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ABSTRACT
Modern digital library systems are increasingly handling
massive data volumes; this content needs to be stored, in-
dexed and made easily accessible to end users. Cloud com-
puting promises to address some of these needs through a set
of services that arguably support scalability of service provi-
sion. This paper discusses a set of experiments to assess the
scalability of typical digital library services that use cloud
computing facilities for core processing and storage. Hori-
zontal scalability experiments were performed to benchmark
the overall performance of the architecture with increasing
load. The results of the experiments indicate that stable
response times and some degree of variability are attainable
due to multiple middleware servers when browsing and/or
searching a collection of a fixed size. There is minimal vari-
ation in response times when varying collection sizes and
equally after the caching phases. Most importantly, request
sequencing proved that the quantity and age of requests have
no impact on response times. The experimental results thus
provide evidence to support the feasibility of building and
deploying cloud-based Digital Libraries.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation

General Terms
Design, Experimentation, Performance

Keywords
Amazon AWS, Cloud Computing, Scalability

1. INTRODUCTION
The exponential increase in the amount of data currently
being generated creates a need for robust, reliable and cost-

effective computational and storage solutions, possessing
the ability to easily scale with increasing capacity. While
there exists various application domains where scalability
is a critical requirement, Digital Library Systems (DLSes)
are one such domain where scalability is a critical require-
ment. Common services, such as search engines, need
to deal with large amounts of data and large numbers of
user requests. These have traditionally been implemented
on custom-designed compute clusters, but cloud computing
presents the possibility of standard mechanisms for scalabil-
ity.

Cloud computing (Armbrust et al., 2010) is increasingly be-
coming an attractive option for the deployment of informa-
tion management systems, largely due to its elasticity with
respect to economies of scale (Tak et al., 2011). It is this po-
tential offering of cloud computing, as a utility service, that
particularly makes it a potentially viable option for achiev-
ing the scalability requirements of modern DL infrastruc-
ture. The feasibility of migrating and hosting DL systems
in the cloud is evident (Teregowda et al., 2010b; Teregowda
et al., 2010a). However, most migrations to cloud environ-
ments have occurred at a high level and it is not known if
DL services can be deeply integrated with cloud services to
maximise the potential for cloud-service-level scalability.

This paper describes a set of prototype DL components,
notably for search and browse operations—the two most
common DL services. These components were designed to
specifically make maximal use of cloud services for process-
ing and storage. They are evaluated in terms of performance
of speed and data store sizes, in order to assess the feasibil-
ity (or not) of integrating DL services with cloud services at
a low level.

The remainder of this paper is organised as follows: Sec-
tion 2 presents some relevant related work, specifically high-
lighting architectural design considerations and performance
experiments of cloud-based applications; in Section 3, the
proof-of-concept DLS implemented as part of this work is
described, together with the design considerations used to
arrive at the architecture of the system; Section 4 provides
a detailed account of the scalability experiments that were
conducted to assess the overall performance of the system;
and, finally, Section 5 provides concluding remarks and po-



tential future work.

2. RELATED WORK
With the elasticity case having been proven on numerous oc-
casions (Tak et al., 2011), a number of enterprise-level appli-
cations (Khajeh-Hosseini et al., 2010) with high-availability
requirements and, now increasingly, scientific applications
(Vecchiola et al., 2009) requiring massive computing re-
sources are being migrated to the cloud. There has also
been an increasing wave of application of cloud computing
to Digital Libraries. Teregowda et al. (Teregowda et al.,
2010a) explored the feasibility of deploying CiteSeerx1 into
the cloud, with experimental results highlighting the feasi-
bility of an equivalent cloud implementation. In a followup
paper (Wu et al., 2014), Wu et al. outline their experi-
ences migrating CiteSeerx into a private cloud environment.
More recently, Rosenthal and Vargas (Rosenthal and Var-
gas, 2013) carried out experiments to explore the implica-
tions of running LOCKSS—a distributed peer-to-peer Digi-
tal preservation network—boxes in Amazon’s cloud service;
incidentally, their results indicate that cloud storage is more
costly, in comparison to local storage. Even more encourag-
ing are the emerging Digital Libraries cloud platforms, such
as DuraCloud2. DuraCloud is a Web-based open technology
platform aimed at facilitating long-term preservation of dig-
ital content for libraries, universities and cultural heritage
organisations. It is offered as a service that replicates and
distributes content across multiple cloud providers.

Most cloud service providers provide general architectural
design guidelines to aid potential clients during the cloud
migration process. In an AWS white paper (Varia, 2011),
Varia provides comprehensive best practice design guidelines
for building scalable applications above the AWS cloud ser-
vices layer. Basing their work on the lack of cloud comput-
ing standards, Rimal et al. (Rimal et al., 2010) provide key
guidelines for architects and application developers of cloud
enterprise applications; in addition, they provide a classifi-
cation of cloud computing architectural features according
to end-user requirements.

One of the key concerns of cloud computing is performance
evaluation of applications deployed in cloud environments.
Various studies have been conducted, providing a basis and
possible technique to use when conducting performance-
based experiments. In a study that is very similar to
this work in terms of evaluation, Moschakis and Karatza
(Moschakis and Karatza, 2011) present performance eval-
uation of integrating mechanisms for job migration and
handling of job starvation. Their evaluation—conducted
through simulation under varying workloads, job sizes, mi-
gration and starvation handling schemes, however, did not
show significant improvements in response times in a cloud
environment. Khazaei et al. (Khazaei et al., 2012) present a
novel approximate analytical model for performance evalua-
tion of cloud server farms and solve it to obtain an accurate
estimation of the complete probability distribution of the re-
quest response time, among other things. The results from
the performance of the cloud server farm indicated that their
proposed approximation method provided more accurate re-

1http://citeseerx.ist.psu.edu
2http://www.duracloud.org

sults for the mean number of tasks in the system blocking
probability of immediate service and response times in the
cloud (Khazaei et al., 2012). However, there were longer
waiting times for clients in a cloud centre that accommo-
dated heterogeneous services as opposed to its homogeneous
equivalent with the same traffic intensity (Khazaei et al.,
2012).

3. SYSTEM DESIGN
While the expected high-level design of Digital Library Sys-
tems is already well-established (Arms, 1995), achieving flex-
ibility and high levels of scalability for cloud-based DLSes, in
part, requires the use of appropriate architectural patterns
for the service and storage layers of resulting systems.

3.1 System architecture
Previous work (Suleman, 2009) identified potential architec-
tural designs that can be employed to implement on-demand
Digital Library Systems within cloud infrastructure. Of par-
ticular interest are architectures that emulate parallel pro-
gramming architectures such as: shared-memory machines
and distributed memory machines. Four architectural de-
signs—The Proxy Architecture, The Redirector Architec-
ture, The Round-Robin Architecture and The Client-side
Architecture—were considered as potential candidate archi-
tectural designs, in order to take advantage of the mas-
ter/manager paradigm that they utilise. The master/man-
ager paradigm enables the master node to steer/proxy con-
nections and manage application servers, handle reque-
sts/responses, and monitor machines.

The Proxy Architecture, shown in Figure 1, with some as-
pects of the Client-side Architecture (Suleman, 2009), was
adopted and used as the basis for the architectural design of
the system.

3.2 Digital Library services
The proof-of-concept DLS was specifically implemented to
leverage Amazon Web Services (AWS) cloud services. AWS
provides a suite of services that are designed to solve applica-
tion growth needs through on-demand scalability, processing
and storage. Specifically, the AWS services outlined below
were utilised, and Figure 2 shows the high-level architectural
design of the proof-of-concept system.

� Amazon Elastic Compute Cloud (Amazon EC2)3—to
provide resizable computing capacity

� Amazon Simple Storage Service (Amazon S3)4—a
highly distributed data store, to enable storage and
retrieval of large numbers of data objects

� Amazon SimpleDB5—a Web service, that would facil-
itate the lookup and querying of the stored structured
data

� Amazon Elastic Block Store (Amazon EBS)6—to en-
sure storage persistent of the Amazon EC2 instances

3http://aws.amazon.com/ec2
4http://aws.amazon.com/s3
5http://aws.amazon.com/simpledb
6http://aws.amazon.com/ebs
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Figure 1: The Proxy Architecture: The “Master” or “manager” acts as a proxy between users and the cloud
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Figure 2: Conceptual design showing high-level system architecture



Two typical Digital Library services—browse service and
search service—were implemented as part of the proof-of-
concept system.

3.2.1 Browse module
Browsing is an information retrieval technique that enables
the gradual and pre-determined refinement of end users’
query requests by filtering through document subsets (Godin
et al., 1989). The browse criteria are based on content cate-
gories common to collection digital objects. This effectively
makes it possible for end users to narrow down to desired
content through filtering.

The browsing service was implemented by specifying three
browsing criteria fields: the document title, the document
author and the document publication date. In addition, all
three criteria can be browsed in ascending/descending or-
der. The browse operation uses SimpleDB—described in
Section 3.2.2—for indexing and querying operations, with
communication occurring over a REST API.

Browsing is performed through the public light-weight Web
user interface described in Section 3.3 and accepts end user
queries to browse the collection by author, title and date.
When the collection is browsed, users select the criteria they
wish to browse by. The browse request is internally repre-
sented as a URL request and further transformed into a
Amazon SimpleDB equivalent request used to filter match-
ing digital objects in the collection. The matched results are
returned in an XML response format, which are parsed and
displayed back on the Web user interface.

3.2.2 Search module
The application was designed to store digital objects in
Amazon S3, with Amazon SimpleDB used to index the
metadata and corresponding documents to facilitate full-
text search, using typical information retrieval algorithms.
Figure 3 illustrates how data is stored on Amazon S3 and
subsequently indexed by Amazon SimpleDB.

In order to facilitate query efficiency, an inverted index rep-
resentation was created on Amazon SimpleDB by mapping
the conceptual inverted file onto the attributes; this was
achieved by associating a SimpleDB domain with one term,
and subsequently have the attributes store the list of doc-
uments containing the word. Separate Amazon SimpleDB
domains were used to store a URL table to reduce the in-
verted file size.

3.3 Web user interface
The Web user interface provides an entry point through
which end users can access publicly available services—
browse and search. The text-based Web interface was de-
signed to be light-weight, and issues requests corresponding
to user queries. The query results are then ranked and pre-
sented such that the highest ranked documents are displayed
at the top.

4. EVALUATION
One of the motivations for the deployment of applications
into the cloud is the promise of virtually unlimited scalability
as data volumes increase. In order to evaluate potential
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Figure 3: Data storage in the AWS cloud using S3
and SimpleDB

scalability advantages associated with cloud-based Digital
Libraries services, a number of experiments were conducted
to assess the linear scalability of data and service capacity
needs. The experiments were specifically set up to evaluate
data and service scalability, and additionally, to conduct
processor load tests.

4.1 Experimental setup
All experimental tests were conducted on Amazon EC2
cloud infrastructure, using an Amazon EC2 instance of type
t1.micro for server side processing. A 32-bit Ubuntu Ama-
zon Machine Image (AMI) configuration was subsequently
installed in order to correspond to development and test
environments used during application development prior to
deployment. Apache JMeter was used to simulate multi-
ple user requests. The dataset used during experimenta-
tion was harvested via OAI-PMH from two publicly avail-
able spaces—The Networked Digital Library of Theses and
Dissertations (NDLTD) portal7 and The South African Na-
tional Electronic Theses and Dissertation (NETD) portal8

portal—as outlined in Section 4.1.1.

4.1.1 Test dataset
A metadata harvester Perl script was used to harvest meta-
data records from the NDLTD and NETD portals. The har-
vested metadata records were ingested into Amazon S3 using
JetS3t29—a free, open-source Java toolkit and application
suite for Amazon S3, CloudFront content delivery network
and Google Storage for Developers. The JetS3t toolkit pro-
vides Java programmers with a powerful, yet simple, API for
interacting with storage services and managing data stored
there. Figure 4 shows the simple metadata harvester that
stored the harvested metadata records on Amazon S3.

4.2 Service scalability
7http://www.ndltd.org
8http://www.netd.ac.za
9http://www.jets3t.org
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Figure 4: Metadata harvesting from NDLTD and
NETD

The service scalability experiments were aimed at investigat-
ing the response times of DL services—search and browse—
in a server farm configuration. Furthermore, the experi-
ments were conducted to determine if multiple middleware
servers affected the response times. In both the browse and
search experiments, JMeter was set up to simulate 50 users
accessing one Web service ten times for the browse function.
The Web service was hosted on four identical Amazon EC2
instances. A logic controller was added in JMeter to ensure
a round-robin order for the use of different servers. Five-run
averages were computed for each request.

4.2.1 Browse module
A comparative analysis of three browsing categories was car-
ried out by partitioning the results into blocks of 50 and
taking the average of each block. This was necessary to
obtain a better comparison of the average response time
against the number of requests for each of the three browsing
categories—author, title and date. Each category was indi-
vidually tested because the performance of browse indices
often relies on data type and complexity.

Figure 5 shows the results of 500 requests, clearly indicat-
ing a noticeable time for connecting to AWS services at
the start of the experiment; this is in fact attributed to
the pre-caching involved. Oscillations in response times for
different browsing criteria suggest that there were multiple
AWS back-end servers with caches that were not completely
shared. The results further show that there were stable re-
sponse times and that there was some variability because
of multiple middleware servers, but nothing significant after
the initial cache priming stage. Figure 6 is an alternative
representation of the results, showing browse service perfor-
mance for linearly increasing blocks of 50 user requests.

4.2.2 Search module

In the case of a search, the experiments were carried out at
least five times for each of the five different types of queries
listed below:

� Popular words comprised of frequently occurring words
within the test dataset such as “computer”.

� Multiple popular words comprised of combined popu-
lar words such as “cloud computing”–both “cloud” and
“computing” are popular words

� Unpopular words comprised of infrequently occurring
words within the test dataset such as “immunochemi-
cal”

� Multiple unpopular words comprised of a combination
of infrequently occurring words such as “carbohydrate
conformations of pneumococcal antigens”

� Hybrid of popular and unpopular words comprised of
a combination of popular and unpopular words such
as“computational chemistry and immuno-chemical dy-
namics”

In general, larger inverted files contain the most popular
words in documents. Therefore, the largest inverted file was
the one with more occurrences of the popular words in a
query string. Unpopular words on the other hand were con-
tained in the smallest inverted files Query complexity was
determined based on the size of the inverted file size when
results were retrieved from S3. These categories were used
to explore the space of inverted files of different sizes and
varying amounts of post-processing.

As with the browse service, Figure 7 shows a noticeable time
to connect to AWS services at the start of all experiments.
Similarly, oscillations in response times for queries of dif-
ferent complexities suggest that there were multiple AWS
back-end servers with caches of data that were not com-
pletely shared. Figure 8 show the case in which the data
was partitioned into an average of blocks of 50 requests.

4.2.3 Varying EC2 instances
To ascertain how the number of instances, on which the ap-
plication was run, impacts the response time when browsing
or searching SimpleDB data, experiments were conducted
while varying the number Amazon EC2 instances.

Figure 9 depicts the results obtained from varying the num-
ber of instances when searching the collection. In this case,
the average response time is significantly higher when us-
ing one instance and it increases slightly as the number of
requests increases. This is caused by a possible bottleneck
as the instance gets over-whelmed with numerous requests,
thus slowing it down. There is no distinct difference in re-
sponse time between 2 and 3 instances. The performance
of the application is similar in both cases and an additional
fourth server shows a significant performance improvement.
The average response time is lowest when using four in-
stances, showing that the number of instances does impact
on the application performance when searching a digital col-
lection.
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Figure 10 is an illustration of a scenario in which the number
of instances was varied when browsing the collection. The
plot shows that using one instance suffers possible perfor-
mance bottlenecks and therefore the average response time
is higher than all the other three cases (two, three and four
instances). With browsing, the difference is significant at
the start up to 200 requests, after which there is no major
difference when using two, three and four instances. How-
ever, a closer look at the results indicated that the case of
four instances shows better performance in comparison to
all the other cases, with an average response time of 483
milliseconds.

Finally, Figure 11 shows a speedup plot, illustrating the
holistic results of the experiments when the number of EC2
instances was varied.

4.3 Data scalability
The data scalability experiments were conducted on linearly
increasing collection sizes, in order to assess the impact of
collection sizes on the performance of DL services—search
and browse. These experiments were particularly aimed at
revealing whether or not the application could cope with
increasing volumes of data in digital collections.

JMeter was set up to simulate 50 users accessing a single
Web service ten times. An important consideration was
varying the number of servers. For instance, this first ex-
periment involved the use of four identical servers and was
run with collection sizes of 4000, 8000, 16000 and 32000
records. The experiment was run at least five times for each
collection size. The average of the results was computed
and, for each collection size, the average response time ob-
tained was further partitioned into blocks of 50 requests to
better illustrate the results.

4.3.1 Browse module
The average response time taken to browse the collection
was plotted against the number of requests, and the results
are as shown in Figure 12. There is a noticeable high re-
sponse time due to the time taken to connect to AWS and
because there was a large number of results retrieved when
the collection was browsed. The average response time does
not greatly impact on browsing collections of different sizes
but more experimentation is needed with larger datasets.

4.3.2 Search module
Figure 13 shows the results, indicating marginal differences
in the average response times.

4.4 Processor load stress-tests
Processor load tests were conducted to determine the volume
of requests the application was capable of processing for an
increasing number of concurrent users.

JMeter was set up to simulate different numbers of users
accessing one Web service. The first scenario was a simu-
lation of 5 users, each accessing the Web service 10 times.
The second and subsequent scenarios were a simulation of
10, 20, 50, 100, 250 and 500 users, each accessing the Web
service 10 times for a search query. The Web service was
again hosted on four identical Amazon EC2 instances. In

order to determine the order in which the Samplers are pro-
cessed, a logic controller was added and, in this particular
case, it was a Random Controller. The Random Controller
picks a random sampler or sub-controller at each pass, so all
the servers have an equal chance of being selected for pro-
cessing. This experiment was repeated at least five times
for search and browse for each of the 5, 10, 20, 50, 100, 250
and 500 users simulated. The overall average response time
for each case was computed and used to generate a plot of
average response time against the number users.

Figure 14 shows the results of the experiment. The results
show that the average response times are relatively low when
there are fewer users for both search and browse. The aver-
age response time shows a slight increase when the number
of concurrent users is increased. As expected, the quantity
and age of requests does not impact on the response times.
However, more experimentation is needed with a simulation
of a larger number of concurrent users.

4.5 Summary
Experimental results have shown that there are stable re-
sponse times and some degree of variability because of mul-
tiple middleware servers when browsing and/or searching a
collection of a fixed size. There are no significant response
time differences after the results caching phase. When pro-
cessing typical requests on varying collection sizes in the
cloud, response times do not differ much, although more ex-
perimentation with larger datasets is needed. Lastly, request
sequencing has shown that the quantity and age of requests
does not have an impact on response times.

5. CONCLUSION
The cloud application proposed and developed on top of
the Amazon Web Services cloud computing stack provides
some insight into the pros and cons of developing Digital
Library applications in AWS. The complexity of applications
differs but development of digital library service components
in the cloud has proven to be feasible, given the storage and
computation services provided by AWS.

Performance evaluation of the application deployed in the
cloud has shown that response times are not greatly affected
by differences in request complexity, collection sizes or re-
quest sequencing. There is a noticeable time taken to con-
nect to AWS services. In production systems this should
really be persistent, like ODBC/JDBC connections in per-
sistent database-driven Web applications. There is a ramp-
up time where internal caching has a small impact on the
results. This occurs consistently for all requests and request
types. This will not affect busy services but may have a
small impact on services that are rarely used. Oscillation in
response times suggests that there are multiple AWS back-
end servers with caches that are not completely shared. This
results in a degree of unpredictability in results but this av-
erages out over a period of time.

However, in developing the services, a number of features
had to be redesigned from typical database-driven versions.
This may constrain what is possible in, for example, query
syntax, and may also affect the viability of other, less-
popular, services because of the limitations of S3/SimpleDB.
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Figure 9: Plot of time in milliseconds (ms) vs. number
of requests when searching the collection over a varying
number of EC2 instances
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Figure 10: Plot of time in milliseconds (ms) vs. num-
ber of requests when browsing the collection over a
varying number of EC2 instances
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Figure 11: Plot showing speedup of average response
times in milliseconds (ms) vs. the number of EC2 in-
stances
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Figure 12: Plot of average response time in millisec-
onds (ms) vs. number of requests when browsing vary-
ing collection sizes
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Figure 13: Plot of average response time in millisec-
onds (ms) vs. number of requests when searching vary-
ing collection sizes
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Figure 14: Plot of average response time in millisec-
onds (ms) vs. number of user requests when searching
and browsing a collection
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