
Exploring Reasoning with the DMOP Ontology

C. Maria Keet1, Claudia d’Amato2, Zubeida Khan1, and Agnieszka Ławrynowicz3

1 Department of Computer Science, University of Cape Town, South Africa
keet@ukzn.ac.za,zkhan@csir.co.za

2 Dipartimento di Informatica, Universita degli Studi di Bari, Italy
claudia.damato@uniba.it

3 Institute of Computing Science, Poznan University of Technology, Poland
agnieszka.lawrynowicz@cs.put.poznan.pl

Abstract. We describe the Data Mining OPtimization Ontology (DMOP), which
was developed to support informed decision-making at various choice points of
the knowledge discovery (KD) process. DMOP contains in-depth descriptions of
DM tasks, data, algorithms, hypotheses, and workflows. Its development raised a
number of non-trivial modeling problems, the solution to which demanded max-
imal exploitation of OWL 2 representational potential. The choices made led to
v5.4 of the DMOP ontology. We report some evaluations on processing DMOP
with a standard reasoner by considering different DMOP features.

1 Introduction

Ontologies can enhance data mining in several ways, ranging from early experiments
to improve clustering results [1] to let the miner learn from past mining experiments to
optimize the data mining [2]. The latter constitutes a ‘learning to learn’ (meta-learning),
which is defined as the application of machine learning techniques to meta-data about
past machine learning experiments with the aim of improving the performance of the
resulting model. The traditional meta-learning regarded only single machine learning
algorithms and treated them as black boxes. However, the quality of the mined model
not only depends on the output (learned model) of a single algorithm with characteris-
tics of its input (data), but also on other phases of the data mining process, such as data
cleaning and feature selection. This brings to the fore the requirement to describe the
knowledge on how the different components of the data mining process interact so as
to optimise the data mining/knowledge discovery (DM/KD) processes. CRISP-DM [3]
provides a high-level standard model for the process of data mining. Several data min-
ing ontologies exist, such as KDDONTO [4], KD ontology [5], DMWF [6] (for DM
workflows), and OntoDM [7] (for definitions of the basic DM concepts). However, they
lack the ability to manage the characteristics of algorithms.

To fill this gap, the Data Mining OPtimization Ontology (DMOP, pronounced dee-
mope; http://www.dmo-foundry.org/) was developed. Its primary goal is to sup-
port all decision-making steps that determine the outcome of the DM process. Its pri-
mary use case has been in the Intelligent Discovery Assistant (IDA, comprised of an
AI planner and semantic meta-miner) built within the e-LICO project (http://www.



hasValue

hasFeature

hasTable

realizes
achieves

executes

executesimplements

addresses

hasInput
hasOutput

hasSubprocessspecifies
InputClass

specifiesOutputClass

DM-Task

DM-Algorithm DM-Operator DM-Operation

DM-Workflow DM-Process

DM-Data

DM-Hypothesis

DM-Model DM-PatternSet

Dataset

LabeledDataset

DataTable

Feature

FeatureValueCategoricalLabeledDataset
NumberOfClasses, ClassEntropy, 
MaximumFeatureEfficiency, ...

isa
object/data property

Fig. 1. Graphical rendering of the core concepts of DMOP, with a selection of three DataChar-
acteristics that are related to CategoricallabeledDataset.

e-lico.eu) that is deployed in the popular data mining tool RapidMiner. DMOP pro-
vides a richly axiomatised—using almost all features of OWL 2 DL—unified frame-
work for analyzing DM tasks, algorithms, models, datasets, workflows and performance
metrics, and their relationships and constraints. We provide a summary of DMOP v5.4
in Section 2; further details are described in [2] from a DM perspective, and in [8]
from an ontology perspective. Anecdotal reports about reasoning over DMOP indicated
that it was time-consuming (10-20 mins to classify the ontology), and we made several
modelling decisions that may affect reasoner performance. To gain some insight into
this, we performed a few evaluations from a modeller and reasoner end-user viewpoint.
They are: establishing a baseline, the effect of the presence of the DOLCE foundational
ontology to which DMOP is linked, the effect of using inverse object properties versus
OWL 2 DL’s feature ObjectInverseOf(), and charting the landscape of automated
modularization of DMOP (see Section 3). DOLCE had a major effect on reasoner per-
formance (10 times longer with DOLCE), using the ObjectInverseOf(), reduced
the time by about a third, and there is room for improvement of the modularization
tools.

2 Overview of DMOP’s contents

The core concepts of DMOP (Fig. 1) are those essential for the data mining process
(DM-Process). The input consists of a task specification (DM-Task) and training/test
data (DM-Data); the output is a hypothesis (DM-Hypothesis), in the form of a global
model (DM-Model) or a set of local patterns (DM-PatternSet). A DM-Task specifies a
DM-process (or any part thereof) in terms of its input/output; a DM-Algorithm is the
specification that addresses a DM-Task. A DM-Operator is a program that implements
a given DM-Algorithm and instances of DM-Task and DM-Algorithm specify their in-
put/output types; note that only processes, called DM-Operations, have actual inputs
and outputs. A process that executes a DM-Operator also realizes the DM-Algorithm
implemented by the operator and achieves the DM-Task addressed by the algorithm.

Each main class has many subclasses that are richly axiomatised. Data is the pri-
mary resource that feeds the knowledge discovery process, and their characteristics are



represented in DMOP. Most characteristics concern statistical measures (e.g., the num-
ber of instances of a data set) or the absolute or relative frequency of a categorical fea-
ture value, and others are information-theoretic measures. The right-hand side of Fig. 1
shows a small sample of characteristics associated with one of the Data subclasses.

The top levels of the algorithm hierarchy match those of the task hierarchy, since
each algorithm class is defined by the task it addresses, but the overall hierarchy is much
deeper, since there is an often dense subhierarchy of algorithms that specify diverse
ways of addressing each task. DMOP contains in-depth knowledge of algorithms as
expressed in their elaborate network of object properties (see [2] for additional details).
Among others: has-quality relates a DM-Algorithm to an AlgorithmCharacteristic, such
as LearningPolicy (Eager/Lazy) and ToleranceToClassImbalance.

DMOP v5.4 has 758 classes, 169 object properties, 15 data properties and 4584 ax-
ioms. It uses almost all of the OWL 2 DL features. DMOP has 100 object sub-property
axioms, 110 equivalent classes axioms, qualified cardinality constraints, many proper-
ties have domain and range axioms declared (155 and 154 axioms, respectively) and
appear often in class descriptions, there are 4 transitive object properties and 45 with
inverse, and an owl:import for obsolete aspects. In addition, it uses punning exten-
sively and has 9 property chains that are comprehensive with domain and range axioms
and they link different ontology branches; as with punning, they cannot really be read-
ily removed, for they contribute to deriving a substantial amount of knowledge. DMOP
uses the weak form of punning available in OWL 2 to solve the modelling problem
with algorithms and input/output objects [8]. It is applied only to leaf-level classes of
IO-Object. Non-leaf classes are not punned, but represented by associated meta-classes;
e.g., the IO-Object subclass of DataSet maps to the IO-Class subclass of DataSetClass.
Another example is that the instances of the DM-Hypothesis class, which represents hy-
potheses generated by running an algorithm on the particular dataset, and the instances
of its associated meta-class DM-HypothesisClass are the leaf-level descendant classes
of DM-Hypothesis. Finally, there are many relations between all the branches in the
class hierarchy.

3 Brief reasoner evaluation

We outline the four tests conducted and the main motivation behind them. First, we
have anecdotal evidence of the time it takes to classify the ontology, which varied by
machine and version, ranging from about 10 minutes for v5.2 to over 20 minutes for
v5.2-v5.3. The first step is to obtain actual statistics for the current version in an ODE
(Protégé).

A substantial part of the OWL DL-formalised highly axiomatised DOLCE [9] with
ExtendedDnS (from the DLP397 archive) was extracted and merged with DMOP, adding
to DMOP 43 classes, 78 object properties, and 593 axioms. It may be that the relatively
slow performance is due to the features used in DMOP or a by-product from linking
to the DOLCE fragment. We will compare the ‘full DMOP’ v5.4 with performance ob-
tained with ‘DMOP without DOLCE’. If there is little difference, then the long time is
due to the rich axiomatization in DMOP itself.

Third, we hypothesise that new OWL 2 features may contribute to the performance.
SROIQ—and following from that, OWL 2 and Protégé 4.x too—has a function Inv on



roles, that can be used directly in the axiom. That is, instead of only InverseObject-
Properties(OPE1 OPE2) for two object properties in the ontology, such as addresses
with as inverse addressed by, one now can use ObjectInverseOf(OP), and have only
addresses whilst using (in Proteǵé notation) inverse(addresses) in an axiom (instead
of extending the vocabulary with addressed by). Both options have been used, but for
consistency of modelling, the former was chosen eventually. This test compares the
baseline with a modified DMOP-with-inverseOf. If performance is worse, then the al-
gorithms for the new feature may have room for improvement; if better, then that new
feature of OWL 2 is an improvement over OWL 1.

Fourth, modularization is used for, among others, divide-and-conquer reasoning and
collaborative ontology development, and it thus could be useful in DMOP reasoning
and maintenance. There are several tools (discussed below), and those algorithms only
work i) to find isolated subsections or ii) breaking it up into main branches or iii) make
a profile out of it. It is known that DOLCE does not modularise well with the extant
tools, because it is so dense across branches, which suggests it might not work well
with DMOP v5.4 either.
Data of the experiments are available at www.meteck.org/files/ORE14DMOP.zip.

Performance To find a baseline on a general good machine, DMOP v5.4 was loaded in
Protégé v4.2 and we measured the time for classifying all components (classes, prop-
erties, individuals) of the ontology. A MacBook Pro, MAC OS X v10.6.8, CPU 3.06
GHz Intel core 2 Duo, RAM 4 GB 1067 MHz DDR3 was used for the purpose. Once
loaded, HermiT v1.3.8 was selected and started (for FACT++, an error message “Rea-
soner Died”’ was returned). The classification times by component are included in Ta-
ble 1, first column.

Table 1. Classification times (in minutes) of DMOP and DMOP with ObjectInverseOf().

Component of classification DMOP v5.4 DMOP v5.4 inverses
Class Hierarchy 6 mins 3 mins
Object Property Hierarchy 2 mins 1 min
Data Type Property Hierarchy <1 min few secs
Class instances about 1 min <1 min

As regards the third test, given the current version of DMOP, for each object prop-
erty having a corresponding inverse object property within the vocabulary (n=45), we
removed the one having minor usage and we used the inverse(propertyName) in Protégé.
When the removed property was used, we adjusted the ontology in agreement of the us-
ages of the removed object property. Information regarding the time for classifying all
components on the current DMOP version, computed as for the baseline, are shown in
Table 1, second column. These results show that the ObjectInverseOf() feature of
OWL 2 improves the reasoner performance in the ODE by at least a third.

DMOP with and without DOLCE All of the DOLCE terms (ExtendedDnS that im-
ports DOLCE-lite) that had been merged into DMOP were removed except three object



Table 2. Classification times (in minutes) of DMOP with and without DOLCE.

Ontology version HermiT Pellet TrOWL
DMOP 1.3180 9.22375 0.14555
DMOP with DOLCELite&ExtendedDnS fragment 14.5005 timeout (over 8 hrs) 0.2692

PropositionalDataSet

DataSet

DataTable

=1 hasTable 

≥1 hasMainTable 

Fig. 2. Illustration of the problem of wrongly unsatisfiable class PropositionalDataSet.

properties that are widely used in DMOP’s axioms: DOLCE-Lite:has-quale, DOLCE-
Lite:has-quality, and DOLCE-Lite:inherent-in. Note, that since these properties were not
linked to any other DOLCE entities anymore (all of which had been removed) they
could be treated equivalently to as being local in DMOP. The tests were performed
within Protege v4.3 with MacBook Air with CPU 1.86 GHz Intel Core 2 Duo, RAM
2GB 1067 MHz DDR3, running Mac OS X v10.6.8. The tested reasoners included:
FaCT++ (v1.6.2), HermiT (v1.3.8), Pellet (v2.2.0), MORe (v0.1.5 HermiT/JFact/Expe-
rimental), TrOWL (v1.4).

The classification times are reported in Table 2; FaCT++ and MORe returned a
“Reasoner Died” message and therefore they are not included in the table. The re-
sults show that HermiT was more than 10 times faster when classifying DMOP without
DOLCE than when it classified DMOP with DOLCE. Pellet did not finish classifying
DMOP with DOLCE and DnS in 8 hours, while it classified DMOP alone in less than
10 minutes.

Both Pellet and TrOWL inferred inconsistent classes. In the case of Pellet, the incon-
sistencies concern the use of datatypes. For instance, the range of DMOP:hasDataValue
property is xsd:anyType, but in several axioms, more specific types are used, such
as ModelParameterCount v =1 hasDataValuexsd:nonNegativeInteger. Such ax-
ioms are correct, for xsd:nonNegativeInteger is a specialization of xsd:anyType,
but nevertheless Pellet returns an inconsistency. In case of TrOWL, the wrongly com-
puted unsatisfiable class concerns the use of role hierarchies, which is illustrated in
Fig. 2, where domain and range of both properties are declared as DataSet and DataT-
able, respectively, which are non-disjoint sibling classes subsumed by DM-Data, and
PropositionalDataSet ≡ DataSet u =1 hasTable.DataTable. According to the explana-
tion, PropositionalDataSet is inconsistent due to DataSet v ∃hasTable.DataTable and
hasMainTable v hasTable. Although TrOWL is an approximate reasoner, unsatisfiabil-
ity should not have been inferred: PropositionalDataSet can be kept satisfiable by deriv-
ing hasMainTable v hasTable and DataSet v =1 hasMainTable.DataTable; HermiT did
not derive anything. From a modelling viewpoint, one would expect a derivation due to
the subsumptions in opposite directions (see also SubProS in [10]) and the cardinality
constraints (the representation will be revised anyway).

Modularization We modularize the DMOP ontology using the extraction functionality
in Protégé v4.3. SWOOP [11], OWL API locality module extractor [12] and OWL Mod-
ule extractor (http://mowl-power.cs.man.ac.uk:8080/modularity/) were ex-



Table 3. Ontology metrics for DMOP and its related modules. #X represents the number of each
type of entity.

Ontology #Classes #OPs #DPs #Individuals #Axioms

DMOP.owl 758 169 15 459 4584
DMOP-profile-EL.owl 758 169 15 459 4214
DMOP-branch-Endurant.owl 512 169 15 459 3409
DMOP-branch-Perdurant.owl 19 169 15 459 1376
DMOP-branch-Abstract-Quality.owl 231 169 15 459 2131
DMOP-branch-Toplevel.owl 44 169 15 459 1428
DMOP-branch-Merge.owl 758 169 15 459 4359

perimented with, but they created modules that were too large because entities within
the DMOP ontology have many dependencies between them; there were no isolated
branches of the ontology that could be modularized. We use the ‘axioms by reference’
method in Protégé to select entities from an ontology to copy, move or delete. The copy
and move function returned an error, therefore we used the delete option to remove
unwanted entities from the module.This resulted in four branch modules, a module
of wholly-present entities (DMOP-Branch-Endurant), a module of entities that unfold
in time (DMOP-Branch-Perdurant), a module of entities that exist in neither space nor
time and property related entities (DMOP-Branch-Abstract-Quality), and a module that
has only DMOP’s top-level entities (DMOP-Branch-Toplevel). Thereafter, we merged
the axioms of the branch modules (DMOP-Branch-Merge) in order to compare it to the
original DMOP ontology. We also created an EL profile (DMOP-Profile-EL).

Table 3 displays a comparison of metrics for the DMOP modules. Note that merging
the branches does not result in the original ontology, as can be observed from the differ-
ence in number of axioms in the merged ontology cf. the original DMOP. It is apparent
that the module extraction feature in Protégé extracts classes in isolation and includes
the object properties, data properties, and individuals of the original ontology, including
those that do not relate to the classes in the module. For instance, in the DMOP-Branch-
Perdurant.owl module, the object property, solves exists. This has no dependencies to
the classes in the module and should not be present. The modularity tools could be
improved by taking into consideration other entity types that reference the selected en-
tity and also by allowing the user the choice of relaxing on logical principles such as
completeness, or by preserving the ontology’s knowledge by linking between modules.

4 Conclusions

The paper described the subject domain contents and some OWL 2 DL features used in
the richly axiomatised Data Mining OPtimization ontology. We explored the effect of
such modelling features on the performance of automated reasoners. Removing most of
DOLCE reduced the classification times tenfold, using the ObjectInverseOf reduced
the time by about a third, and there is room for improvement of the modularization tools.

Acknowledgements. We thank the contributors to DMOP: H. Do, S. Fischer, D.
Gamberger, M. Hilario, L. Al-Jadir, S. Jupp, A. Kalousis, P. Kralj Novak, B. Mougouie,
P. Nguyen, R. Palma, R. Stevens, A. Vavpetic, J. Wang, D. Wijaya, A. Woznica.



References

1. Zhou, Y., Young, J.A., Santrosyan, A., Chen, K., Yan, S.F., Winzeler, E.A.: In silico gene
function prediction using ontology-based pattern identification. Bioinformatics 21(7) (2005)
1237–1245

2. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-based meta-mining of
knowledge discovery workflows. In: Meta-Learning in Computational Intelligence. Volume
358 of Studies in Computational Intelligence. Springer (2011) 273–315

3. Shearer, C.: The CRISP-DM model: The new blueprint for data mining. Journal of Data
Warehousing 5(4) (2000) 13–22

4. Diamantini, C., Potena, D., Storti, E.: Supporting users in KDD processes design: a semantic
similarity matching approach. In: Proc. of the Planning to Learn Works. (2010) 27–34–134

5. Záková, M., Kremen, P., Zelezný, F., Lavrac, N.: Automating knowledge discovery work-
flow composition through ontology-based planning. IEEE Trans. Automation Science &
Engineering 8(2) (2011) 253–264

6. Kietz, J., Serban, F., Bernstein, A., Fischer, S.: Data mining workflow templates for in-
telligent discovery assistance and auto-experimentation. In: Proc of the ECML/PKDD’10
Workshop on Third Generation Data Mining (SoKD’10). (2010) 1–12

7. Panov, P., Dzeroski, S., Soldatova, L.N.: OntoDM: An ontology of data mining. In: ICDM
Workshops, IEEE Computer Society (2008) 752–760

8. Keet, C.M., Lawrynowicz, A., d’Amato, C., Hilario, M.: Modeling issues, choices in the
data mining optimization ontology. In Rodriguez-Muro, M., et al., eds.: OWLED. Volume
1080 of CEUR Workshop Proceedings., CEUR-WS.org (2013)

9. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. Wonder-
Web Deliverable D18 (ver. 1.0, 31-12-2003). (2003) http://wonderweb.semanticweb.org.

10. Keet, C.M.: Detecting and revising flaws in OWL object property expressions. In ten Teije,
A., et al., eds.: Proc. of EKAW’12. Volume 7603 of LNAI., Springer (2012) 252–266

11. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.A.: Swoop: A web ontology
editing browser. Journal of Web Semantics 4(2) (2006) 144–153

12. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. Journal of Artificial Intelligence Research (JAIR) 31 (2008) 273–318


