
Astronomical Data Analysis Software and Systems XXII
ASP Conference Series, Vol. 475
Douglas N. Friedel, ed.
c©2013 Astronomical Society of the Pacific

GPU-based Acceleration of Radio Interferometry Point Source
Visibility Calculations in the MeqTrees Framework

Richard J. Baxter, Patrick Marais, and Michelle M. Kuttel

Computer Science Department, University of Cape Town, South Africa

Abstract. Modern radio interferometer arrays are powerful tools for obtaining high
resolution, low frequency images of objects in deep space. An inverse Fourier transform
of a model sky-intensity map will produce the corresponding Point Source Visibilities:
the raw output of an interferometer. Simulated visibilities can be used to test models
of factors affecting the accuracy of observed data, such as radio frequency interference.
We describe a GPU/CUDA implementation of the Point Source Visibility calculation
module within the MeqTrees software suite. For a large numbers of sources, we achieve
an 18× speed-up over the existing CPU module, with the parallel component running
up to 120× faster. With modifications to the MeqTrees memory management system to
incorporate GPU memory operations, a speed-up of 24× is achievable.

1. Introduction

Radio Interferometry employs multiple radio receiving elements to enhance the resolu-
tion and sensitivity of astronomical observations. While single dish telescopes convert
the electromagnetic radiation directly into an image of the sky (or sky-intensity map),
interferometers calculate interference patterns between pairs of receiving elements to
produce points on the Fourier/UV plane (termed visibilities). A subsequent Fourier
transform operation produces the image plane, or sky map. This transformation usually
discretises the Fourier samples (the visibilities) onto a uniform grid and then computes
the synthesised image with a Fast Fourier Transform. This is far less computationally
intensive than a direct Fourier transform on a per-visibility basis, but introduces slight
image artefacts. The reverse process — conversion from a sky-map comprising a col-
lection of point sources to the corresponding Fourier-plane point source visibilities with
an inverse Fourier transform — is used in the testing of Radio Frequency Interference
(RFI) models. These simulated point source visibilities (PSVs) are defined by the in-
terferometer layout, frequency bands, time intervals, and a point-source model of the
sky.

MeqTrees is a software package used for both third-generation calibration (3GC)
of radio interferometers and for visibility simulation. MeqTrees currently contains a
node for PSV simulation which is very computationally expensive and has potential
for parallel acceleration with commodity Graphics Processing Units (GPUs). Modern
GPUs were developed for computer gaming to render 3D scenes at high frame rates.
With the development of general application programming interfaces for GPUs, such
as nVidia’s Compute Unified Device Architecture (CUDA), these low-cost, highly par-
allel accelerators are increasingly used for more general-purpose computing. In this
work, we accelerate the direct Fourier transform visibility calculations performed by

53



54 Baxter, Marais, and Kuttel

PSV component of the MeqTrees framework using CUDA to export the module to a
GPU. Despite the introduction of additional overheads, such as copying of data to and
from the GPU device, we achieve good performance, especially with CUDA-specific
optimisations such as memory coalescing and use of shared memory.

2. Methods

2.1. Calculation of Point Source Visibilites

Unlike single dish telescopes, interferometers do not have a simple relationship between
signal and data: aMeasurement Equation (incorporating correlation, Fourier transform,
phase shifts, and factors such as radio frequency interference) transforms the received
signal into useful data. The Radio Interferometry Measurement Equation (RIME) re-
formulates the classic radio interferometry visibility equation into a more robust and
general equation based on Jones matricies (Smirnov 2011). RIME calculates the signal
Vpq that two interferometer antennae, p and q, will measure over period of time (t0, t1)

and frequency range (ν0, ν1), given a number of simulated sources, ~S , as:

Vpq =

~S
∑

s

sinc
∆Ψ

2
sinc
∆Φ

2
B exp

(

−2πi
ν

c
(~utpq~σs)

)

(1)

where ∆Ψ = arg Vpq(t1, νm) − arg Vpq(t0, νm),∆Φ = arg Vpq(tm, ν1) − arg Vpq(tm, ν0),
and tm = (t0 + t1)/2, νm = (ν0 + ν1)/2

Here arg denotes the complex argument or complex angle, ~utpq is the relative dis-
tance between p and q at time t, Bs is the polarised cross-correlated intensity of source
s and ~σs is the spherical location of source s. ∆Ψ and ∆Φ are smearing factors account-
ing for measurements over a range of time and frequency rather than at a single point
and single frequency value.(Smirnov 2011; Taylor et al. 1999). Our principle aim is to
accelerate the MeqTrees implementation of this equation.

2.2. CUDA and GPUs

A CUDA GPU contains a number of Streaming Multiprocessors (SMs), each compris-
ing up to 48 scalar processors, or cores. CUDA has a C-like syntax that is interoperable
with standard C and C++. CUDA code is written in functions called kernels. Ker-
nels are compiled and then deployed to a CUDA-capable device, where they are exe-
cuted in parallel over thousands of threads running on the GPU’s many cores. Threads
are grouped into blocks and execution of each block is independent, with no guaran-
tee of block execution order and no direct mechanism for inter-block communication.
Threads within the same block can communicate via shared memory. The layout of
thread blocks can greatly affect occupancy of the SM: the ratio of the number of active
thread blocks that an SM can hold resident at any once time to the maximum number
of thread blocks that an SM can hold. Occupancy is a useful metric for determining the
computational efficiency of the SMs. A high occupancy means many threads available
for swapping and memory latency hiding. Whilst higher occupancy does not necessar-
ily mean better performance, a low occupancy usually leads to an inability to fully hide
latency.

CUDA devices have access to both on-chip and off-chipmemory. On-chip memory
is analogous to CPU register and cache memory: it is very fast to access (1-2 clock cy-



GPU-based Acceleration of PSV Calculations 55

cles), but limited in size (100KB-1MB). Off-chip memory (on-board DRAM) is slower
to access (400-600 clock cycles) but far larger (up to 1GB). GPUs hide global mem-
ory latency by swapping out threads waiting for memory requests for blocks of threads
ready to perform calculations. For this, sufficient threads are required, but too many
threads result in contention for limited register- and shared memory. Another strat-
egy is to coalesce memory accesses: combine a number of simultaneous contiguous
memory accesses into one request.

2.3. Implementation

We aim to accelerate Eqn 1, which we decompose into its three intrinsic dimensions —
sources, time and frequency (Figure 1 Left). A visibility calculation is applied to each
point source, s, across each time-bucket, t, and frequency-band, ν: a SIMD paradigm
well-suited to GPU implementation. A GPU thread is assigned to each point in the
3D data set (t × ν × s) which is then reduced to a 2D array (t × ν). MeqTree com-
putes equations described as expression “trees” which are made up of nodes. The PSV
calculation tree is complex, with multiple nodes describing Eqn 1. To reduce inter-
node overheads, we simplified the implementation to use a single computation node, or
monolithic ‘tree’, which was ported to the GPU with CUDA. This is advantageous as
only one CUDA implementation is required for the entire equation. Separate CUDA
implementations for each individual operation would both increase development time
and degrade performance through too many kernel invocations.

We developed three CUDA kernels for our GPU implementation of the PSV algo-
rithm: a visibility kernel, a reduction kernel and a reorder kernel. After the input data
is copied to the GPU device, the visibility kernel calculates the data cube of visibili-
ties. The reduction kernel then sums (reduces) the data over all sources, after which
the reorder kernel packs the data into contiguous memory to be copied back to CPU
RAM with one copy command. This coalescing reorder step avoids the overhead of
multiple copy commands. The visibility kernel takes up the majority of GPU execution
time, with each thread computing multiple (m) sources instead of just 1. This approach
is memory efficient: storage space for s sources is reduced to space for s/m sources
(1 thread stores results for m sources). To reduce the number of slow global memory
accesses, we use shared memory in the visibility kernel for intermediate calculations,
only writing to global memory once the final accumulated value has been calculated.

We tested our CUDA PSV node by comparison with the existing MeqTrees CPU
node using an Intel i5 2.66GHz processor (only one core employed) and an nVidia
GeForce GTX470.

3. Results and Discussion

Our CUDA implementation shows a 18× speed-up over the CPU (Figure 1 Right,
light blue line). This was achieved through the shared memory optimisation explained
above, as well as optimization of thread-block layouts, or occupancy. MeqTrees has
a ”...straightforward but very powerful scheme of dependency tracking [that] allows
a node to figure out when a result may be usefully cached...” (Noordam & Smirnov
2010). However, the mechanisms that allow for persistent allocation and storage are
only currently implemented for CPU memory. This leaves all GPU node executions
agnostic to any previous allocations in any other GPU node and causes many unnec-
essary deallocations and re-allocations of GPU memory. Any future MeqTrees GPU



56 Baxter, Marais, and Kuttel

Figure 1.: Left: The data cube is reduced over the source dimension into a 2D array.
Right: Comparison of the three speed-up metrics — Real, Achievable and Constrained

—with shared memory as compared to global memory.

implementation will require a persistent memory management system for GPU mem-
ory. With such a system, we calculate (by subtraction of time taken in memory opera-
tions from the total GPU running time) that speed up can reach 24× with use of shared
memory (Fig. 1 Right, pink line). When just the parallelisable parts of code are com-
pared (without the serial overhead in MeqTrees), we find that the GPU executes over
120× faster that the CPU (Fig. 1 Right, yellow line). Although the impact of shared
memory over global memory is small overall (between 10% to 20%), the the use of
shared memory halves the execution time of the parallelisable sections of code (Fig. 1
Right, yellow and blue lines). The large difference points to a potential bottleneck in
the MeqTrees framework: for the CPU version, MeqTrees overhead accounts for an
acceptable 4% of the total running time. However, with the faster running time of the
GPU, MeqTrees overhead constitutes up to 50%, or half the running time in the CUDA
PSV node. Further significant speed-ups will be limited by the MeqTrees overhead,
with a maximum theoretical speed-up of only 32× if the MeqTrees overheads are not
reduced.

4. Conclusions

We have demonstrated significant speed-ups for the PSV node in the MeqTrees frame-
work with the use of CUDA and relatively cheap commodity GPU hardware. With
further developments, such as incorporation of direction dependent effects and RFI in-
terference models, the CUDA PSV could become a useful tool for fast point source
visibility calculations.

References

Noordam, J. E., & Smirnov, O. M. 2010, A&A, 524, A61. 1101.1745
Smirnov, O. M. 2011, A&A, 527, A106. 1101.1764
Taylor, G. B., Carilli, C. L., & Perley, R. A. (eds.) 1999, Synthesis Imaging in Radio Astronomy

II, vol. 180 of Astronomical Society of the Pacific Conference Series


