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ABSTRACT

This paper proposes a new Neuro-Evolution (NE) method
for automated controller design in agent-based systems. The
method is Generational Neuro-Evolution (GeNE), and is
comparatively evaluated with established NE methods in a
multi-agent predator-prey task. This study is part of an
ongoing research goal to derive efficient (minimising con-
vergence time to optimal solutions) and scalable (effective
for increasing numbers of agents) controller design methods
for adapting agents in neuro-evolutionary multi-agent sys-
tems. Dissimilar to comparative NE methods, GeNE em-
ploys tiered selection and evaluation as its generational fit-
ness evaluation mechanism and, furthermore, re-initializes
the population each generation. Results indicate that GeNE
is an appropriate controller design method for achieving ef-
ficient and scalable behavior in a multi-agent predator-prey
task, where the goal was for multiple predator agents to
collectively capture a prey agent. GeNE outperforms com-
parative NE methods in terms of efficiency (minimising the
number of genotype evaluations to attain optimal task per-
formance).

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms

Algorithms

Keywords

Neuro-Evolution, Conventional Neuro-Evolution, Multi-Agent
Enforced Sub-Populations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07$15.00.
http://dx.doi.org/10.1145/2576768.2598295.

1. INTRODUCTION
Neuro-Evolution [29], [9] has been demonstrated as effec-

tive for evolving various problem-solving collective behav-
iors in agent based systems [11], [24]. Collective behaviors
(those requiring agent cooperation) that emerge as the result
of interactions of cooperative or specialised agent behaviors,
have been demonstrated as adaptive, robust and efficient
problem solvers in a broad range of tasks [18], [20], [21], [5].
For example, collective behaviors have been evolved to solve
tasks such as multi-robot coordination and cooperation [18],
[2], multi-agent game playing [27], and multi-agent pursuit-
evasion [19], [5], [32].

However, an open research objective is to derive controller
design methods that evolve efficient and scalable collective
behaviors that are consistently effective across a broad range
of tasks. In this study, efficient refers to the number of
fitness (genotype) evaluations a method requires to reach
an optimal solution, and scalable refers to the capability to
retain efficient behavior as task complexity increases.

This paper introduces the Generational Neuro-Evolution
(GeNE) method for automated controller design. GeNE
contributes a tiered approach for selecting and evaluating
progressively fitter genotypes during each generation. This
allows low performance genotypes to quickly be removed and
the population to be periodically re-initialized in the region
of the fittest genotypes. This allows GeNE to rapidly focus
its search in optimal parts of the fitness landscape.

For complex tasks, NE usually requires many fitness (geno-
type) evaluations before a near optimal or optimal solution
is attained, and genotype evaluations are computationally
expensive and time consuming [15]. This problem is ex-
acerbated by multi-agent (collective behavior) tasks, where
the interactions of multiple agents required to solve such
tasks increases the dimensionality of the search space. Also,
many collective behavior tasks, such as multi-robot cooper-
ative transport and collective construction, are defined by
noisy, discontinuous, multi-modal search spaces [26], [1].

Several methods have been proposed as a means of in-
creasing Evolutionary Algorithms (EAs) efficiency. For ex-
ample, the interpolation between genotypes to build a meta-
model of the fitness function [16], the inheritance of fitness
from ancestral genotypes [25], and clustering genotypes and
assigning fitness to population sub-sets [17]. All of these ap-
proaches reduce the number of fitness evaluations required,
increasing EA efficiency in their respective tasks.

However, there has been relatively little successful re-
search into NE methods yielding increased efficiency and
scalability in collective behavior tasks. To increase efficiency



and scalability, GeNE combines techniques used in Evolu-
tionary Strategies (ES) [4] and Hill Climbers [23]. That is,
similar to ES, GeNE employs only mutation operators [7],
and similar to Hill Climbers [23], the genotype population is
periodically re-initialized in the neighbourhood of the cur-
rent fittest solutions in the fitness landscape [3]. An initial
experimental validation of GeNE’s efficiency and scalabil-
ity is conducted in controller adaptation in a multi-agent
predator-prey (pursuit-evasion) task for a range of preda-
tor team sizes. Conventional Neuro-Evolution (CNE) [12],
and Multi-Agent Enforced Sub-Populations (MESP) [32] are
also tested in the pursuit-evasion task. CNE and MESP
were selected as comparative methods since both have been
successfully applied to the pursuit-evasion task [19], [32].
Pursuit-evasion is indicative of a broader range of multi-

agent tasks that use emergent collective behavior such as
cooperation to enable problem solving [6]. Such tasks in-
clude multi-robot surveillance [10], [20], collective construc-
tion [21], and coordinated movement and search [2]. The
pursuit-evasion task in this paper used predator and prey
agents moving at equal speeds in a wrap-around world. A
consequence of this was that cooperation between predators
was mandated for prey capture.
Results support the efficacy of GeNE using efficiency and

scalability metrics in the pursuit-evasion task, and yield an
initial insight into the type of collective behavior tasks to
which GeNE is most suited as a controller design method.

1.1 Research Goal, Hypothesis, and Task
Research goal: Demonstrate that GeNE out-performs (with

statistical significance) the CNE and MESP controller de-
sign methods in a multi-agent pursuit-evasion task. Effi-
ciency and scalability metrics are used as the performance
metrics.
Research hypothesis: GeNE’s tiered genotype evaluation

mechanism allows GeNE evolved predator teams to achieve a
higher task performance (with statistical significance) in the
pursuit-evasion task, compared to CNE and MESP evolved
predator teams.
Pursuit-evasion task: Requires multiple predators to adapt

their collective behavior such that they capture a prey agent
[19]. The behavior of the prey is not adapted during sim-
ulation, but rather uses a static heuristic predator-evasion
behavior from previous experiments [32].

2. METHODS

2.1 CNE: Conventional Neuro-Evolution
CNE [12] uses the NE process illustrated in Figure 1(a).

A Genetic Algorithm (GA) [7] is applied to evolve a popula-
tion of Artificial Neural Network (ANN) controllers (section
3.1). Each team of predator controllers is represented in
the genotype population as a vector of all ANN connection
weights. CNE predator teams are heterogeneous in that
the genotype encodes N distinct predator ANN controllers.
Each generation of CNE, the team is evaluated in multiple
task trials (predator team lifetimes), and an average fitness
assigned to the genotype (predator team) being evaluated.

2.2 MESP: Multi-Agent Enforced Sub-Populations
MESP [32] uses cooperative co-evolution to adapt be-

haviors in a team of agent controllers (ANNs). Given N

genotype populations, N controllers are evolved, and evalu-
ated according to how well they solve a collective behavior
task. MESP teams are heterogenous since each controller
is evolved from a separate population. Figure 1 illustrates
an example of MESP applied to evolve three ANN predator
controllers.

MESP evolves hidden layer neuron weights and within
each population combines the fittest u neurons, selected
from u sub-populations (in each population) into complete
ANN controllers. Each sub-population evolves a neuron for
a specific hidden layer position, where neurons are evaluated
based on how well they function in a complete controller
(determined by fitness evaluations). Yong and Miikkulainen
[32] present a comprehensive description of MESP.

2.3 GeNE: Generational Neuro-Evolution
GeNE’s genotype is the same as used by CNE. That is, a

vector of all ANN connection weights for a team of N con-
trollers. However, GeNE differs from CNE in the following
respects:

1. GeNE uses mutation only. The motivation for this de-
sign choice was to investigate (within the context of
a collective behavior task) the benefits of mutated so-
lutions being applied, per generation, to progressively
fitter regions of the genotype space.

2. GeNE is generational. At the end of each generation
the population is re-initialized in a Cauchy distribution
around the generation’s fittest genotype.

3. GeNE’s genotype evaluation uses a tiered structure.
Initially, all genotypes are evaluated comparatively few
times. Only genotypes which perform well on these
evaluations are passed on to a subsequent tier of evalu-
ations in which they are evaluated further. The process
of passing fewer genotypes on to higher tiers continues
until only one genotype remains. The population is
re-initialized about this fittest genotype.

The GeNE process is enumerated in the following.

1. Tiered Evaluation: The genotypes are passed through
T evaluation tiers. Tier t accepts nt input genotypes,
evaluates them in ρt task trials, and outputs the nt+1

fittest genotypes (nt+1 < nt). These nt+1 fittest geno-
types are then input to tier t + 1. This process con-
tinues until one genotype is output by tier T. A task
trial was z iterations of a simulation run, during which
a genotype was evaluated.

2. Re-initialisation: At the end of each generation, the
population is re-initialized around the generation’s fittest
genotype. Every weight of the fittest genotype has a
random value drawn from a Cauchy distribution added
to it. This process is similar to burst mutation [32].

3. Stagnation Control: The fittest genotype is recorded
at each generation. Given that fitness values are nor-
malized between 0 and 100, then if the fittest genotype
of the current generation is not 20 units or fitter than
the fittest genotype 3 generations ago, then stagnation
has occurred. If so, GeNE is restarted.

4. Stop condition: Re-iterate steps [1, 3] until conver-
gence is achieved (prey-capture in this study), or GeNE
has run for Y generations. A generation is the pro-



(a) (b) (c)

Figure 1: (a) Conventional Neuro-Evolution (CNE). Complete ANN controllers are evolved from one population (Figure

from Gomez et al. [12], used with the permission of the authors). (b) Predator ANN Controller. Connection weights

were evolved by CNE, MESP or GeNE in pursuit-evasion experiments. (c) Multi-Agent Enforced Sub-Populations

(MESP). Example of MESP applied to evolve three predator controllers in a pursuit-evasion task (Figure from Yong

and Miikkulainen [32], used with the permission of the authors and the IEEE ).

cess whereby genotypes move up through the evalua-
tion tiers followed by re-initialization around the fittest
genotype.

Figure 2 illustrates the GeNE process.

3. PURSUIT-EVASION TASK
Pursuit-evasion requires a predator team to collectively

capture a prey in a multi-agent simulation [32]. The en-
vironment was a 100 x 100 wrap-around grid. Predators
always started in the top-left corner grid square, and the
prey at a random position. Both predators and prey moved
at equal speeds and had a global view of the environment
(always sensing opponent positions). The task was for the
predators to minimise the number of simulation (task trial)
iterations to prey-capture. Prey-capture occurs when at
least one predator moves onto the same grid-square as the
prey. Given equal movement speeds, and a wrap-around en-
vironment, at least two predators are required to capture
the prey [32]. Predator and prey movement was limited to
north, south, east and west, and one grid square per itera-
tion. Predators and prey lived for 150 iterations (one task
trial in table 1).

3.1 Predator and Prey Controllers
Predator sensory inputs were mapped to motor outputs

using a feed-forward Artificial Neural Network (ANN) con-
troller (Figure 1, centre). Two input and five output neu-
rons were fully connected to 10 Hidden Layer (HL) neurons.
HL and output neuron activation values were computed by
a Sigmoid function [14]. The output node with the high-
est activation value was selected as the output (action) of
the given simulation iteration. This approach was selected
since it was used in the NE controller evolution experiments
of Yong and Miikkulainen [32]. Furthermore, the MESP
method is re-implemented in this study with the goal of re-
producing previous results [32], as well as comparing them
with the CNE and GeNE methods.
The prey controller was a heuristic that directed the prey

to move in the opposite direction of the closest predator.

3.2 Fitness Function: Predator Evaluation
Predator team prey capture behavior (evolved by CNE,

MESP, and GeNE) was evaluated in terms of efficiency and
scalability. That is, the number of fitness evaluations that
elapsed before task completion, and the efficiency of evolved
prey-capture behaviors as predator team size is increased.

The fitness function shown in equation 1 was used by
CNE, MESP and GeNE, where de was the average distance
between the predators and the prey at the end of a task
trial, 100 was the environment length and width, and 200
was used to increase fitness awarded for prey capture.

f(de) =

{

100− de if the prey was not caught

200− de if the prey was caught
(1)

4. EXPERIMENTS
Experiments applied either CNE (section 2.1), MESP (sec-

tion 2.2), or GeNE (section 2.3) to evolve the connection
weights of ANN controllers (figure 1, centre), and thus adapt
predator team behavior. One experiment was CNE, MESP
or GeNE executed for Y generations, or until a threshold
task performance was attained. Each experiment was exe-
cuted for 200 runs. Table 1 presents the parameters used in
these experiments.

The task performance threshold was defined as prey cap-
ture for at least 80% of agent starting positions. The prey
had 100 possible starting positions in a 10x10 grid in the
bottom left corner of the environment. An average fitness
of CNE, MESP and GeNE evolved teams was calculated
over all runs. CNE, MESP, and GeNE each tested predator
team sizes: N = [3, 4, 5, 6]. Each generation of the GeNE,
MESP, and CNE methods consists of multiple task trials. A
task trial was one predator team executed for 150 simula-
tion iterations (table 1). Each task trial tested different prey
starting positions as a means of sampling the many possible
starting positions.

To ensure a fair comparison, all methods used the same
population size of 500 genotypes per predator, where team
sizes of three to six predators were tested. As per previous
work [12], the number of genotype evaluations varied, for
different methods, as the predator team size increased.

Table 1 presents the simulation and NE method param-
eter settings. These parameter values were determined ex-
perimentally so as to maximize the performance of all the al-
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Figure 2: The tiered evaluation process of a generation of a hypothetical run of GeNE. The round nodes represent

genotypes and the square nodes represent problems (or problem instances) on which they can be evaluated. A solid

edge represents a genotype being promoted from a lower tier to a higher one. A dashed edge represents a genotype

being evaluated on a problem. In the pursuit-evasion task multiple problem instances (agent starting positions) are

evaluated.

gorithms involved. Minor changes to these values produced
similar results for CNE, MESP and GeNE evolved teams.
Unless otherwise specified, the parameters listed in table 1
apply to all NE methods.
Yong and Miikkulainen executed similar pursuit-evasion

experiments on MESP [31]. They observed that the evolu-
tion of three predator teams capable of capturing the prey
seven times, for nine different starting positions, required on
average 108 000 evaluations (standard deviation of 42000).
The experiments presented in this paper found that the evo-
lution of three predator teams capable of capturing the prey
eighty times, given one hundred different starting positions
required, on average 94 000 evaluations (standard deviation
of 112 000, table 3). This demonstrates that the higher task
performance of GeNE evolved teams is not a result of pa-
rameter tuning issues in either method.

4.1 Cauchy Distribution
Cauchy distribution was used as a mutation operator in

our experiments. The reasons for this are:

1. Testing on numerous instances with the Cauchy distri-
bution indicated that it produced better task perfor-
mance than the normal distribution.

2. In the related field of evolutionary programming, the
Cauchy distribution has been found to yield higher
performance than the normal [30].

3. There is precedent for using the Cauchy distribution
in NE [32].

4.2 CNE: Setup
CNE (section 2.1) predator controllers were evolved from

a population of N (predator team size) x 500 genotypes.
Each genotype encoded N controllers as a vector of N x
70 real values. That is, two input neurons plus five output

neurons fully connected to 10 hidden layer neurons. The
CNE process was as follows.

Each gene (weight) in each genotype of the population
was initialized to a random value from a Cauchy distribu-
tion (x0 = 0 and γ = 1). Each genotype was decoded into
N ANNs to derive a heterogeneous team of predator con-
trollers. Each team (genotype) was then systematically se-
lected and evaluated in the pursuit-evasion task for 20 task
trials. Each team’s fitness was calculated as an average over
all task trials. At the end of each generation, genotypes
in the fittest 25% of the population were randomly paired
and uniform crossover [7] applied. Enough child genotypes
were created to replace the least fit 50%. A child was mu-
tated with a 0.4 degree of probability. If a child was selected
for mutation, then N x 10 randomly chosen weights, were
modified via adding a randomly drawn value from a Cauchy
distribution (x0 = 0 and γ = 0.5).

4.3 MESP: Setup
MESP (section 2.2) evolved N predator ANNs from N

populations. Each population contained 10 sub-populations,
where each sub-population contained 50 genotypes (hidden
layer neurons). That is, the weights of 10 hidden layer neu-
rons were evolved from 10 sub-populations to form complete
ANN controllers. A MESP genotype was a vector of seven
real values encoding the connection weights of two sensory
inputs plus five outputs of a hidden layer neuron. The MESP
process was as follows.

Each gene (weight) in each genotype of the population
was initialized to a random value from a Cauchy distribu-
tion (x0 = 0 and γ = 1). In line with the evaluation ap-
proach used in previous research [32], evaluation in MESP
occurred over 10 task trial sets. In each task trial set, 50
groups (where 50 was the sub-population size) of task trials
were performed. A group to be evaluated was composed via



Table 1: Pursuit-Evasion Parameters. Simulation and Neuro-Evolution method settings.

Pursuit-Evasion Parameter Settings

Simulation runs / Environment size / Predator team size (N) 200 / 100 x 100 / [3, 6]

Predator / Prey controller Feed-Forward ANN / Heuristic

Predator ANN Input/ Output / Hidden layer neurons 2 / 5 / 10

Predator / Prey sensor range Environment length

Genotype structure (CNE / MESP / GeNE) N x ANN weights / Hidden neurons / N x ANN weights

Genotype length (CNE / MESP / GeNE) N x 70 / 7 / N x 70

Genotype representation Real valued vector

Generations / Trial iterations (team lifetime) 500 / 150

Mutation probability 0.4

Mutation Cauchy distribution γ (CNE / MESP / GeNE) 0.1 / 0.5 / see table 2

Crossover operator (CNE, MESP) uniform

Population size (CNE, MESP, GeNE) N x 500

Genotype populations (CNE/MESP/GeNE) 1 / [3, 6] / 1

Sub-populations / Sub-population size (MESP) 10 / 50

Parent selection (MESP, CNE) / (GeNE) Elitist: top 25% / Tiered selection (section 2.3)

Population replacement Lower 50% of population

randomly selecting a genotype gij from each sub-population
pij (1 ≤ j ≤ 10). This was done for each population Pi

(1 ≤ i ≤ N , 3 ≤ N ≤ 6), where N is the number of preda-
tors in a team. Selected genotypes were marked so as they
were not evaluated again in a given task trial set. This en-
sured that each genotype was evaluated the same number of
times.
From these selected genotypes,N predator controllers were

constructed, and this team was evaluated in six task trials.
An average fitness (calculated over the task trials) was as-
signed to each genotype that participated in the task trial
set. A genotype’s fitness was calculated as its average fitness
across 10 task trial sets.
At the end of each generation, genotypes in the fittest 25%

of pij were randomly paired and uniform crossover applied.
Enough child genotypes were created to replace the least fit
50%. A child was mutated with a 0.4 degree of probability.
If a child was selected for mutation, then N x 10 randomly
chosen weights, were modified via adding a randomly drawn
value from a Cauchy distribution (x0 = 0 and γ = 0.5).

4.4 GeNE: Setup
GeNE (section 2.3) evolves predator teams from a popula-

tion of N x 500 genotypes, where each genotype encodes the
connection weights of N predator controllers. So as to allow
reuse of the MESP architecture, a variation on GeNE’s ini-
tialisation and re-initialisation procedures (section 2.3) was
used for these experiments.
For initialization, N MESP populations were initialized,

where each population contained 10 sub-populations and
each sub-population consisted of 100 genotypes (section 4.3).
For the construction of each GeNE genotype, one MESP
genotype was randomly chosen from each of the 10 sub-

populations in each of the N populations. These N x 10
genotypes then represented one GeNE genotype.

Re-initialization occurred via mutating the weights of all
MESP genotypes that composed the fittest GeNE genotype
(for a given generation). This had the effect of re-initializing
the corresponding sub-populations (from which the GeNE
genotype was composed). Table 2 specifies the γ used for
re-initialization and the parameter values used in GeNE’s
tiered evaluation. Table 2 also presents the number of geno-
types (teams) selected for evaluation in each tier, and the
number of task trials (ρ) per team evaluation per tier. These
values were determined experimentally and found to work
well for the pursuit-evasion task.

4.5 Lesion Studies
Lesion studies were done to ascertain the contribution of

GeNE’s tiered evaluation and re-initialization (section 2.3).
For each lesion study, resultant data sets of GeNE evolved
teams in non-lesioned studies (section 4.4) were compared
with lesioned study results for statistically significant differ-
ences (p < 0.01) using independent two-sample t-tests [8].

Lesion study 1: This study tested only one tier of evalua-
tion (four were used in the pursuit-evasion task) per GeNE
generation. This tier had a size of 123 and ρ was set to
49. The goal was to elucidate the benefit of multiple tiers of
evaluation. Supporting this, results indicated a higher (with
statistical significance, p < 0.01) average task performance
(for team sizes N = [3, 4, 5, 6]) of GeNE evolved teams in
non-lesioned versus lesioned experiments (figure 3(b)).

Lesion study 2: This study tested four tiers of evalua-
tion to elucidate the impact of GeNE’s re-initialization pro-
cedure. To test this, this lesion study only mutated each



Table 2: Left: GeNE Tiered Evaluation. N genotypes (teams) are input to each tier. These teams are tested in ρ task

trials. A fittest subset of teams is output (input for the next tier). ρ: Number of task trials a team is tested in. Right:

γ values used for GeNE population re-initialization given the previous generation’s fittest team’s capture ratio.

Tier Input
Teams

Output
Teams

ρ Capture Ratio ( r ) γ

1 2000 500 1 0 ≤ r < 0.1 0.9

2 500 50 4 0.1 ≤ r < 0.2 0.7

3 50 12 16 0.2 ≤ r < 0.3 0.5

4 12 1 100 0.3 ≤ r < 0.5 0.4

- - - - 0.5 ≤ r < 0.6 0.3

- - - - 0.6 ≤ r < 0.8 0.15

Table 3: Task performance of CNE, MESP, and GeNE evolved predator teams: Average number (in thousands) of

fitness (genotype) evaluations until prey capture. Values in parentheses are standard deviations.

Method 3 Predators 4 Predators 5 Predators 6 Predators

CNE 3172.35 (863.60) 3981.20 (914.53) 4296.25 (741.06) 4633.80 (365.87)

MESP 93.51 (112.70) 48.70 (10.94) 44.84 (8.62) 44.04 (8.10)

GeNE 37.15 (22.64) 27.99 (16.87) 24.02 (10.57) 24.33 (9.15)

GeNE (Lesion study 1) 109.06 (84.11) 60.42 (43.35) 52.23 (32.19) 39.72 (22.31)

GeNE (Lesion study 2) 69.44 (59.50) 46.17 (35.34) 30.68 (17.46) 32.06 (17.35)

weight in a GeNE genotype with a 0.2 degree of probability.
Lesion study 2 results indicated a higher (with statistical
significance, p < 0.01) average task performance (for team
sizes N = [3, 4, 5, 6]) of GeNE evolved teams in non-lesioned
versus lesioned experiments (figure 3(b)).

5. RESULTS AND DISCUSSION
Figure 3(a) presents the average number of fitness evalu-

ations (calculated over 200 runs for each method) required
by CNE, MESP and GeNE evolved teams to achieve the
task performance threshold for method efficiency (section
4). These results are also shown in table 3. The scalabil-
ity (maintaining efficiency as team size increased) of CNE,
MESP and GeNE evolved prey-capture behaviors was also
tested for team sizes of three to six predators.
Statistical comparisons (two-sample independent t-tests,

p < 0.01) indicated that GeNE evolved teams yielded a sig-
nificantly higher average efficiency, where this higher effi-
ciency was maintained for all team sizes tested. This par-
tially addresses the research objective (section 1.1) in that
results indicate that GeNE out-performs CNE and MESP
according to the efficiency metric.
Figure 3(a) indicates that all methods were scalable across

the different predator team sizes which were tested. There
were no major differences in the number of evaluations re-
quired as the predator team size increased. This was the-
orized to be the result of the interactions of solution space
dimensionality and the number predators in the simulation.
That is, increasing the number of predators increased the

dimensionality of the solution space, however, a larger team
size also increased the likelihood that the prey would be
captured during the team’s lifetime. However, only preda-
tor team sizes in the range [3, 6] were tested. In order for
scalability to be properly demonstrated, a wider range of
predator team sizes would need to be tested. It is thus con-
cluded that the second part of the research goal (demon-
strating scalability) was not fully addressed.

Figure 3(b) presents the average number of genotype eval-
uations taken by GeNE evolved teams versus lesioned GeNE
evolved teams (section 4.5), for team sizes of up to six preda-
tors. Statistical comparisons (p < 0.01) indicated that le-
sioned GeNE evolved teams yielded a significantly lower av-
erage efficiency, that was consistent across all team sizes
tested. These lesion study comparisons support the hypoth-
esis (section 1.1) that GeNE’s tiered genotype evaluation
mechanism allows it to achieve a higher task performance,
compared to CNE and MESP evolved predator teams. That
is, lesion study 1 results supported the benefits of GeNE’s
tiered evaluation process, and lesion study 2 results sup-
ported the benefits of GeNE’s re-initialization process.

The comparatively high efficiency of GeNE is theorized to
be a result of its tiered evaluation (section 2.3). Consider
that this pursuit-evasion study required the evolution of a
prey-capture behavior where prey-capture is exhibited above
a given task performance threshold. The evaluation of prey-
capture behavior required many task trials that sampled the
space of initial states (prey start positions versus predator
start positions). The more task trials used to evaluated a
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Figure 3: (a) CNE, MESP and GeNE evolved teams. Plots of average number of fitness (genotype) evaluations for

predator team sizes: [3, 4, 5, 6]. Bars show the standard deviation. (a) Comparative plots for GeNE versus GeNE

(lesioned) for predator team sizes: [3, 4, 5, 6]. Bars show the standard deviation. Note the logarithmic scale.

given genotype (prey-capture behavior), the more accurate
that genotype’s evaluation will be. Thus, via its tiered eval-
uation, GeNE was able to focus more evaluations on geno-
types that were more likely to yield effective prey-capture
behaviors, and thus attain a more accurate evaluation of
these genotypes, and propagate these genotypes throughout
the evolutionary process.
Furthermore, it is theorized that the re-initialization pro-

cess enabled GeNE to achieve and maintain a high efficiency
for all team sizes tested. That is, per generation of GeNE,
the re-initialization process mandated a shift in search fo-
cus from exploration to exploitation in a given search space
area. That is, GeNE’s search was initially in a wide area
of the fitness landscape (defined by the γ parameter in the
burst mutation operator), around the current fittest geno-
type. As the fitness of the fittest genotype at each generation
improved, γ decreased together with the size of the search
space area. This tiered evaluation process is similar to the
function of the self-adaptive σ parameter in Evolutionary
Strategies (ES) [4]. Hence, one supposition is that GeNE
will yield a comparative task performance on the same tasks
in which ES yield optimal or near optimal performance. As
such, future work will comparatively test GeNE and various
ES on canonical optimization benchmark tasks [4].
Furthermore, it is theorized that particular features of the

multi-agent pursuit-evasion search space, make it amend-
able to an efficient search by GeNE, where such efficiency
is scalable (maintained for increasing team sizes). That is,
compared to CNE and MESP, GeNE yielded faster conver-
gence to search space optima (prey-capture above a task
performance threshold) in ANN connection weight spaces
of increasing dimensionality. However, the exact algorith-
mic and task environment mechanisms responsible for this
result is the subject of ongoing research.
Also, most problems upon which NE methods yield a high

task performance are presented in either a general or a spe-
cific form. In the pursuit-evasion task, predator agents can
be adapted to catch prey starting from a given location (spe-
cific) or from a set of locations (general). Similarly, in the
pole-balancing task [12], agents can be adapted to balance
poles for a specific initial condition or for a range of ini-

tial conditions. Future work will also test if GeNE has an
advantage where a range of starting conditions must be con-
sidered in order to evolve an optimal solution, since GeNE
spend more of its evaluations sampling the task performance
of genotypes with the potential to be highly fit.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a new NE controller design method:

Generational Neuro-Evolution (GeNE). In this study GeNE
was applied to evolve predator agent controllers in a multi-
agent pursuit-evasion task and was tested comparatively
with Conventional Neuro-Evolution (CNE) and Multi-Agent
Enforced Sub-Populations (MESP). Behaviors evolved by
CNE, MESP and GeNE were measured in terms of effi-
ciency and scalability. Efficiency was measured as the num-
ber of fitness (genotype) evaluations until a pursuit-evasion
task performance threshold was attained. Scalability was
measured as a method’s capability to maintain efficiency as
predator team size increased. Results supported part of this
research objective, demonstrating that GeNE evolved col-
lective prey-capture behaviors that were consistently more
efficient (with statistical significance, p < 0.01) compared to
those evolved by CNE and MESP. However, scalability was
not fully demonstrated due to a lack of testing over a large
range of team sizes. Results also supported the hypothe-
sis that GeNE’s tiered evaluation contributed to the higher
efficiency and scalability of GeNE evolved prey-capture be-
haviors.

Several approaches to future work are currently underway.
Future work will attempt to validate the efficacy of GeNE,
using metrics of efficiency and scalability, but tested in sin-
gle and multi-agent tasks. For example, controller adapta-
tion in double-pole balancing [12], and multi-robot controller
adaptation for collective behavior tasks such as cooperative
transport [13], collective gathering [22], coordinated move-
ment [2] or collective construction [28]. The efficacy of GeNE
will also be tested for other controller types and genotype
representations. ANNs and NE were selected since both are
well established and as such considered appropriate for a pre-
liminary study. Successful application of GeNE to canonical
ES and NE benchmark tasks and more complex single and



multi-agent tasks would contribute to establishing the effi-
cacy of GeNE as an NE controller design method, and more
generally as a broadly applicable evolutionary algorithm.
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