.

For performance comparison, two WHAM implementations were developed: a

sequential, single threaded CPU optimized version, to generate benchmark times

for the run-time evaluation, and the parallel GPGPU optimized version. Both

versions were executed on, and validated against, single and multidimensional data.

4

The evaluation covered multiple test cases which ranged in size from moderate

to the largest possible on the GPU. All test cases were executed on both CPU

and GPGPU implementations, each of which logged run-times once the algorithm

concluded. The run-times were used to calculate the speed of each implementation

and hence the speed-up for each test case. The deviation of each test case’s PMF

estimates compared to the known PMF ensured the successful execution of all test

cases.

1.3.1 Test Harness

WHAM enables us to compute an unknown PMF from samples generated by Um-

brella Sampling, but from a test perspective it is possible to mimic the reverse

of this process. Given a known, analytically defined PMF function, samples can

be efficiently generated using a Monte Carlo approach. These samples can then

be used for validation, since they originate from a known PMF. The test harness

was initially developed to generate one-dimensional data but then later modified

to produce data from a PMF function with any number of dimensions. The di-

mensions are defined by the number of parameters of the PMF function. The

validation system (also multidimensional) was developed to measure the deviation

of the WHAM estimated PMF from the known reference PMF function. Once both

modules (data generation and validation) of the test harness were developed, the

test harness itself was validated. This was performed by execution of the Gross-

field implementation[8] (it is assumed this functions correctly) with a test harness

generated data set, followed by visual validation of the Grossfield estimated PMF.

1.3.2 Implementations

A phased approach was taken, where a CPU version was designed, developed and

tested. Common elements, such as the creation of distributions, were extracted

and caching methods were developed. This was followed by optimization of the

CPU version. Next the GPGPU version was developed. Initially, the entire al-

gorithm executed on the GPU but this was only possible with small data sets.

The execution of larger data sets was made possible by a hybrid implementation

where a portion of the processing, such as the convergence check, was performed

5

on the CPU, and the majority on the GPU. Once the GPGPU design was fixed,

optimization was performed in small iterations. If a change increased performance

it was retained, otherwise the change was rolled back and another optimization

attempted.

1.3.3 Evaluation

The performance gains achieved by porting applications from CPU to GPU archi-

tectures are typically measured in terms of speed-up - the ratio of the CPU run-

time to the GPGPU run-time for a comparable problem size. To evaluate the run-

time reduction, both implementations were executed on twenty two-dimensional

test cases, of varying problem size, generated with the test harness which allowed

us to assess the performance with regards to problem size. Each implementation

logs its run-time upon completion, which is used for evaluation by comparison of

the speed (time / number of elements) and speed-up. Additionally, the test har-

ness validated all test case runs and measured the deviation of the computed PMF

against the analytic PMF to record the variation of accuracy against problem size.

1.4 Contribution

The primary contribution of this work is a high performance parallel version of

WHAM which can support large datasets and high dimensionality. This allows

greater and more complex molecular exploration and specifically an increase in

the number of reaction coordinates that can be investigated.

The second contribution is the multidimensional test harness, which is respon-

sible for initial generation of samples from an analytically defined PMF function

and the validation of WHAM PMF estimates. This can be used not only to val-

idate our WHAM implementations, but also other WHAM implementations and

other free energy measurement techniques.

6

1.5 Thesis Overview

Chapters 2 through 4 provide the background necessary to understand WHAM

as it is applied in this evaluation. Chapter 2 contains a brief introduction to

free energy and Molecular Dynamics with emphasis on the problem of Boltzmann

sampling and the solution of Umbrella Sampling. This is followed by a description

of the WHAM equations and algorithm (Chapter 3) and concluded with a brief

overview of the CUDA architectural concepts relevant to the WHAM GPGPU

implementation (Chapter 4).

Chapter 5 outlines the methods developed to validate and evaluate the CPU

and GPGPU WHAM implementations. An overview and details of the test harness

and the WHAM modules are described first. These sections are followed by a

detailed description of the GPGPU design and implementation with a discussion

of the optimization techniques employed. This section concludes with a discussion

on the test cases developed to evaluate the performance of the CPU and GPGPU

WHAM implementations.

Chapter 6 reports on the validation of the test harness and the WHAM imple-

mentations and presents the results of the evaluation of the WHAM implementa-

tions with size dependent speed-ups attained on the test cases. Finally, Chapter 7

contains conclusions and suggests future work.

7

8

Chapter 2

Free Energy Measurements with

Molecular Dynamics

The driving force behind chemical reactions can be understood in terms of a ther-

modynamic quantity known as free energy. Free energy represents the energy

available to produce changes in chemical substances. It explains why, in some

circumstances, chemical reactions release energy in the form of heat, and in other

cases, reactions occur when provided with energy. It also explains why some com-

pounds react with each other the moment they come in contact and why some

compounds require a boost of activation energy before the reaction begins. When

these chemical reactions occur, it is the difference in free energy between the re-

actants and products which determines if energy is released or absorbed. This

suggests that knowledge of free energies of chemical substances can assist in the

prediction of chemical reactions - whether energy is released or absorbed, and if

so, how much and at what rate.

2.1 Illustrative Example: Butane

A simple example, used throughout this document, of a method to measure free

energy is the application of Molecular Dynamics to study the conformations of bu-

tane (Fig. 2.1), specifically the energy changes as a function of rotation about the

central bond (C2 − C3). Butane has three favourable conformations which min-

9

Figure 2.1: The molecular geometry of butane (CH3CH2CH2CH3). The three
reaction coordinates: the bond length, the valence angle and the dihedral angle
are illustrated with the “ball and spring” model. An example of the bond length
is the distance between the larger C1 carbon atom and a smaller hydrogen atom.
A valence angle is shown between two hydrogen atoms bonded to the C4 carbon.
Finally a dihedral angle is shown as the angle of rotation, or twist, of the bond
between the C2 and C3 carbon atoms.

imize steric clashes between atoms, and thus represent local free energy minima.

These conformations are defined by the molecular geometry. Molecular geometry,

the arrangement of atoms in a molecule, constitutes the three-dimensional spatial

positions of the atoms. This can be specified in terms of both the angles and lengths

of the bonds between atoms in a molecule. These values, collectively known as re-

action coordinates, form the coordinate system which describe molecular geometry

and comprise bond lengths, valence angles and dihedral angles. Fig. 2.1 illustrates

the reaction coordinates of the butane molecule. Butane has four carbon atoms

(C1, C2, C3, C4) surrounded by hydrogen atoms. The bond length is the distance

between the nuclei of two adjoining atoms, the example indicated is the length of

the C1 carbon atom to one of its bonded hydrogen atoms. The valence angle is

the angle formed between two bonds connecting three atoms, illustrated by the

angle between the bonds joining carbon atom C4 and two of its bonded hydrogen

atoms. The dihedral angle is the angle of rotation, or twist, around the middle of

three bonds connecting four atoms. This is indicated in the centre of the example

10

by the C2 − C3 dihedral angle, which is one of the principle reaction coordinates

of butane. It can also be conceptualised as the angle between two planes. Planes

can be defined by three points in three-dimensional space, so the C2−C3 dihedral

angle is the angle between the plane formed by atoms C1−C2−C3 and the plane

formed by atoms C2 − C3 − C4. These planes intersect along the line formed by

the C2 − C3 bond.

To understand the relation between free energy and molecular geometry it is

helpful to conceptualize the atoms and bonds of a molecule as a system made up

of spheres loosely connected by springs in constant motion. The spheres repel each

other but bonded spheres are kept linked at an equilibrium bond length by the

springs. In a three sphere chain, the two spheres at either end repel each other

and in the absence of any other forces would form a valence angle between the two

bonds of 180◦. However, all spheres exert forces on all other spheres, so any other

spheres connected to the system would exert forces that decrease the valence angle

to below 180◦. The same complex set of forces defines the equilibrium values of

dihedral angles which result when the forces acting on the particles are balanced.

This system of bond angles and lengths is not rigid, but constantly oscillates

around the equilibrium geometry since particles continuously move and collide with

each other. Another molecule, for example, could collide with a hydrogen atom and

reduce the valence angle between a neighbouring hydrogen atom, thus transferring

kinetic energy into free energy. At equilibrium, free energy is at its lowest, and

increases as the bond angles and lengths move away from equilibrium. Equilibrium

geometry represents a local energy minimum, but this is not necessarily the global

energy minimum, since there can be a number of equilibrium geometries where all

the forces are balanced. Equilibrium geometries at local energy minima are know as

conformers, of which there can be more than one for a particular molecule. Butane

has three local energy minima conformers which result from the periodic rotation

around the C2−C3 bond. These are shown in Fig 2.2a: two gauche(±60◦) and an

anti(±180◦ - the same point in a periodic rotation) conformers. If conceptualised in

this simplistic “ball and spring” manner, the energy stored in the repulsive forces

of the spheres and the elastic forces of the springs is analogous to free energy.

However, energies of molecular systems are more complex than the “ball and

spring” model and relate to a number of forces. Not only do the bonds contribute

11

Figure 2.2: Butane: conformers, PMF and probability. Butane has three
conformers (a) which result from the rotation around the C2 − C3 bond: two
gauche(±60◦) and one anti(±180◦). The related PMF (b), the variation in the
energy landscape between these three conformers, is shown below on the dihedral
angle axis. This illustrates the local energy minima of the conformers. Below this,
the probability distribution (c) of the states of butane - this describes the chances
of finding butane at one of these local energy minima, the anti conformer being
the most likely.

energies, but forces arise from other phenomenon such as van der Waals and elec-

trostatic forces. The Potential of Mean Force (PMF) relates the energy contained

in the system to the average of these forces and if plotted against a reaction coor-

dinate demonstrates how free energy varies as a function of molecular geometry.

12

Fig. 2.2b is a plot of the PMF of butane against the rotation of the C2 −C3 dihe-

dral angle from −180◦ to +180◦. It shows the energy minima at ±180◦ and ±60◦

which correspond to the anti and gauche equilibrium conformers. It also shows the

energy barriers between these conformers - the peaks of energy at ±120◦ and 0◦ -

energy barriers which would need to be overcome to change from one equilibrium

conformation to the other.

2.2 Molecular Dynamics

Over the course of the last century a number of innovative data analysis tech-

niques have been developed to estimate free energy differences based on data from

Molecular Dynamics. Molecular Dynamics simulates the structure, movement and

interactions of molecules at a microscopic level based on three-dimensional math-

ematical models of the atoms and bonds. These models incorporate data on the

position and velocity in three-dimensional space of all the atoms, and the lengths

and strengths of the bonds between these atoms. In this model, classical Newtonian

physical theories are employed to simulate structural dynamics by the calculation

of the forces acting on the atoms and their subsequent change in velocities. The

mechanics of the molecule can also be described in the context of Hamiltonian

mechanics by a potential energy function. The potential function evaluates to the

potential energy of the molecule as the sum of bonded (bond length, valence and

dihedral angles) and non-bonded (electrostatic forces and the van der Waals forces

) energy contributions.

Etotal = Ebond + Evalence + Edihedral + Eelectrostatic + EvanderWaals (2.1)

The form of the mathematical expressions used for each of these potential en-

ergy terms constitutes a force-field, examples of which include CHARMM[6] and

GROMACS[15]. Force-fields often model bond lengths with Hookes law, electro-

static energies with Coulombs law and van der Waals forces with Lennard-Jones

potentials[16]. They differ based on the area of chemistry they are aimed at and

in the degree of complexity of the functional form of each of the individual energy

contributions. Force-fields form the basis of Molecular Dynamics simulations. A

13

simulation consists of one or more molecules with both position and momentum

within the boundaries of the simulation. Initial values are assigned to the position

and velocity of each atom of each molecule. Once initialised, the Molecular Dy-

namics simulation commences and proceeds iteratively. At each step, the forces

acting on the particles are determined in the context of the force field as the

negative of the gradient of the potential function (Eq. (2.1)). Newton’s laws of

motion (specifically the second, F = ma) are applied to the particles and new po-

sitions and velocities are calculated. As a simulation runs, measurements, known

as samples, are taken of the reaction coordinates of interest, such as the dihedral

angle.

2.3 The Boltzmann Factor

Measurement of molecular PMF, such as the PMF of butane in Fig. 2.2(b), is a

common goal in computational chemistry. Structural distributions obtained from

Molecular Dynamics samples provide a method to measure PMF through a phys-

ical relation known as the Boltzmann Factor. However, obtaining an acceptable

number of samples across energy barriers is often also restricted by the Boltzmann

Factor. Figs. 2.2(b) and (c) illustrate how the Boltzmann Factor relates PMF

to the probability distribution of molecular geometric state. These distributions

show that the lower the PMF is, the more likely a molecule is to be found in that

geometric state. In Fig. 2.2(b) the value of the reaction coordinate defines the

state the molecule is in which relates to a PMF value. However, the probability

that a molecule can be in a certain state is not uniform but varies depending on

the value of the reaction coordinate. This probability distribution is shown below

on the same axis in Fig. 2.2(c). When the molecule is not in a state of equilibrium,

it possesses a level of energy higher than one of the local minima, which means the

forces acting within the molecule are unbalanced. This unbalance in forces causes

the molecule to rearrange itself towards equilibrium, hence reducing its energy

to the nearest local energy minimum. Since the molecules are constantly moving

toward equilibrium, it suggests that lower energies have higher probabilities, the

highest probabilities being at the energy minima. This is known as the Boltzmann

Factor which relates the energy of a molecule (Fig. 2.2(b)) to the probability of

14

Figure 2.3: The Boltzmann Factor - the relationship between probability and
energy. Eq. (2.3) is plotted against energy for three different values of T : 100K,
300K and 500K. Molecules are more likely to be found with less energy, but the
higher the temperature, the greater the variance.

finding the molecule in a certain state (Fig. 2.2(c)). The Boltzmann Factor forms

one of the fundamental relationships of statistical mechanics by relating probability

theory to thermodynamics.

The functional form of the Boltzmann factor is required to calculate PMF. To

derive this functional form we consider the additive nature of energy. Supposing

that a system is in a state with energy E, we wish to find the functional form of

the probability, P (E), that the system has energy E. To do this consider the case

of two particles with energies E1 and E2. Since energy is additive, this means the

probability of the total energy is equal to the product of the probability of the

individual energies, which gives

P (E1 + E2) = P (E1).P (E2). (2.2)

This relationship defines a required property of the function P (E). One such

property is the exponential identity property where, using e as a base, e(x+y) =

exey. This means if P (E) is an exponential function, with E as the exponent, it

15

satisfies Eq. (2.2). As mentioned previously, the system tends towards equilibrium

- the lower the energy the higher the probability - which implies the relation is a

decaying exponential, so the exponent will be negative. Another factor to take into

account is the temperature. Energy is associated with temperature, in the sense

that the higher the temperature the higher the energy, which implies temperature

T is a denominator of the decaying exponential term. The remaining constant in

this case is the Boltzmann constant k which leads to the Boltzmann Factor:

P (E) ∝ e
−E
kT . (2.3)

This proportional relationship is plotted in Fig 2.3 which shows probability (be-

tween zero and one) against energy E at three different temperatures (T = 100K,

300K and 500K). We can see that for all temperatures, as the energy increases, the

probability P (E) of the molecule having energy E decreases. The plots of different

temperatures confirm a further intuition; that as the temperature increases it is

more likely for molecules to have higher energy states.

The Boltzmann Factor provides an elegant solution to the measurement of PMF

since it relates PMF to probability. Probability distributions can be determined

with histograms constructed from the samples obtained from Molecular Dynamics

simulations. From Eq. (2.3), these probability distributions can in turn be used to

calculate the PMF with

W (ξ) = −kT lnP (ξ), (2.4)

where W is the symbol for PMF. The fundamental idea here is that by taking

enough samples from a Molecular Dynamics simulation, we can calculate the prob-

ability of a set of states in which the molecule moves. This probability can then

be used in the estimation of the PMF of those states. Therefore Eq. (2.4) allows

us to calculate the PMF from histograms of Molecular Dynamics samples given a

sufficient number of samples.

Unfortunately, the Boltzmann Factor presents practical complications when

attempting to measure full free energy pathways such as the PMF of butane in

Fig. 2.2b. In order to obtain accurate results, a statistically significant number of

measurements would need to be taken across all values of the reaction coordinate.

This is trivial at reaction coordinate values around equilibrium states since the

16

majority of molecules are in or close to these states. The problem arises when

trying to obtain enough samples at higher energy regions since there are fewer

molecules with higher energy. This lack of samples leads to inaccurate results

across energy barriers. Even worse, in cases where the energy barriers are narrow

and steep, they may be missed entirely.

2.4 Umbrella Sampling Simulations

A number of enhanced sampling Molecular Dynamics techniques were developed

to overcome the previously mentioned limitations which the Boltzmann Factor

places on the complete exploration of free energy pathways. Valleau and Card[17]

devised a stratification method known as multistage sampling where the total

free-energy difference between two energy states is split up into a number of inter-

mediate regions. This was shortly followed by an innovative technique from Torrie

and Valleau known as Umbrella Sampling[5], which involves the introduction of

an additional potential energy term to each intermediate region. This potential

energy term is a biasing function (often known as the biasing, umbrella or window

potential) which creates a window or umbrella around a prescribed centre point

along the reaction coordinate (the umbrella centre). This window is imposed on

the distribution bias of the simulation (conceptually similar to loaded dice) and

confines the sampled reaction coordinates to within a small interval around the

umbrella centre. A common biasing function, suggested by Roux[18], is the har-

monic function
1

2
K(ξ − ξ0)2 (2.5)

where ξ is the variable reaction coordinate, ξ0 is the umbrella centre point along

the reaction coordinate and K is a constant know as the spring constant. A plot

of this function is shown in Fig. 2.4a as Ebias(ξ), with the umbrella centre at 60◦

and a spring constant K of 0.001. The width of the plot is determined by the

value of the spring constant K. The function is characterized by a rapid increase

in energy as ξ moves away from ξ0 (60◦), thus lowering the probability to almost

zero anywhere but in the immediate area of the umbrella centre point. To apply

this distribution bias, the Umbrella Sampling Molecular Dynamics simulation is

17

Figure 2.4: Umbrella sampling butane at 60◦. Illustration of the umbrella created
by applying the harmonic bias to a Molecular Dynamics simulation. (a) describes
the harmonic biasing function (Eq. (2.5)), (b) the sum of the harmonic and the
PMF at 60◦ (Eq. (2.6)) and (c) the umbrella sampling distribution created by the
addition of the harmonic (Eq. (2.7)) to the Boltzmann Factor.

configured to add the harmonic function to the total energy, as in Eq. (2.6). In the

example in Fig. 2.4b, the total energy along the entire reaction coordinate axis is

18

arbitrarily chosen to be 4 kcal/mol which shifts the entire harmonic function up.

Etotal(ξ) +
1

2
K(ξ − ξ0)2. (2.6)

The Umbrella Sampling probability along the reaction coordinate, shown in Fig. 2.4c,

results from substituting the sum of total energy and the harmonic function

(Eq. (2.6)) into the Boltzmann Factor (Eq. (2.3)), giving

P (E) ∝ e
−1
kT

(Etotal(ξ)+
1
2
K(ξ−ξ0)2), (2.7)

or

P (E) ∝ e
−1
kT
Etotal(ξ) × e

−1
kT

(1
2
K(ξ−ξ0)2), (2.8)

where the second term of Eq. (2.8), e
−1
kT

(1
2
K(ξ−ξ0)2) is known as the distribution bias

throughout this thesis since it is pre-calculated. As can be seen from Fig. 2.4c, this

new biased sampling probability distribution resembles an umbrella, and limits the

samples taken by the Umbrella Sampling simulation to the region contained by

the umbrella.

The goal of Umbrella Sampling is to approximate a uniform sampling distribu-

tion across the reaction coordinate, so a single simulation is insufficient. In order

to obtain a complete PMF estimate, samples must be taken which span the entire

range of the reaction coordinate. To achieve this, multiple Umbrella Sampling

simulations are required. Each simulation is configured to run with a different

umbrella centre so as to evenly space the umbrellas to cover the entire reaction

coordinate, as shown in Fig.2.5. Each umbrella in Fig.2.5 is the distribution bias

of a single Umbrella Sampling simulation. There are seven simulations with um-

brellas centred at 60◦ intervals from −180◦ to 180◦. In this example the spring

constant K is set to 0.001 which produces umbrellas wide enough for acceptable

overlap. Bereau and Swendsen[10] suggest the optimal separation between um-

brellas as 2.45σ where σ is the width of the umbrellas. The effect of this overlap

can be seen in the wavy line above the umbrellas in Fig.2.5, which shows the sum

of all seven distribution biases. This sum of distributions approximates a uniform

sampling distribution from −180◦ to 180◦, which means that samples can be taken

from the entire range of the reaction coordinate, thus overcoming the limitation

19

Figure 2.5: Multiple Umbrella Sampling simulations and the effective probabil-
ity distribution. Seven Umbrella Sampling simulations are configured at intervals
of 60◦, each with a distribution bias shown as an umbrella. The sum of all the
distributions results in the wavy line above the umbrellas, which forms a reason-
able approximation to a uniform sampling distribution. This uniform distribution
allows sampling across the entire reaction coordinate.

imposed by the Boltzmann Factor.

20

Chapter 3

WHAM

The previous chapter demonstrates how the problematic Boltzmann Factor can be

overcome with the use of the Umbrella Sampling technique. Umbrella Sampling

allows us to take samples from the entire reaction coordinate space and thus obtain

enough samples across this space, but it introduces a new problem: the now biased

uniform probability distribution invalidates any meaningful calculation of PMF

with Eq. (2.4). What is required is a technique which removes the bias introduced

by Umbrella Sampling after the samples are acquired. This is precisely what

WHAM does. WHAM combines distributions from all the Umbrella Sampling

simulations and removes the distribution bias originally introduced, to yield an

estimate of the global unbiased distribution.

WHAM originates from Umbrella Sampling and histogram techniques which

began with the development of histogram re-weighting. Histogram re-weighting

allows the results of a single simulation to extend to estimations of nearby prop-

erties of the system at conditions other than that of the original simulation, i.e.

a simulation at one temperature allows the estimation of the system at a nearby

temperature. Based on earlier work by Salsburg et al.[19], this technique was suc-

cessfully demonstrated by Ferrenberg and Swendsen[20, 21] in finite size scaling

investigations of phase transitions by the comparison of histogram re-weighting

results to experimental results. Unfortunately, histogram re-weighting is only

suitable for small variations in conditions. This limitation was soon overcome

in Ferrenberg and Swendsen’s follow up paper[22] which introduced the multiple

21

histogram method, and with it the first versions of the WHAM equations. The

multiple histogram method relies on histograms obtained from a number of simula-

tions. Each of the histograms is appropriately weighted according to its statistical

contribution to the target point. So the closer the umbrella to a point along a

reaction coordinate the more the histogram contributes to the PMF at that point.

This allows all histograms to contribute to the result thus maximising the amount

of information which can be obtained from the simulations. Kumar et al.[1] then

extended the multiple histogram method by combining it with Umbrella Sampling

in a study of the PMF of the sugar ring in deoxyadenosine. This publication also

introduced the name “Weighted Histogram Analysis Method” and the acronym

WHAM.

3.1 Current Implementations

Current WHAM implementations exist either as standalone applications or in-

tegrated into Molecular Dynamics packages. The Molecular Dynamics package

CHARMM includes WHAM functionality as an option in the free energy per-

turbation module[6], and the GROMACS distribution ships with the feature rich

g wham[7] tool. The interoperability of the simulation and analysis tools in these

packages make them convenient when sampling is performed with the same pack-

age. However, standalone applications tend to be more versatile. The well-

documented and concise Grossfield package[8] is one of the most popular stan-

dalone implementations and applies to both one- and two-dimensional WHAM.

In addition, Sindhikara’s Modular Reweighting [23] standalone package supports

a variety of equilibrium biasing techniques (examples of extensions for Umbrella

Sampling and Replica Exchange are provided). Parallel tempering simulation anal-

ysis can be performed with Chodera’s PTWHAM[24]. It is however, deprecated

in favour of the multistate Bennett acceptance ratio method (MBAR) [25] which

is a similar method to WHAM with zero bin widths[26]. Hamiltonian Replica

Exchange analysis can be performed with Bereau’s OPT-MHM implementation

of WHAM[10], which employs the OpenMP pragmas for high performance. The

SMOG server[9], has an additional WHAM script which supports the measurement

of any number of reaction coordinates but is not optimized for high performance.

22

Although there are numerous implementations of WHAM currently available, there

is a lack of high performance implementations which support multi-dimensional

reaction coordinate space, the closest being the two-dimensional Grossfield imple-

mentation.

3.2 WHAM Equations and Algorithm

The WHAM algorithm requires a histogram of each Umbrella Sampling simulation

before the equations can be executed. The reaction coordinate is divided into a

number of bin intervals and the samples from each simulation are used to create

histograms defined by these bin intervals. These histograms together with the

values of the distribution bias that fall within the bin intervals, form the input to

the WHAM algorithm. The WHAM algorithm runs as a series of iterations of two

equations that refine the results over each iteration until an acceptable level of

accuracy is achieved. The body of an iteration comprises two, coupled, non-linear

equations. The first, Eq. (3.1), computes new unbiased probability estimates,

pb̄, from a set of weighting factors, fh. The unbiased probability estimates are

WHAM’s estimates of the sampling probability over the entire reaction coordinate

space if the bias were removed. The weighting factors represent the relative con-

tribution of each histogram, and are all set to 1 to start with, but new weighting

factors are used in each iteration. The second equation, Eq. (3.2), computes these

new weighting factors, fh, given the unbiased probability estimates, pb̄, computed

previously. With the simulation histograms indexed by h and bin intervals indexed

by b̄ (the bar indicates potential n-dimensionality 1) the WHAM equations are:

pb̄ =
Bb̄∑

hHhfhch,b̄
(3.1)

fh =
1∑

b̄ ch,b̄pb̄
. (3.2)

1n-dimensionality implies an index with any number of dimensions. This occurs when more
than one reaction coordinate is investigated. For example, in other compounds, where the
conformers primarily depend on two reaction coordinates, simulations would be configured to
sample both coordinates. This would lead to a two dimensional histogram, where bins would be
indexed by a pair of integers.

23

Given nh,b̄ as the number of samples in histogram h which fall into bin interval b̄,

Bb̄ is the sum of samples of bin interval b̄ across all histograms, or

Bb̄ =
∑
h

nh,b̄, (3.3)

and Hh is the sum of all samples in simulation h,

Hh =
∑
b

nh,b̄. (3.4)

Hh and Bb̄ are referred to as the histogram aggregates in this thesis since they

are also pre-calculated. ch,b̄ (the second term of Eq. (2.8)) is the value of the

distribution bias2 applied to simulation h (with umbrella centred at ξh0) at a point

along the reaction coordinate, ξb̄, which falls within bin interval b̄ (usually the

center), given by

ch,b̄ = e
−1
kT

(1
2
K(ξb̄−ξh0)2). (3.5)

The values of the histogram aggregates Hh and Bb̄ and the distribution bias ch,b̄

are not modified by the WHAM equations so can be calculated before the WHAM

algorithm proceeds.

As mentioned previously, the initial weighting factors, fh, are all set to 1, which

along with values of the histogram aggregates and distribution bias complete the

data requirements to run the WHAM algorithm. An iteration of the WHAM al-

gorithm requires evaluation of Eq. (3.1) for each bin interval b̄, to yield an array of

unbiased probability estimates, pb̄. These estimates are used as input to Eq. (3.2),

which yields a new weighting factor fh for each histogram h. At this point con-

vergence is determined. The difference between each initial weighting factor, used

in Eq.(3.1), and its corresponding new weighting factor, calculated with Eq.(3.2),

determines convergence. When all differences are less than a prescribed tolerance

level (the default value for the Grossfield WHAM package[8] is 0.001), the algo-

rithm has converged. This indicates that the variation of weighting factors between

iterations has dropped to a tolerable level. If the difference between any initial

2The n-dimensional expansion of Eq. (2.8) is given by ch,b̄ = e
−1
kT

∑n
d=1(1

2Kd(ξb̄d
−ξh0d

)2), where
n is the number of dimensions.

24

and new weighting factor is greater than the tolerance level then the algorithm

has not converged. In this case the new weighting factors are substituted into the

initial weighting factors as input to Eq.(3.1), and another iteration begins. Upon

convergence the most recent values of pb̄ are taken as the final global unbiased

distribution estimate. This final distribution can then be used to calculate the

estimate of the PMF at each bin interval b̄ with Eq. (2.4).

The algorithm is detailed as pseudo code in Alg. 1. The top level loop forms

the convergence check where at least one iteration must complete (repeat...until

loop). For this reason the check is at the end of the loop. Eq.(3.1) is expressed as

a nested loop pair. The outer loop is necessary to calculate a value for pb̄ for each

bin interval b̄ and the inner loop computes the summation in the denominator.

The same pattern applies to Eq.(3.2), where the outer loop calculates a weighting

factor for each histogram and the inner loop computes the summation. These loops

determine the overall WHAM time complexity. The number of iterations executed

by the top level convergence loop has no dependency on the number of histograms

or bins which means it has constant time complexity. Nested loop pairs have

quadratic time complexity or O(n2), which means the overall time complexity of

WHAM is quadratic. Quadratic complexity means execution time is proportional

to the square of the input size, so if the problem size doubles, execution takes four

times longer.

Problem size is specified by the product of the number of histograms and the

number of bins. These are typically prescribed according to the requirements

of the experiment. For example, the choice of seven simulations for the butane

example (Fig. 2.5) produces acceptable results to illustrate the concepts in this

thesis, yet only produces PMF estimates every 60◦. However, the most significant

factor influencing problem size is not the number of simulations or bins, but the

number of reaction coordinates under investigation. Butane is a simple example,

measuring only one dihedral angle, but in more complex scenarios, multiple re-

action coordinates may be explored. The number of simulations required and so

the number of histograms processed by WHAM both increase exponentially with

the number of reaction coordinates measured. For example, if the experiment

requires PMF estimates around a dihedral angle every 10◦, this necessitates 36

umbrella sampling simulations. To measure two such reaction coordinates at that

25

// Begin iteration loop

repeat
// Equation (3.1)
foreach b̄ do

denom← 0;
foreach h do

denom← denom+Hh ∗ ch,b̄ ∗ fhold ;
end

pb̄ ←
Bb̄

denom
;

end
// Equation (3.2)
foreach h do

finv ← 0;
foreach b̄ do

finv ← finv + ch,b̄ ∗ pb̄ ;
end
fhnew ← 1

finv
;

end
// Check for convergence

until converged(fhold, fhnew);
Algorithm 1: The WHAM algorithm. Computation of each equation requires
a loop through both the histograms and bins to calculate the summation factor
in each equation. The ’converged’ function, at the end of the outer iteration
loop, compares fhnew and fhold and returns true if all differences are below the
tolerance level.

interval requires 1296 (362) simulations. Furthermore, two reaction coordinates

would lead to two-dimensional histograms, meaning the number of bins also in-

creases exponentially. Since all simulations are processed by WHAM, which has a

quadratic time complexity, this rapidly leads to unreasonable run-time durations

for dimensions greater than two. The time complexity of the WHAM algorithm

and requirements to explore multiple reaction coordinates, are strong reasons in

favour of the argument to develop a parallel implementation of WHAM.

26

Chapter 4

GPGPU and CUDA

Graphics Processing Units (GPUs) have recently introduced a parallel program-

ming paradigm aimed at high performance computing. The GPU architecture was

originally designed for graphics acceleration, but the interface has since been ex-

tended to support general purpose computing (GPGPU), which facilitates the de-

velopment of scientific applications, such as Molecular Dynamics, on GPUs[12, 27].

Recent enhancements of the Grossfield package have dramatically reduced the run

time, but as of yet there are no GPGPU implementations of WHAM. Therefore,

the primary contribution of this study is a high performance version of WHAM

which can support multiple dimensions and large datasets by taking advantage of

the parallelism offered by GPGPU architecture.

The basis of parallel programming is the division of loop iterations between

multiple processors. This makes nested loop pairs, such as those in WHAM,

well suited to parallel development. The traditional approach is to divide the

problem by the number of available processors and let each processor loop through

a section of the workload. The NVIDIA R© GPGPU platform, the Compute Unified

Device Architecture (CUDA) model, allows the program to declare the number of

processors, or threads, each of which executes a single iteration of the loop. Rather

than a loop counter, each thread has an index which is typically used to identify

the location of data elements utilized in thread computation. These indices can

be declared as one-, two- or three-dimensional, depending on the dimensionality of

the problem domain. A nested loop pair, for example, maps to a two-dimensional

27

Figure 4.1: CUDA programming model and memory hierarchy. A grid is divided
into blocks which are further divided into threads. This allocation of threads
illustrates the division of a two-dimensional problem domain, such as a nested
loop pair, into the CUDA programming model. All threads in the entire grid can
access a single global memory, all threads in a block can access a shared memory
space exclusive to each block, and each thread has its own private local memory.

CUDA domain as illustrated in Fig. 4.1. This domain comprises a grid divided

into two dimensions of blocks, which in turn are divided into two dimensions of

threads. Each thread performs execution of C or C++ code fragments known as

kernels. Kernels have access to multiple memory spaces during their execution:

local memory, shared memory and global memory, each of which are accessible

as indicated in the figure. Registers provide private local memory exclusive to

a thread. Within a block all threads have access to a common shared memory

space, of which there is one shared memory space for each block. Shared memory

28

and thread barrier synchronization within the block allow threads to communicate

and share data. A single global memory space, available to all threads in the

grid is unsuitable for communication since synchronization is unavailable on the

grid level. Only upon completion of kernel execution can blocks be considered

synchronized. This limitation is imposed by the architecture in scenarios where

devices require all threads in a block to run to completion before another block

commences execution. Of the three memory types, local and shared memory have

the smallest capacity, but fastest access times. Global memory is large and slow,

yet it facilitates data transfer between CPU and GPU and persists on the GPU

between kernel invocations. Chapter 5 describes in detail the design of the GPGPU

implementation of WHAM: how the data is divided into blocks and threads and

how synchronisation is achieved at the grid level by performing portions of the

computation on the CPU.

29

30

Chapter 5

Design and Implementation

To consider development of a parallel algorithm successful, the parallel algorithm

must execute faster than its sequential counterpart and its outcome must be com-

parable to that of the sequential algorithm. WHAM is a challenging algorithm

to both evaluate and validate. Evaluation is laborious since WHAM follows on

from long running Molecular Dynamic simulations, and even then validation is

not possible since simulations provide no certainty that the WHAM outcome is

correct. Molecular Dynamics cannot adequately support evaluation nor valida-

tion of WHAM, so for this reason a system was developed to replace the Molec-

ular Dynamic simulations. This system, the test harness, assists in evaluation

by generating samples fast and efficiently from a known analytic reference PMF.

Additionally, the analytic PMF enables validation by comparison of the WHAM

estimated PMF to a known reference PMF. Development of this system led to

the logical separation of two modules: the test harness and the WHAM module,

illustrated in Fig.5.1. The test harness forms a platform on which WHAM can be

comprehensively evaluated.

The functionality of each module is decomposed into components each with a

defined responsibility. The test harness has a dual purpose: sample generation and

WHAM validation. These tasks occur before and after WHAM and both make use

of the analytic reference PMF. The WHAM module is designed to function in a

standalone manner. If provided with samples generated by either the test harness

or Umbrella Sampling simulations then the WHAM module will generate PMF

31

Figure 5.1: Components of WHAM and the test harness. The six components,
developed to evaluate WHAM implementations, belong to WHAM or the test
harness. The components are written in C or Clojure, tagged with C or clj respec-
tively.

estimates. It allows selective execution of a WHAM implementation and performs

common functionality: it creates input data from the samples and processes the

WHAM implementation output data. In order to compare the speed of CPU and

GPGPU WHAM implementations each is built as a separate component.

Fig.5.1 illustrates the constituent components (numbered 1© - 6©) of both mod-

ules and the data flow between them. Each component is written in either C or

Clojure[28], and is tagged with either (C) or (Clojure) to identify the pro-

gramming language used. The WHAM implementations (3© and 4©) are written

in C since this is the prescribed CUDA kernel language and it offers the best per-

formance. The test harness (1© and 6©) and the components which create input

data from the samples(2©) and process WHAM output data(5©) were written in

Clojure because it is a functional language and the processing performed by these

components is functional. To facilitate the interaction between programming lan-

guage environments, each component is run as a separate operating system process

which reads its input from files and writes its output back to files.

The component’s responsibilities are summarized below and explained further

in the relevant section.

32

1© Samples, analogous to Umbrella Sampling simulations, are generated by the

test harness. These are equivalent to samples which would be generated by

Umbrella Sampling simulations of a molecule whose PMF was that of the

analytic reference PMF.

2© Input data, suitable for the WHAM iterations, is generated. Histograms are

created from the samples which are in turn used to create the histogram

aggregates Bb̄ (Eq. (3.3)) and Hh (Eq. (3.4)), and the distribution bias values

ch,b̄ (Eq. (3.5)) are computed.

3© and 4© The CPU and GPGPU implementations are executed separately with

the data created by component 2©. As the algorithm completes, the proba-

bility estimates, pb̄, are computed and written to disk.

5© The PMF is computed with Eq. (2.4), from the probability estimates, pb̄,

generated by each implementation.

6© The second component of the test harness. The PMF output of the WHAM

module is validated by comparison to the analytic reference PMF.

This chapter expands on each component and describes the end-to-end process

of WHAM evaluation. This spans the creation of umbrella samples to validation

and performance assessment of the WHAM implementations. First, an illustrative

example using the simple butane molecule is used to explain the test harness.

Details are provided of sample generation and validation based on the analytic

reference PMF. Next the WHAM module is described, again with the butane

example, starting with the steps required to create WHAM input data from the

samples. The WHAM implementations are then discussed and additional details

are provided for the GPGPU algorithm to demonstrate the modifications made

to convert the algorithm from a sequential to parallel paradigm. The WHAM

module description ends with the conversion of the probability estimates to PMF.

To conclude the chapter, we describe the more complex analytic PMF function

used to generate samples, the complete set of test cases created and the metrics

required to evaluate performance enhancements gained from porting WHAM to

GPGPU.

33

5.1 Test Harness

5.1.1 Samples

Generation of samples analogous to those taken during Umbrella Sampling, is the

first responsibility of the test harness (Fig.5.1 component 1©). These samples are

required to be similar to those generated by Umbrella Sampling simulations of a

molecule whose PMF is equivalent to the analytic reference PMF. Given a set of

Umbrella Sampling configurations (the umbrella centre and the value of the spring

constant) and an analytic PMF (both defined as code), the test harness derives a

probability distribution function for each configuration. A prescribed number of

random samples are drawn from this probability distribution using a Monte Carlo

method, and the values of the reaction coordinates of each sample is recorded.

Fig. 5.2(a) and (b) illustrate sample generation with the butane example. Ini-

tially the analytic PMF function pmf(ξ) is composed. In the example (Fig. 5.2(a))

this is a simple function of a single reaction coordinate ξ, which resembles the PMF

of butane. The reaction coordinate ξ is the C2−C3 dihedral angle between −180◦

and 180◦. In the example, seven Umbrella Sampling simulations are performed,

however the effect of only a single Umbrella Sampling simulation, centred at 60◦,

is illustrated in Fig. 5.2(a). Umbrella Sampling entails the addition of a restraint

to the simulation, which biases the energy of the molecular system to within a cer-

tain region of the reaction coordinate. The energy bias is the harmonic function
1
2
k(ξ − ξ0)2, where k, the spring constant, affects the gradient, and ξ0 determines

the center of the harmonic. The result of the energy bias is to effectively add

the harmonic function to the PMF, which yields an analytical term for the biased

energy curve. Fig. 5.2(a) shows the sum of the energy bias and the PMF function

centred at point ξ0 = 60◦ with spring constant 0.001. The resulting biased energy

curve, pmf(ξ)+ 1
2
k(ξ−ξ0)2, falls above the PMF function, and touches the PMF at

ξ0 = 60◦, where the bias is equal to zero. The relationship between PMF and prob-

ability (Eq. (2.4)) associates the biased energy curve to a probability distribution

function which resembles a bell curve, (Fig. 5.2(b)), given by

P (ξ) = e
−1
kT

(pmf(ξ)+ 1
2
k(ξ−ξ0)2) (5.1)

34

Figure 5.2: Test harness sample generation. Illustration of the artificial genera-
tion of Umbrella Sampling samples from an analytic PMF and an umbrella bias.
(a) The bias, centred at 60◦ along the reaction coordinate ξ is added to the PMF
function, pmf(ξ), to yield the biased energy curve, pmf(ξ) + 1

2
K(ξ − ξ0)2. (b)

This curve is then evaluated as a probability distribution function with Eq. (5.1).
Reaction coordinate samples, analogous to samples taken during Umbrella Sam-
pling, are produced by generating random points in the probability space. (c) The
value of ξ for each point that falls within the distribution is binned at 18◦ intervals
to create a histogram of umbrella samples.

This probability distribution is analytic, thus suitable for generating samples with

a Monte Carlo simulation. Two random numbers are generated to produce each

35

sample. The first, ξrand, is a random number within the bounds of the reaction

coordinate (between −180◦ and 180◦). The value of the distribution at ξrand,

P (ξrand), is evaluated with Eq. (5.1). The second is a random number between

0 and the maximum of the distribution (approx 0.006) which is more efficient

than a random number between 0 and 1. ξrand is recorded as a sample if the

second number is less than P (ξrand), i.e. if the point (ξrand, P (ξrand)) falls within

the distribution. Random points are continuously generated and all those which

fall within the distribution are included as samples until the required quantity

have accumulated. In Fig. 5.2(b), the points under the bell curve are samples,

whose values of ξ correspond to measurements of the reaction coordinate ξ taken

during Umbrella Sampling. These samples are later grouped into histograms by

the WHAM module.

5.1.2 Validation

Validation of the PMF estimates generated by the WHAM module is the second

responsibility of the test harness (component 6© of Fig. 5.1). The analytically de-

fined PMF function initially used to generate samples provides a reference against

which the calculated PMF can be compared. Since these results are estimates and

dependent on factors such as the number of samples and values of the harmonic

spring constants, a simple comparison within some epsilon value is insufficient for

validation. Instead, an initial visual confirmation of the correctness of the cal-

culated PMF is made by comparison of plots of the calculated PMF against the

analytic PMF function. Next, a more exact measure of accuracy is computed with

the Root-Mean-Square Deviation method (RMSD). This method gives an indica-

tion of the overall difference in PMF predicted by the analytical function and the

WHAM calculated values in which a value of zero indicates a perfect match and

the greater the RMSD value is, the less accurate is the result.

36

5.2 WHAM

The WHAM module constitutes several processes depicted as components 2© to

5© in Fig.5.1. Component 2© is the initial pre-processing stage which creates input

data for the WHAM implementations. Next, the algorithm is executed with the

input data by one of the implementations, either CPU or GPGPU (components

3© and 4©, respectively). Once complete, the implementation writes the unbiased

probability estimates to disk from which the PMF is calculated by component 5©.

Once all samples are generated by the test harness, component 2© is responsible

for the processes required to create the input data - structured data appropriate for

the WHAM equations. The input for Eq. (3.1) comprises initial weighting factors

fh, histogram aggregates Hh and Bb̄ and the biasing factors ch,b̄. In these terms, h

and b̄ are both array indexes, where h is the histogram number (corresponding to

the simulation number), and b̄ the bin number. The bar above b̄ indicates potential

multi-dimensionality, for example, the measurement of two reaction coordinates

elicits two dimensional histograms whose bins are indexed as ordered pairs. The

initial values of the weighting factors fh are all simply set to a single value (usually

1) and component 2© computes the values for the histogram aggregates, Hh, Bb̄,

and the distribution biases, ch,b̄.

Arrays Hh, Bb̄ and ch,b̄ constitute the bulk of the input data, and conveniently,

their calculation is only required once. Inspection of the WHAM Eqs. (3.1) and

(3.2) shows that only the weighting factors fh, and the unbiased probability esti-

mates pb̄, change during an iteration of the algorithm. This means all calculations

of Hh, Bb̄ and ch,b̄ can be performed prior to the WHAM iterations.

5.2.1 Histogram Aggregates

Two phases are required to create the histogram aggregates Hh and Bb̄. Firstly,

the samples are grouped by reaction coordinate intervals, or bins, to create his-

tograms. Fig. 5.2(b) and (c) illustrate how the random points generated by the

test harness form the histogram for the simulation centred at 60◦. For the butane

example, 5000 samples are generated at each umbrella centre and binned into 18◦

intervals. Next, the histogram aggregates Hh and Bb̄ are computed from these

37

Figure 5.3: Global histogram, Bb̄, of the butane example. The histogram ag-
gregate Bb̄ is calculated with Eq. (3.3) and depicted as a histogram. This is the
histogram of all samples from all test harness simulations, layered to show the
individual contribution of each simulation.

histograms with Eqs. (3.3) and (3.3). Each element of array Hh is the total num-

ber of samples in histogram h. For the butane example, Hh is an array of size

7 (from 7 simulations) where each element has a value of 5000, since this is the

number of samples configured in the test harness. Array Bb̄ amounts to a global

histogram, where the value of the element at bin b̄ is the sum of the bin count b̄ of

the individual histograms. Fig. 5.3 shows the butane example’s global histogram

Bb̄ where there are 20 bins with the total bin count indicated above. The bins are

layered so as to demonstrate the individual contributions from the test harness

sample generation at each umbrella centre.

5.2.2 Distribution Biases

The distribution bias indicates the extent to which the sampling probability is

modified along the reaction coordinate during an Umbrella Sampling simulation.

38

Figure 5.4: Computation of the distribution biases ch,b̄, of the butane example.
The 7 simulations produce an array with 7 rows, where each element is computed
with Eq. (3.5) at the centre of the corresponding bin.

It is the distribution introduced by the biasing potential Eq. (2.5), and hence it

is computed from the Umbrella Sampling configuration, rather than the samples.

Each element of the distribution bias array, ch,b̄, is the value of the bias at bin b̄ for

simulation h. This is calculated with Eq. (3.5) where ξb̄ is the value of the reaction

coordinate at the centre of bin b̄. Consequently, the ch,b̄ array is two dimensional,

where each row corresponds to a simulation and each column to a bin.

Fig. 5.4 illustrates how the ch,b̄ array of the butane example is computed for the

simulations centred at −180◦ and 120◦. The top row of ch,b̄ relates to the −180◦

simulation where the first 5 values, each from the centre of the bin, are indicated on

the graph. The remainder of the row is approximately zero. The second last row

is computed from the second last simulation centred at 120◦. The same pattern

applies to all simulations to generate an array of 7 rows and 20 columns from the

7 simulations with 20 bins each.

39

5.2.3 Extension to n Dimensions

An additional benefit of pre-calculating the Hh, Bb̄ and ch,b̄ arrays is the conve-

nient extension to multiple dimensions. The butane example is based on the one

dimensional case, where only one reaction coordinate, the dihedral angle, is mea-

sured as the simulations proceed. In cases where numerous reaction coordinates

are measured, the histograms acquire the same number of dimensions as the num-

ber of reaction coordinates, so the bin indices b̄ become n-dimensional (n being

the number of reaction coordinates). All data structures utilised by the algorithm

can apply to n-dimensional scenarios by simply flattening the bin index b̄ in a row

major order. In the two-dimensional histogram case, rows of bins are laid out con-

tiguously to form a linear structure, thus flattening b̄ to a single dimension. This

is possible since there are no dependencies in the WHAM equations between data

in different bins and therefore applies to arrays Bb̄, ch,b̄ and pb̄. No modifications

are necessary for Hh or fh. The n-dimensional values of array ch,b̄ are computed

before flattening where the exponent of Eq. (3.5) is modified to include the sum

of n harmonics, given by

ch,b̄ = e
−1
kT

∑n
d=1

1
2
Kd(ξb̄d

−ξh0d
)2

(5.2)

where d is the dimension number inclusive of the upper bound n.

Upon completion of the algorithm, the final unbiased probability estimates pb̄

are reconstructed into a structure with the original dimensions. If the arrays are

flattened during construction, Hh and Bb̄ remain one dimensional and ch,b̄ remains

two dimensional therefore any number of reaction coordinates can be measured

without the need to modify the algorithm.

5.2.4 WHAM Implementations

Once arrays Hh, Bb̄ and ch,b̄ are computed by component 2©, iterative execution

of the WHAM equations can begin, a task performed by the CPU and GPGPU

implementations (components 3© and 4©). The first iteration of the butane exam-

ple (Fig. 5.5) illustrates the input and output arrays of a WHAM implementation

which leads to the calculation of new weighting factors fh.

40

Figure 5.5: Schematic illustrating the first WHAM iteration of the butane exam-
ple. Eqs. (3.1) and (3.2) show the two phases of the algorithm, described by Alg. 1
indicating their inputs (green) and outputs (red). The arrays Hh, Bb̄ and ch,b̄,
computed earlier, comprise input to Equation (3.1) along with the initial weight-
ing factor values, fh (all set to 1 to start with). The distribution bias array, ch,b̄,
is used again in Equation (3.2) with the unbiased probability estimates pb̄ (the
output of Equation (3.1)) to compute new values for fh.

Convergence is checked at the end of an iteration where a comparison is made

between the old values of fh and the new values of fh. If the absolute difference

between every old value and its corresponding new value of fh is less than a certain

tolerance value, the algorithm terminates and the latest values of pb̄ provide the

final probability estimates. These values are written to disk to be picked up by

component 5© which converts the probability to PMF.

Since the two implementations were developed to compare performance, they

are written to be as similar as possible. Both implementations read Hh, Bb̄ and ch,b̄

from the file system and store the data in low level single precision floating point

arrays. Both follow Alg. 1: the CPU version loops through the arrays whereas the

GPGPU version employs threads to perform the operations on each array element.

41

Both implementations are compiled with the NVidia CUDA nvcc complier V5.5.0

set to the highest level of optimization to ensure the GPU version is not faster due

to compiler optimizations.

5.2.5 Probability Estimates to PMF

After convergence the final task of the WHAM module, the calculation of PMF

from probability, is executed by component 5©. When the WHAM implementa-

tion terminates the most recent values of the unbiased probability estimates pb̄

are written to disk by the implementations (components 3© and 4©). The prob-

ability estimates are read by component 5© which are normalized and then PMF

is calculated with Eq. (2.4) to yield one PMF estimate per bin. These estimates

are then written to disk for validation and to create plots. To facilitate the exten-

sion to n-dimensions, component 5© is written in Clojure to take advantage of its

n-dimensional array library (NDArray).

5.3 GPU Design

CUDA’s single-instruction, multiple-thread[29] (SIMT) architecture extends the

single-instruction multiple-data (SIMD) paradigm to allow programming at the

thread execution level. For example, to decompose a sequential loop through a

100 element array onto a 4 processor multi-core CPU requires splitting the array

into 4 sub-arrays of 25 elements. Alternatively, in the SIMT paradigm, 100 threads

are assigned, each to a single element.

Data decomposition is typically the initial step[30] in the procedure to port se-

quential algorithms to the SIMT paradigm. The subsequent steps are: algorithm

selection, implementation and optimization. Algorithm selection entails extraction

of computations or instructions which are amenable to parallelism. For WHAM,

these are the summations of the products in the denominators of Equation (3.1)

and Equation (3.2). The GPGPU implementation of WHAM was approached in

two stages. Initially a prototype implementation was written and validated with

a minimal data set on a single block. This was followed by extension of the pro-

totype across multiple blocks to allow for larger problem sizes. This extension

42

necessitated a shift to a hybrid approach where sections of the computation are

performed on CPU and others on GPU. The final stage of the development proce-

dure, optimization, was performed incrementally by applying an optimization and

taking a run-time profile of the algorithm executed on a large data set. If run-time

was reduced another optimization iteration was repeated on the improved code

base.

5.3.1 Data Decomposition

Figure 5.6: CUDA domain decomposition for the butane example. The seven
histograms, indexed H0 to H6 are decomposed into rows, each with 20 bin intervals
B0 to B19. The block size is 4 × 4 which breaks the problem into 2 × 5 blocks,
where the last row is padded with zeros.

Identification of computationally expensive loops is a fundamental parallel de-

sign technique to reveal efficient GPGPU data decompositions. Alg. 1 contains two

expensive nested loop pairs, one for each of Eqs. (3.1) and (3.2), which both cycle

through the histograms and bins. Nested loop pairs suggest a two-dimensional

parallel data decomposition. For WHAM this decomposition is employed on the

grid and block level as illustrated by the decomposition of the butane example in

Fig. 5.6. The butane example comprises 7 histograms, each with 20 bins spaced at

18◦ intervals. Each histogram is assigned a row in the two-dimensional data struc-

43

ture, where the histogram index h points to the y-axis and the flattened bin index

b̄ points to the x-axis (similar to the distribution bias array ch,b̄). This assigns

one thread to each bin of each histogram, depicted as the smallest squares (thread

(0,0) is labelled) in the diagram. The block size must be a power of two, so in this

example it is chosen as 4 × 4, but this can vary and is limited by the maximum

number of threads allowed on a block. Twenty bins on the x-axis fits exactly into

5 blocks, but seven histograms is one short of two blocks on the y-axis. A common

strategy is to build a range check into the kernels, but our implementation pads

the last row with zeros instead (indicated as padded threads), since this does not

affect the outcome and simplifies the code by removing branch divergence.

5.3.2 SIMT algorithm

// Begin iteration loop

repeat

// Equation (3.1)

HCFh,b̄ ← Hh ∗ ch,b̄ ∗ fhold ;

colSumb̄ ← sumColumns(HCFh,b̄);

pb̄ ←
Bb̄

colSumb̄
;

// Equation (3.2)

CPh,b̄ ← ch,b̄ ∗ pb̄ ;

rowSumh = sumRows(CPh,b̄);

fhnew ← 1
rowSumh

;

until converged(fhold , fhnew);
Algorithm 2: The WHAM algorithm in the SIMT paradigm. Initial prototype
of the WHAM algorithm where the entire algorithm is executed to completion
on a single block.

The SIMT paradigm exposes a view of the WHAM algorithm which resembles

the equations more closely than the sequential algorithm. Each thread, indexed

by (h, b̄), handles execution of the GPGPU kernel described by Alg. 2. The first

step is to populate an intermediate, two-dimensional, shared memory array, HCF ,

44

with the product Hh ∗ ch,b̄ ∗ fhold . The summation in the denominator of Eq. (3.1)

is across histograms so each column of HCF is summed and the result applied

to the remainder of the equation to yield the unbiased probability estimates pb̄.

Next, for Eq. (3.2), another intermediate array, CP , is computed from the product

ch,b̄ ∗ pb̄. Since summation is across bins, the sum of the rows of CP are used as

the denominator to calculate the new weighting factors, fhnew . Finally fhnew is

compared with fhold and the iteration restarted if convergence is not reached.

Written as a proof of concept, the single block implementation (where thread

communication is synchronised) maintains numerous advantages over the multiple

block implementation: a single kernel invocation iterates until convergence, there

is minimal data transfer between CPU and GPU, the convergence loop executes

inside the kernel and all data structure indices are simple. However, a single block

limits the problem size to the maximum number of threads which can run on a

block. For current high end NVidia GPUs with compute capability 3.5 this limit

is 1024. This is sufficient for only the simplest one-dimensional scenarios and does

not justify parallelism from the outset. Therefore, multiple blocks are mandatory

to address larger, more complex problems.

5.3.3 Extension to multiple blocks

Parallel summation, such as the column and row summations (sumColumns()

and sumRows()) of Alg. 2, employs reduction which relies on thread synchro-

nization. However, accomplishing thread synchronization across multiple blocks

requires that kernel invocations return prior to any subsequent dependent calcula-

tions. This limitation exists since block synchronisation, and hence global thread

synchronisation is guaranteed only upon kernel returns. Consequently, a multi-

ple block WHAM implementation calls for two kernels, described by Alg. 3, one of

which terminates after sumColumnsGPU() and the other after sumRowsGPU().

Each kernel performs shared memory reduction contained within a block and writes

the intermediary block sums to global memory. To complete the summations the

intermediary sums are transferred back to the CPU, which performs the final

summation. This interleaves the kernel and equation boundaries as can be seen in

Alg. 3 where kernels 1 and 2 are shaded, the CPU code is unshaded, and kernel

45

// Begin iteration loop

repeat

// Kernel 1

// Equation (3.1)

HCFh,b̄ ← Hh ∗ ch,b̄ ∗ fhold ;

interColSumb̄ ← sumColumnsGPU(HCFh,b̄);

colSumb̄ ← sumColumnsCPU(interColSumb̄);

// Kernel 2

pb̄ ←
Bb̄

colSumb̄
;

// Equation (3.2)

CPh,b̄ ← ch,b̄ ∗ pb̄ ;

interRowSumh = sumRowsGPU(CPh,b̄);

rowSumh = sumRowsCPU(interRowSumh);

fhnew ← 1
rowSumh

;

until converged(fhold , fhnew);
Algorithm 3: The WHAM algorithm - Hybrid. Two kernels which perform
sections of computation are shown in the shaded regions and the unshaded lines
are executed on the CPU. After completion of each kernel, intermediary sum-
mation values are transferred to the CPU which completes the summation. In
the hybrid version the computation of the new weighting factors, fhnew , and the
convergence check loop is also executed on the CPU.

2 implements the final calculation pb̄ from Eq. (3.2). The final row summation,

the computations of fhnew and the convergence check are performed on the CPU,

where the new values of fhnew are transferred back to the GPU if another iteration

is initiated. If not, the probability estimates pb̄ are retrieved from GPU memory

if the algorithm converges.

5.3.4 Optimizations and Design Discussion

The strategy employed to gauge the effect of optimizations was to take performance

profiles with the Nvidia Visual Profiler and comment out individual code sections

46

to measure their run-time contributions. This allows profiling at the “line of

code” granularity. Times taken by the individual code fragments are shown in the

comments of the kernel code listings in Appendix A.

Initially, the histogram aggregates and the distribution biases, arrays Hh, Bb̄

and ch,b̄, are transferred to the GPU before any kernel calls. This proves to be

a considerable advantage of the WHAM algorithm compared with other iterative

algorithms because these form the majority of the data transfer and are unchanged

from iteration to iteration. Hence the arrays are only transferred once at start-

up. It is possible to pre-compute and transfer Hh ∗ ch,b̄ to the GPU to speed up

the calculation of the HCF array (Hh ∗ ch,b̄ ∗ fhold) by removing one multiplication

operation. This was attempted and it was found to speed up the algorithm by 4 ms

but it also drastically reduces the maximum problem size which can be attempted

due to memory constraints on the GPU device. As a result the decision was made

to omit this optimization.

The standard set of reduction optimizations[31] were applied to the summation

sections of the kernel with the exception of loop unrolling since this had a negligi-

ble effect. However, the discrepancy between the column summation and the row

summation times was of particular interest. The column summations of Kernel 1

were approximately twice as fast as that of the row summation of Kernel 2. This

discrepancy is counter intuitive to the concept of memory access coalescence. The

row summations access contiguous memory locations whereas the column summa-

tions access spanned memory locations, so the row summations are expected to

run faster. However, the reason for this discrepancy can be explained when taking

into account the number of active warps. During each reduction step the second

half of the row (or column) is added to the first half. In the case of the row sum-

mation all warps will remain active at each reduction step since the entire warp

must remain active if there is one active thread. At each column reduction step

however, the number of active warps is halved since there are no active threads in

the bottom half of the rows and these inactive threads generate no read cycles. To

achieve further run-time reduction based on this observation, the row summation

of Kernel 2 was replaced with a column summation of transposed values.

Another optimization made was to delay the writing of the unbiased probability

estimates pb̄ to global memory. The estimates are only required at algorithm

47

termination and since global memory writes are slow, Kernel 2 does not write pb̄

to global memory. Instead, upon convergence, a separate finalize kernel runs the

Kernel 2 algorithm up to the point of computing pb̄ and then writes these values

to global memory, which is then transferred to the CPU.

Further small scale optimizations were considered such as employing constant

memory to broadcast the histogram aggregates, but the contributions of these op-

timizations were deemed too insignificant to justify the time spent on development.

5.4 Measurements and Test Cases

Speed-up is defined as the ratio of the time taken on the GPU to the time taken

on the CPU. This ratio is obtained from time measurements taken by the CPU

and GPGPU implementations as part of their run-time process. Both versions take

measurements with the same timing API, at the same points in the algorithm, and

record the average of ten runs to account for any background process interference.

The total time and number of iterations are recorded which yields the average time

per iteration. This metric is comparable for iterative algorithms such as WHAM

since the number of iterations may vary.

Figure 5.7: Variation of the problem size by (a) increasing the number of his-
tograms (size of Hh) or (b) increasing the number of bins (size of Bb̄)

In a sequential, single threaded environment, computational operations typi-

cally execute at a roughly consistent speed which depends on the speed of the CPU.

This is not the case on the GPU architecture. As problem size increases on the

48

GPU the occupancy increases, which effectively increases the speed. This increase

tends to converge to a maximum as the problem size approaches the maximum

occupancy of the device. For this reason, to gain a thorough understanding of the

potential speed-up, a number of test cases are required with increasing problem

size. For WHAM, the problem size increases as the input arrays Hh, Bb̄ and ch,b̄

increase in size, which can happen in two ways: either an increase in the number

of histograms, which increases the size of Hh and ch,b̄, or an increase in the number

of bins, which increases Bb̄ and ch,b̄. Fig. 5.7(a) and (b) depict increases in the

number of histograms and bins respectively. The test cases were designed in such

a way that the size of Hh and the size of Bb̄ varied independently, thus allowing

us to isolate the effect of the variation on the speed-up.

Figure 5.8: Plot of the analytical PMF function used to generate samples for the
test cases and for validation. A two-dimensional extension of the butane example
was created, which ranges from −180◦ to 180◦ in the x and y dimensions.

Test cases were designed to evaluate the speed-up variation from small to large

problem sizes and to validate the correctness of the implementations with multi-

dimensional problems. For these reasons, and for easy visualization, a two di-

mensional analytic reference PMF function was created (Fig. 5.8), imitating the

49

measurement of dihedral angles. To mimic the measurement of two dihedral an-

gles, a periodic function, extended from the butane example, ranging from −180◦

to 180◦ in both the x and y dimensions was created. A total of 20 test cases

were created: 4 variations in the number of histograms (19× 19, 37× 37, 61× 61,

91× 91) each with 5 variations of the number of bins (30× 30, 60× 60, 90× 90,

120× 120, 180× 180). Each histogram was created from 50000 test harness gener-

ated samples. The irregular numbers of histograms is due to the fact that biases

are centred at the boundaries of each reaction coordinate (−180◦ and 180◦), as

they are in the butane example. For the 19× 19 case, the biases are spaced at 20◦

in each dimension, starting at −180◦ and ending at 180◦, giving a total of 19× 19

histograms. Similarly, biases spaced at 4◦ × 4◦ results in 91× 91 histograms. The

histogram bounds are consistent across all test cases, so variation in the number

of bins is inversely proportional to the bin width, hence the bin widths vary from

12◦ × 12◦ (30× 30 bins) to 2◦ × 2◦ (180× 180 bins).

Each test case was executed on both CPU and GPGPU implementations to

produce corresponding performance metrics and the final probability estimates,

pb̄. The test cases were run 10 times each and the average times were calculated

from these 10 runs. The CPU implementation test cases were run on an Intel

Core i7-3820 processor running at 3.60GHz on Ubuntu 12.10 (64 bit) with 8GB

of ram. The processor has 8 cores but only a single core was active during the

execution. The performance metrics include the total time taken by the algorithm

and the number of iterations, which determines the average time per iteration. For

the GPGPU implementation, the total time includes the time taken to allocate

and initialize GPU memory, all data transfers between host and device, and the

WHAM compute times. An Nvidia GTX670 with 1GB of on chip memory was used

on the same machine to execute the GPGPU test cases. The size of the on chip

memory enforces the maximum size of the GPGPU test cases which can be run.

Data transfer time comprises: initial Hh, Bb̄ and ch,b̄ array transfers, intermediary

summation data between kernel calls, the weighting factors fh between iterations,

and finally the probability estimates pb̄ once convergence is reached. For the test

cases, block dimensions were set to 32× 32, which breaks each single dimensional

array (Hh, Bb̄, fh, pb̄) into 32 element sections and the ch,b̄ into 32× 32 elements.

50

Chapter 6

Results and Discussion

Our evaluation focuses on two key aspects of WHAM: validation of the PMF

estimates and measurement of performance gained from porting the algorithm from

CPU to GPGPU architectures. Validation is required to prove the test harness

generates samples comparable to Umbrella Sampling simulations and to verify that

the WHAM implementations compute the correct PMF from these samples. A

quantitative measure of accuracy (RMSD) is also crucial to ensure there is minimal

PMF estimate variation across all test cases, since any speed-up is inconsequential

if the trade off is a significant reduction in PMF accuracy. Additionally, the RMSD

indicates the expected error range of the WHAM implementations.

As part of the evaluation both speed and speed-up are analysed. A fundamen-

tal measurement of performance of a parallel algorithm is the speed-up attained

over its sequential counterpart. Speed-up is the ratio of the parallel to sequential

execution speed, where, for this evaluation, speed is defined as the problem size

(product of number of histograms and bins) over the average time per iteration

for each test case.

6.1 Validation of the Test Harness

Validation affirms that both modules developed to evaluate WHAM (Chapter 5)

function as expected. Validation of the test harness and our WHAM implemen-

tations is done by comparison of the PMF produced from the statistical sam-

51

ples (discussed in Chapter 5) by the Grossfield reference WHAM and our GPU

WHAM implementations with the original analytical PMF (Fig. 6.1). The max-

imum deviation of the Grossfield implementation (red line), at the 9◦ bin centre,

is approximately 8% and that of the GPGPU implementation (green line), at 99◦,

approximately 11%. Taking into account the minimal number of samples, his-

tograms and bins employed, the figure clearly shows that both implementations

exhibit very similar deviations from the analytic PMF, with an RMSD of 0.43 for

the Grossfield implementation and 0.46 for our implementation. The test harness

Figure 6.1: Comparison of three PMFs of the butane example: the analytic
reference PMF(pmfref (ξ)), used to generate samples, and estimates computed
by the Grossfield(pmfgrss(ξ)) and GPGPU(pmfgpu(ξ)) WHAM implementations.
The reference PMF is rendered as a thick, smooth curve and the estimates as
connected points in the center of each 18◦ bin interval.

is validated by the fact that the Grossfield WHAM PMF estimates align with the

analytic PMF used by the test harness to generate samples. With the test har-

ness validated, the samples were then employed to validate the CPU and GPGPU

implementations. This proved a valuable tool during the development and opti-

mization phases of both implementations, since all modifications made could be

rapidly evaluated. In addition, the test harness assists in efficient selection of Um-

brella Sampling parameters (umbrella spacing and spring constants) since it can

rapidly expose unreliable configurations.

52

6.2 Validation of the Test Case PMFs

The PMF estimates generated with the test cases were validated against the two-

dimensional analytic reference PMF (Sec. 5.4). This was carried out by calculation

of the RMSD for each test case, to confirm consistency across all cases. Table 6.1

verifies that all test cases were equally successful, as seen by the small deviation

in RMSD values. The RMSD values are presented in grid format where each row

lists the number of histograms (19 × 19 to 91 × 91) and each column list the bin

intervals of histograms (30 × 30 to 180 × 180). PMF estimates of the four test

cases labelled (a), (b), (c), (d) are plotted in Fig. 6.2 below.

RMSD

No. of Bins

30× 30 60× 60 90× 90 120× 120 180× 180
No. of 19× 19 (a) 1.76 1.76 1.75 1.73 (b) 1.72

Histograms 37× 37 1.61 1.61 1.61 1.61 1.60
61× 61 1.61 1.61 1.61 1.61 1.61
91× 91 (c) 1.61 1.60 1.60 1.60 (d) 1.60

Table 6.1: Grid of RMSD measurements of all test cases against the 2-dimensional
analytic PMF. Each row represents an increase in the number of histograms with
the 5 variations of bin intervals. Four test case PMFs, indicated with (a), (b), (c)
and (d) are illustrated below in Fig. 6.2.

The overall consistency in RMSD values across the range of test cases suggest

that problem size has very little influence on accuracy of the PMF estimates. In

practice, accuracy depends on more factors than the number of histograms and

bins, such as the number of samples taken and the umbrella overlap. The greatest

variation in the table is from the 19×19 to 37×37 histogram group. However, after

this, there is very little change, which suggests that accuracy approaches its limit

between these histogram groups. The increase in number of bins appears to have a

minimal effect on accuracy, with the only notable change occurring in the 19× 19

histogram group, which increases in accuracy as the number of bins increases.

This increase in accuracy can be misleading, as will be demonstrated next by the

plots in Fig. 6.2. Nonetheless, the overall consistency in accuracy, shows little

correlation between problem size and accuracy which implies the problem size can

53

increase beyond that of the test cases. Of prime importance, however, is that the

RMSD values verify that all test cases generate valid PMF estimates.

In addition, surface plots of four test case PMFs (19×19 and 37×37 histograms

with 30 × 30 and 180 × 180 bins each) illustrate how the accuracy of the PMF

estimates varies with problem size. Fig. 6.2 shows surface plots from four of the

twenty test cases (Table 6.1 (a) - (d)), to illustrate the effect of the variation of

histograms and bins. These four plots, arranged in a grid, show the combination

of the minimum and maximum numbers of histograms (y-axis) and bins (x-axis).

Fig. 6.2 (a) and (c) illustrate PMF estimates generated with the minimum

number of bins (30 × 30), which produce sparser results. These sparse estimates

are adequate for the two-dimensional test PMF, since the energy barriers are far

wider than the bins. However, in scenarios with steep energy barriers, a greater

number of bins would be required, such as those of plots (b) and (d) which produce

finer grained results allowing sharper PMF curves. The peak PMF regions of (a)

and (b), the minimum number of histograms, are less smooth than the bases, which

accounts for the higher RMSD values. However these RMSD values are only 2%

less accurate than the substantially higher number of histograms (91× 91) in (c)

and (d). RMSD values give a measure of overall accuracy and do not necessarily

equate to better accuracy at specific points. In the 19×19 histogram case (b), more

bins may result in a less accurate estimate due to the variance of the estimates

in the higher PMF regions, a consequence of the decrease in sample density per

bin. As mentioned earlier, this can be misleading, since the overall accuracy is

good but readings taken at points where the PMF estimates fluctuate greatly may

yield unpredictable results. The choice of the number of histograms and bins is

best determined on a case-by-case basis. If there is any prior indication of the

PMF landscape, then the test harness can prove a useful tool to estimate the most

efficient choice of Umbrella Sampling configuration.

The graphs of PMF estimates in Fig. 6.2 verify that all test cases are consistent

with the analytic reference PMF. The consistency of the PMF estimates of all test

cases provides assurance that the performance measurements are not biased by

accuracy deviations. In addition, these graphs also verify that the test harness

and WHAM implementations function correctly when extended to two-dimensional

PMFs.

54

Figure 6.2: Surface plots of a 2D PMF computed by WHAM. Four test cases
are shown to illustrate effects of variation of the sizes of H (y-axis) and B (x-
axis). The Root Mean Square Deviation (RMSD), given alongside, represents the
difference between the PMF computed by WHAM and the reference PMF. The
smaller the value of the RMSD, the better the overall accuracy.

6.3 GPGPU WHAM Run-time Profile

Fig. 6.3 shows the run-time profile of 19×19 histograms and 180×180 bins test case

(Table 6.1(b)), demonstrating WHAM’s suitability to the GPUPGU architecture.

The profile illustrates the time taken by the various stages of GPGPU program

execution. Initial memory transfer (MemCpy), the data transfer of the Hh, Bb̄ and

ch,b̄ arrays from the CPU to GPU, takes a substantial block of time at start-up

(the initial CPU start-up time of approximately 0.032s, which includes reading

55

Figure 6.3: Visual profile of the run of a single test case. The x-axis shows
the timeline in seconds and each row distinguishes a stage of execution: CPU
execution, memory transfers and CUDA kernels. The top row identifies all CPU
processing times. The row labelled MemCpy (CPU to GPU) indicates times taken
to transfer memory from the CPU to GPU (downwards arrows) and vice versa
for row MemCpy (GPU to CPU) (upwards arrows). The time blocks for kernel
1 and kernel 2, are indicated for each iteration (the first and last iterations are
illustrated).

the array data files, is omitted from the profile for brevity). MemCpy is followed

by a cycle of WHAM iterations, demarcated by dashed lines, which repeat until

convergence, at 53 iterations in this case (the first and last iterations are shown).

The initial data transfer is followed by the GPGPU iteration steps (Alg. 3). For the

first iteration, data transfer (up and down arrows) of the weighting factors (fh), the

intermediary and final column summations (interColSumb̄ and interColSumb̄),

and the intermediary row summations (interRowSumh) account for approximately

7% of the iteration time. CPU processing accounts for approximately 25%, which

includes the final column and row summations, the calculation of new weighting

factors and the convergence check. The GPU computations take the majority share

(68%) of total iteration time, spilt into Kernels 1 and 2 by the ratio indicated in

the process names. For this test case, kernel 2 takes the majority of the time since

test case (b) has a far greater number of bins (180×180) than histograms 19×19,

making the calculation of the intermediary row summations (interRowSumh) the

dominant GPGPU step. This would alter for different test cases.

As is clear in Fig. 6.3, initial memory transfer takes a longer time than a sin-

gle iteration. However, it is unusual that the WHAM algorithm converges in a

single iteration, for example, the figure depicts 53 iterations, and the larger test

cases take over 400. Typically, the initial data transfer accounts for a small por-

tion of the total time, e.g. less than 2% for test case (b). This proves to be a

56

considerable advantage of the WHAM algorithm, since the bulk of the data are

transferred at start-up and are unchanged from iteration to iteration. This profile

clearly demonstrates that WHAM is amenable to parallelism, since the GPU com-

putation predominates and there is minimal data transfer time per iteration. The

CPU computation accounts for the next highest time component, which suggests

opportunity for further heterogeneous parallelism. The CPU calculations of our

implementations are all single threaded, but this can easily be extended to multiple

threads on a multi-core CPU. Profiles, such as the one in Fig. 6.3, are valuable de-

velopment tools since they identify bottle necks which prioritize opportunities for

improvement and they verify that the WHAM algorithm is suitable for GPGPU

implementation.

6.4 Implementation Performance

Performance improvement of a parallel algorithm is measured in terms of speed-

up, and, in addition, GPGPU parallelism speed-up is problem size dependent, due

to data transfer and occupancy. Table 6.2 lists the size dependent speed-ups of

the test cases. The maximum speed-up achieved is 19.14× for the test case with a

problem size of 61×61 histograms and 180×180 (shaded block). Problem size for

each test case, the combination of the number of histograms and the number of

bins, is shown as the first two columns of the table. The raw measurements, total

execution time and the number of iterations (taken from an average of 10 runs)

were recorded for the CPU and GPGPU implementations as part of their run-time

process. The average time per iteration, one column for the CPU (column 5) and

one for the GPU (column 7), is computed from the total execution time divided by

the number of iterations. Average time per iteration is a comparable time metric

since the test cases have unequal numbers of iterations (column 3).

Surprisingly, the maximum speed-up (19.14×) is not achieved with the maxi-

mum problem size. Speed-up tends to increase as the problem size increases so it

would be reasonable to assume that the largest problem size exhibits the greatest

speed-up. However, there is an unexpected decrease in the last histogram group

(91 × 91). Although not obvious from the table, this is a consequence of an in-

crease in CPU speed rather than a decrease in GPU speed and, illustrated later

57

CPU GPU

Average Average Average Average
Total Time per Total Time per Speed-up

No. of No. of No. of Time Iteration Time Iteration CPU/

Histograms Bins Iterations1 (ms) (ms) (ms) (ms) GPU

19× 19 30× 30 52 173 3 68 1.3 2.55
60× 60 53 756 14 102 1.9 7.39
90× 90 53 1767 33 160 3.0 11.03

120× 120 53 3205 60 240 4.5 13.34
180× 180 53 7334 138 461 8.7 15.89

37× 37 30× 30 232 2888 12 244 1.1 11.82
60× 60 233 12599 54 784 3.4 16.08
90× 90 234 29021 124 1686 7.2 17.21

120× 120 234 52056 222 2878 12.3 18.09
180× 180 234 118822 508 6322 27.0 18.79

61× 61 30× 30 227 8024 35 545 2.4 14.73
60× 60 228 33574 147 1928 8.5 17.42
90× 90 228 77084 338 4246 18.6 18.15

120× 120 228 138116 606 7330 32.1 18.84
180× 180 228 315983 1,386 16511 72.4 19.14

91× 91 30× 30 408 25363 62 1983 4.9 12.79
60× 60 410 104298 254 7346 17.9 14.20
90× 90 411 241101 587 16394 39.9 14.71

120× 120 411 428575 1,043 28952 70.4 14.80
180× 180 411 985780 2,398 65282 158.8 15.10

1 The Number of iterations is the same for both CPU and GPU versions.

Table 6.2: WHAM performance metrics for 20 test cases: Each block delineates
the number of histograms with five variations of the number of bins. The prob-
lem size is indicated by the first two columns, the combination of the number of
histograms and number of bins. The number of iterations each test case took is
listed in the next column followed by the total time and average time per itera-
tion, first for the CPU and then the GPU. The speed-up of the GPU over the CPU
implementation is listed in the final column with the highest value highlighted.

in Fig. 6.4.

An interesting observation is the short total times (985780 ms and 65282 ms)

of the largest problem size (91× 91 histograms and 180× 180 bins - roughly 268M

elements). The total run-time for this test case was approximately 16 minutes

on CPU and 1 minute on the GPU. Both these times are significantly shorter

than the time required to run the Umbrella Sampling simulations (91× 91 is 8281

simulations). Seemingly, this fact suggests that parallel implementation is not

justified, however there are a number of factors to take into consideration. Firstly,

58

the test cases are based on a smooth analytical reference PMF with low energy

barriers, resulting in few iterations required to converge. In cases where the number

of iterations may reach upwards of 10000, the total CPU run-time exceeds 6 hours,

while the GPU run-time is approximately 26 minutes. Another factor to consider

is the impracticality of running many Umbrella Sampling simulations. In scenarios

where multiple reaction coordinates are under investigation, special techniques are

required to selectively sample reaction coordinate regions to reduce the number

of simulations to a practical number. An informal exercise was conducted where

30 simulations were run measuring 12 reaction coordinates. The n-dimensional

GPGPU WHAM implementation was then applied by padding the unsampled

regions of the Hh, Bb̄ and ch,b̄ arrays with zeros. This significantly reduced the

disparity between simulation time and WHAM time, however, the problem of

sparse PMF estimates this generates is currently being addressed by the author.

Fig. 6.4 shows the speeds and speed-ups for the test cases as the number of

histograms and number of bins varies. This indicates the problem size where

GPGPU execution becomes viable and the maximum speed-up expected beyond

the tested problem sizes. Fig. 6.4(a) and (b) show the problem size dependent GPU

(blue) and CPU (green) speed variation as the number of histograms increases (a)

and as the number of bins increases (b). Figs. (c) and (d) show the corresponding

speed-up against the same histogram and bin increases (problem size variations

are described in Sec. 5.4 with Fig. 5.7).

The speed graphs (Fig. 6.4(a) and (b)) confirm that GPGPU performance

varies with problem size, whereas the CPU version is approximately constant.

The jump from the 19× 19 to 37× 37 histogram groups exhibits the largest GPU

speed increase. Over the subsequent histogram groups this speed converges to a

value of about 1800K elements/msec. This convergence suggests that the GPGPU

implementation will not exceed a speed of 1800K elements/msec as the problem

size increases beyond what is tested, which confirms the test case problem sizes are

sufficient. The speed-up graphs (c) and (d) indicate approximately 19× maximum

parallel speed-up, where (d) suggests that this speed-up will converge to this value.

An unexpected observation is the decrease in speed-up of the 91×91 histogram

test cases in graph (c). This is explained by the implementations’ speeds in graph

(a). This graph shows that the GPU speeds of all series increases from the 61×61

59

Figure 6.4: Performance of the CPU and GPU implementations versus the num-
ber of histograms and number of bins. Performance is measured by two factors:
the speed of the implementations (a and b) and the speed-up (c and d). GPU
and CPU speeds are shown on the same axis with the inset providing finer detail
of the CPU speeds. The left hand side (a and c) illustrates the performance as
the number of histograms is varied, (Fig. 5.7 (a)) where the number of bins is
held fixed for each line. The right hand side shows the speed and speed-up as the
number of bins is varied where each line represents a fixed number of histograms
(Fig. 5.7 (b)).

to the 91× 91 histogram groups, as expected. However, the inset shows that, for

all bin series, the CPU speed of the 91× 91 histogram group increases unexpect-

60

edly by a relatively constant amount (approximately 30%). The reason for this

is unknown. Hence, the decrease in speed-up is a consequence of the increased

CPU implementation speed, rather than a decrease in GPGPU implementation

performance. The effect of the CPU speed increase is visible in the other graphs:

(b) shows the jump in CPU speed in the zoom box and (d) shows the overall

consistent decrease in speed-up for the 91× 91 histogram group.

The results affirm the validity of the test harness and of the WHAM imple-

mentations by comparison with the reference Grossfield WHAM implementation.

A performance comparison was not conducted against the Grossfield implemen-

tation since it has not been optimized for performance and our WHAM imple-

mentations do not parallelize all phases of WHAM but only the iteration of the

equations. However, the maximum speed-up (19.14×) of the GPGPU implemen-

tation confirms the feasibility of a parallel implementation of WHAM, and future

steps comprise parallelizing the creation of the histogram aggregates (Hh, Bb̄) and

distribution biases (ch,b̄).

6.5 Comparison Against Alternative Sequential

Implementations

Grossfield WHAM has applications for one and two dimensional WHAM calcula-

tions. Version 2.0.8, released on October 8th 2013, contains performance enhance-

ments for the two dimensional implementation which increases calculation speed

by up to 100 times faster than the previous version. When initial investigations

of the available WHAM implementations was conducted, the sequential version

written for this research far outperformed the Grossfield implementation. This

was expected since high performance was not the goal of the Grossfield applica-

tions. However, a measurement of the WHAM times for the 61 × 61 histograms

and 180 × 180 bins data set was recently taken and it was found to be approxi-

mately 3 times faster than the sequential version used to obtain the results in this

thesis. This reduces the GPU implementation speed-up to approximately 6 times

faster than the fastest current sequential two dimensional WHAM implementation.

Inspection of the code revealed that a portion of this performance improvement

61

can be attributed to similar caching mechanisms used in our algorithm to avoid

repeated calculation of the distribution biases (ch,b̄).

A number of alternative sequential implementations were developed during the

initial investigation stages to gain an understanding of the performance of differ-

ent technology options. Three Java implementations were developed: a sequential

version, a classic Java multi-threaded version and multi-core version which em-

ployed the more recent Fork/Join framework. When run on an 8 core Intel i7

processor a 4× speed-up was observed by the two parallel versions compared to

the sequential version. There was little observable difference between the two par-

allel versions since the operating system allowed for the Java threads to run on

separate cores. Sequential C and parallel OpenMP versions were developed with

the same algorithm as the Java versions. A similar 4× speed-up was observed

from the sequential to parallel versions. The half-linear speed-ups observed in

both cases indicated that a modification of the computational model was required

to achieve increased performance. Additionally, these observations led to the de-

cision to focus on a sequential C implementation compared to a parallel GPGPU

implementation to constrain the scope of the thesis.

62

Chapter 7

Conclusions

We found that the WHAM algorithm is well suited to SIMT parallelism and yields

a speed-up of approximately 19 times over the CPU version, making the GPGPU

implementation a feasible option. One of the key advantages of the WHAM algo-

rithm comes from the fact that data sets need only be transferred to the GPU once,

before the algorithm commences, after which point the compute time outweighs

the intermediary data transfer times. This, combined with pre-computing the Hh,

Bb̄ and ch,b̄ arrays, allows large, n-dimensional data sets to execute successfully

and efficiently. The facility to process n-dimensional simulation data provides the

means to study more complex molecular systems, such as systems where the PMF

is dependent on multiple reaction coordinates. However, there are still practical

limits on the number of reaction coordinates measurable, since every extra reaction

coordinate results in an exponential rise in problem size. This exponential increase

is especially problematic when considering the number of Molecular Dynamics sim-

ulations required; too many would become impractically time consuming. In this

regard, the test harness proved a valuable alternative to generating samples on

Molecular Dynamics platforms and for validation of the WHAM implementations.

The test harness has potential use in future development of Molecular Dynamics

simulation and post simulation data analysis systems, for example, systems which

allow selective Umbrella Sampling in isolated regions of conformational space.

These systems are not limited to Umbrella Sampling simulations since the test

harness can be easily extended to generated samples analogous to basic Molecular

63

Dynamics simulations or to other enhanced sampling techniques.

The speed-up that may have been obtained from paralellization of the his-

togram creation and array construction phases were purposefully omitted from

this study. This was to restrict the focus primarily to the speed-up obtained with

the WHAM equations. Future enhancements could include GPU implementation

of all pre- and post-processing to provide a complete WHAM package, along with

mechanisms to allow a reduced number of simulations as inputs. The utility of the

test harness and the viable performance increase of the WHAM algorithm demon-

strated in this study provide valuable starting points towards analysis of ever more

complex molecular systems.

64

Appendix A

CUDA kernels

Listings of the CUDA Kernels used in the GPGPU implementation (Alg. 3).

Each kernel begins with calculation of the required indices to retrieve data from

global memory. Next a shared memory block is populated (s HFC and s CP)

and sum reduced. The summations in each block are saved to global mem-

ory and transferred to the CPU to complete the summation.

Kernel 1 : Calculate Hh ∗ ch,b̄ ∗ fhold and sum across histograms.

static __global__ void dColSum(int* d_H , float* d_C , float←↩
* d_Fold , float* d_col_sum_inter , unsigned int H, ←↩
unsigned int B) {

// Get indices

unsigned int s_tx = threadIdx.x;

unsigned int d_tx = BLOCKSIZE * blockIdx.x + ←↩
threadIdx.x;

unsigned int d_size_x = gridDim.x * BLOCKSIZE;

unsigned int s_ty = threadIdx.y;

unsigned int d_ty = BLOCKSIZE * blockIdx.y + ←↩
threadIdx.y;

unsigned int d_x_y_flat = d_ty * d_size_x + d_tx;

// Create shared mem HFC

__shared__ float s_HFC[BLOCKSIZE][BLOCKSIZE];

65

// Calculate HFC

// @@ 14 ms - 10 ms with pre -cached HC

s_HFC[s_ty][s_tx] = d_H[d_ty] * d_Fold[d_ty] * d_C←↩
[d_x_y_flat];

__syncthreads ();

// Sum reduce each column of HFC

// @@ 16 ms

for (unsigned int stride = blockDim.y / 2; stride ←↩
>= 1; stride >>= 1) {

__syncthreads ();

if (s_ty < stride) {

s_HFC[s_ty][s_tx] += s_HFC[s_ty + ←↩
stride][s_tx];

}

}

__syncthreads ();

// Save row 0 to global mem

// @@ 4 ms

if (s_ty == 0) {

d_col_sum_inter[d_size_x * blockIdx.y + ←↩
d_tx] = s_HFC [0][s_tx];

}

}

66

Kernel 2 : Calculate Pb̄ and sum across bins.

static __global__ void dRowSum(int* d_B , float* d_C , float←↩
* d_P , float* d_col_sum_inter , float* d_row_sum_inter , ←↩
unsigned int H, unsigned int B) {

// get indecies

unsigned int s_tx = threadIdx.x;

unsigned int d_tx = BLOCKSIZE * blockIdx.x + ←↩
threadIdx.x;

unsigned int d_size_x = gridDim.x * BLOCKSIZE;

unsigned int s_ty = threadIdx.y;

unsigned int d_ty = BLOCKSIZE * blockIdx.y + ←↩
threadIdx.y;

unsigned int d_x_y_flat = d_ty * d_size_x + d_tx;

// Work out P for each bin

float P = 0;

float denom = d_col_sum_inter[d_tx];

// @@ 4 ms

if (denom != 0) {

P = d_B[d_tx] / denom;

}

__syncthreads ();

// Create shared mem CP

__shared__ float s_CP[BLOCKSIZE][BLOCKSIZE];

// @@ 8 ms

s_CP[s_tx][s_ty] = P * d_C[d_x_y_flat];

__syncthreads ();

// Sum reduce each column of the CP Transposed - ←↩
column summation is faster than row summation.

// @@ 20 ms

for (unsigned int stride = blockDim.y / 2; stride ←↩
>= 1; stride >>= 1) {

__syncthreads ();

if (s_ty < stride) {

s_CP[s_ty][s_tx] += s_CP[s_ty + ←↩
stride][s_tx];

67

}

}

__syncthreads ();

// Save row 0 to global mem - transposed

// @@4 ms

if (s_tx == 0) {

d_row_sum_inter[d_ty * gridDim.x + ←↩
blockIdx.x] = s_CP [0][s_ty];

}

}

68

Bibliography

[1] Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen,
and Peter A Kollman. The Weighted Histogram Analysis Method for Free-
Energy Calculations on Biomolecules. I. The Method Journal of Computa-
tional Chemistry, 13(8):1011–1021, October 1992.

[2] Jacob D. Durrant and J. Andrew McCammon. Molecular dynamics simula-
tions and drug discovery. BMC Biology, 9(1):71, October 2011.

[3] Michael Levitt and Arieh Warshel. Computer simulation of protein folding.
Nature, 253(5494):694–698, February 1975.

[4] John G. Kirkwood. Statistical Mechanics of Liquid Solutions. Chemical Re-
views, 19(3):275–307, December 1936.

[5] G. M. Torrie and J. P. Valleau. Nonphysical Sampling Distributions in Monte
Carlo Free-Energy Estimation: Umbrella Sampling. Journal of Computational
Physics, 23(2):187–199, February 1977.

[6] B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella,
B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves,
Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im,
K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor,
C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock,
X. Wu, W. Yang, D. M. York, and M. Karplus. CHARMM: The Biomolecu-
lar Simulation Program. Journal of Computational Chemistry, 30(10):1545–
1614,2009.

[7] Jochen S. Hub, Bert L. de Groot, and David van der Spoel. g wham A Free
Weighted Histogram Analysis Implementation Including Robust Error and
Autocorrelation Estimates. Journal of Chemical Theory and Computation.,
6(12):3713–3720, August 2010.

[8] Grossfield, Alan, ”WHAM: the weighted histogram analysis method”, version
2.0.7, http://membrane.urmc.rochester.edu/content/wham

69

[9] Jeffrey K. Noel, Paul C. Whitford, Karissa Y. Sanbonmatsu, and José N.
Onuchic. SMOG@ctbp: simplified deployment of structure-based models in
GROMACS. Nucleic Acids Research, 38:W657–W661, July 2010.

[10] Tristan Bereau and Robert H. Swendsen. Optimized convergence for multiple
histogram analysis. Journal of Computational Physics, 228(17):6119–6129,
September 2009.

[11] Gongpu Zhao, Juan R. Perilla, Ernest L. Yufenyuy, Xin Meng, Bo Chen, Jiy-
ing Ning, Jinwoo Ahn, Angela M. Gronenborn, Klaus Schulten, Christopher
Aiken and Peijun Zhang. Mature HIV-1 capsid structure by cryo-electron mi-
croscopy and all-atom molecular dynamics. Nature, 497(7451):643–646, May
2013.

[12] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose
molecular dynamics simulations fully implemented on graphics processing
units. Journal of Computational Physics, 227(10):5342–5359, January 2008.

[13] John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-
accelerated molecular modeling coming of age. Journal of Molecular Graphics
and Modelling, 29(2):116–125, September 2010.

[14] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips.
GPU Computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[15] Berk Hess, Carsten Kutzner, David van der Spoel, and Erik Lindahl.
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scal-
able Molecular Simulation. Journal of Chemical Theory and Computation,
4(3):435–447, March 2008.

[16] Terrell L. Hill. Steric Effects. I. Van Der Waals Potential Energy Curves. The
Journal of Chemical Physics, 16(4):399–404, April 1948.

[17] J. P. Valleau and D. N. Card. Monte Carlo Estimation of the Free Energy by
Multistage Sampling. The Journal of Chemical Physics, 57(12):5457–5462,
December 1972.

[18] Benôıt Roux. The calculation of the potential of mean force using computer
simulations. Computer Physics Communications, 91(13):275–282, September
1995.

[19] Z. W. Salsburg, J. D. Jacobson, W. Fickett, and W. W. Wood. Application
of the Monte Carlo Method to the Lattice-Gas Model. I. Two-Dimensional
Triangular Lattice. The Journal of Chemical Physics, 30(1):65–72, January
1959.

70

[20] Alan M. Ferrenberg and Robert H. Swendsen. New Monte Carlo Technique
for Studying Phase Transitions. Physical Review Letters, 61(23):2635–2638,
December 1988.

[21] Alan M. Ferrenberg and Robert H. Swendsen. New Monte Carlo Technique for
Studying Phase Transitions ERRATA. Physical Review Letters, 63(15):1658,
October 1989.

[22] Alan M. Ferrenberg and Robert H. Swendsen. Optimized Monte Carlo Data
Analysis. Physical Review Letters, 63(12):1195–1198, September 1989.

[23] Daniel J. Sindhikara. Modular reweighting software for statistical mechani-
cal analysis of biased equilibrium data. Computer Physics Communications,
183(7):1560–1561, July 2012.

[24] John D. Chodera, William C. Swope, Jed W. Pitera, Chaok Seok, and Ken A.
Dill. Use of the Weighted Histogram Analysis Method for the Analysis of
Simulated and Parallel Tempering Simulations. Journal of Chemical Theory
and Computation, 3(1):26–41, 2007.

[25] Michael R. Shirts and John D. Chodera. Statistically optimal analysis of
samples from multiple equilibrium states. The Journal of Chemical Physics,
129(12), September 2008.

[26] Zhiqiang Tan, Emilio Gallicchio, Mauro Lapelosa, and Ronald M Levy. The-
ory of binless multi-state free energy estimation with applications to protein-
ligand binding. The Journal of Chemical Physics, 136(14), April 2012.

[27] Peter Eastman, Mark S. Friedrichs, John D. Chodera, Randall J. Radmer,
Christopher M. Bruns, Joy P. Ku, Kyle A. Beauchamp, Thomas J. Lane, Lee-
Ping Wang, Diwakar Shukla, Tony Tye, Mike Houston, Timo Stich, Christoph
Klein, Michael R. Shirts, and Vijay S. Pande. OpenMM 4: OpenMM 4:
A Reusable, Extensible, Hardware Independent Library for High Perfor-
mance Molecular Simulation. Journal of Chemical Theory and Computation,
9(1):461–469, January 2013.

[28] Rich Hickey. The Clojure programming language. In Proceedings of the 2008
Symposium on Dynamic Languages, July 2008.

[29] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
Parallel Programming with CUDA. ACM Queue, 6(2):4053, March 2008.

[30] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Pro-
cessors: A Hands-on Approach. Elsevier, February 2010.

71

[31] Mark Harris. Optimizing parallel reduction in CUDA. NVIDIA Developer
Technology, 2, September 2007.

72

