
Volume Title
ASP Conference Series, Vol. **Volume Number**
Author
c©**Copyright Year** Astronomical Society of the Pacific

Detection of binary pulsars with GPU-accelerated sinusoidal Hough
transformations.

Christopher Laidler, Michelle M. Kuttel

Department of Computer Science, University of Cape Town, South Africa

Abstract. Analysis of relativistic binary pulsars is currently the best means by which
to test theories of gravity in strong gravitational fields. Four-dimensional Hough trans-
formations can detect sinusoids in noisy images. Hough transformations can by applied
to Dynamic Power Spectra to detect the sinusoidal sift in observed spin frequency from
binary pulsars in approximately circular orbits. We present four alternative GPU im-
plementations of a Hough transformation algorithm, which we apply to synthesized
Dynamic Power Spectra data to determine the GPU kernel that provides the best accel-
eration.

1. Introduction

Pulsars are highly magnetized rotating neutron stars that are observed from earth as pe-
riodic pulses across a range of frequencies. The ionized interstellar medium disperses
the pulse signal over time: we observe a pulse at higher frequencies first. Searching
survey data for pulsars with a priori unknown characteristics is known as blind search-
ing. Standard blind search procedures scan the power spectrum (the Fourier transform
of the de-dispersed survey data) and work well for periodic signals produced by solitary
pulsars. However, if a pulsar is in a binary orbit, the orbital motion Doppler-shifts the
observed pulse frequency, decreasing power and hindering detection.

Two methods are commonly used to search for binary pulsars. Acceleration searches
assume that the orbital period is significantly longer than the observation period, allow-
ing the simplifying assumption of a constant orbital acceleration during the observation.
(Camilo et al. 2000; Ransom et al. 2002, 2001). Side-band searches are used when an
observation covers several complete orbits. (Jouteux et al. 2002; Ransom et al. 2003).
These two methods leave a sensitivity gap in detection of pulsars with orbital periods
approximately equivalent to the duration of observation (a few hours), which is cov-
ered by the Dynamic Power Spectrum (DPS) search method. A DPS is generated by
dividing the observation into short segments and calculating the power spectrum for
each. These are stacked to produce a two-dimensional array in time and frequency. In
a DPS, signals from pulsars in close to circular orbits appear as sinusoids. An auto-
mated search method that applies a sinusoidal Hough Transformation (HT) to a Dy-
namic Power Spectrum has been demonstrated to re-detect known binary pulsars in 47
Tucanae (Aulbert 2005, 2007). While this computationally intensive method is imprac-
tical for a truly blind search, there is potential for acceleration of the Hough transforma-
tion with commodity graphics processing units (GPUs). (Aulbert 2005). Here we use
nVidia’s Compute Unified Device Architecture (CUDA) to implement the sinusoidal

1

2

Hough Transformation on the GPU, with the hope that a significant acceleration will
allow this transformation to be integrated into existing search pipelines.

2. The Hough Transformation

The Hough transformation is an image processing technique for estimation of the pa-
rameters of a parametric curve in a pixelated image. A standard Hough transform for
detecting lines of the form y = mx+c will convert an x, y point in image-space into a line
in m, c-space. The intersection of two lines in parameter space represent the parameters
of the line on which the two points in image space lie. With the Hough Transformation,
this intersection is found by discretizing the parameter-space and counting the lines
crossing a point in the discretized mc-space. This method is relativity insensitive to
random noise and can detect features that are partially occluded or incomplete, making
it a robust parameter detection method.

The polar form of the general equation of a horizontal sinusoid is given by:

y = a + p cos (cx) − q sin (cx) (1)

with p = b cos (d) and q = b sin (d). This is used as the master equation for the sinu-
soidal Hough transformation and has four adjustable parameters: a, c, p and q. The a
parameter represents the “height” of the sinusoid or spin frequency of the pulsar (in Hz).
The b parameter is the amplitude of the sinusoid and in the polar form is represented as
the Euclidean distance to the (0, 0) point in the p q plain.

In general, a HT requires selecting input image pixels, calculating a hyperplane
and incrementing all voxels that it intersects. Before delving into details, we make a
number of observations and set conditions for an efficient implementation. For an input
pixel with location (x, y) and for a given value of c, the transformation leads to a flat
3D plain in apq-space. If we stipulate that p q and a must all have the same resolution,
then for a given c, any combination of p and q will lead to a unique a. A complete
4D hyperplane can be generated by connecting the consecutive flat 3D planes. This is
easily accomplished by widening in the a dimension.

2.1. Implementations

We developed a serial and four parallel implementations to enable method compar-
isons. This Hough transformation requires many expensive trigonometric calculations,
making it a complex problem to accelerate. The serial implementation uses intelligent
decomposition and loop ordering and a large section of main memory to store previous
calculations, to accelerate the transformation. This implementation first loops over x
and then c, performing expensive trigonometric calculations as early as possible. We
next loop over the polar coordinates and the subset of y which results in an a values
within the bounds of the tile. To create a complete 4D manifold, we fill all points be-
tween a calculate a value and the a value calculated from the previous c, which is stored
in main memory. Although not done here, this CPU version is easily parallelised for
multiple cores with OpenMP, using an ‘omp parallel for’ directive on the initial loop.

We implemented four alternate CUDA kernels to perform the transformation, to
evaluate different approaches. All kernels make use of CUDA atomic memory func-
tions. Due to memory limitations, the GPU implementations cannot store large numbers
of previously calculated values and thus duplicates some trigonometric calculations.

3

(a) Comparison of transformation
speeds for the serial implementation
(CPU) and four kernels (GPU1-4) on a
128x128x128x128 HS centered on a =
250Hz b = 0.5Hz c = 0.000196 d = 1.445

(b) The effects of tile size and ampli-
tude parameter on transformation speed,
for tiles centered on a = 250Hz c =
0.000196 d = 1.445 and a rage of b val-
ues.

Figure 1.: Transform Speeds

This increased computation is compensated for by the large number of computational
units.

The GPU1 kernel aims to minimize thread divergence by allocating a single input
pixel to each CUDA thread. All the other kernels iterate only through the input pixels
that may have an effect on the tile. This requires some divergence, but decreases the
overall number of calculations required. The GPU2 kernel aims to reduce calculations
by ignoring voxels that fall outside the tile. GPU2 dedicates a single CUDA thread to
each p, q pair, each thread looping through x and c. The GPU3 kernel was implemented
to test the use of SM to store a lookup buffer for y values. The final kernel GPU4 aims
to use SM to remove duplication of trigonometric calculations, by allowing a thread to
read the values calculated by the thread handling the adjacent c.

3. Results and Discussion

For testing, we generated synthetic DPS data, consisting of normally distributed noise
with an added sinusoidal signal. While the transforms successfully detect the sinusoidal
signal in the input images, we do not discuss the power of the transform here. We focus
on the speed of the transformations, measured as the number of HS mega voxels filled
per second (MV/s). All tests were performed on hypercube HS’s tiles and run on an
Intel Quad Core i7 930, 2.80 GHz, 16 GB of memory and a NVIDIA GeForce GTX
560 Ti with 2 GB of off-chip global memory.

Fig. 1a shows the transformation speeds for a sample tile, representing an average
speedup of 9.73, 19.16, 20.66 and 25.79 for GPU1, GPU2, GPU3, and GPU4 kernels
respectively. Two key factors affecting transformation speed are the amplitude param-
eters covered by a tile and the tile size (Fig. 1b). The amplitude coved has two main
effects firstly it influences the number of input pixels selected: lower b values lead to
fewer points requiring transformation and thus faster filling of a tile of a given size.

4

The amplitude also affects the shape of the hyperplane: a large b will amplify changes
in c, which can be thought of as increasing the separation of the 3D planes. Interest-
ingly, each of the kernels has combinations of the two factors for which it outperforms
the other kernels. For example, the GPU1 kernel, which allocates one thread per input
pixel, is the fastest for values of b below 0.1 where there are few input pixels and planes
are close to parallel, giving the low divergence of GPU1 an advantage. However, larger
b values result in calculation of many a values that are are not in the HS and result in a
rapid decrease in GPU1’s performance.

For all transformation kernels except GPU2, larger tiles lead to higher speeds.
GPU2 performs well when the tile dimensions (p and q) are close to the CUDA thread
block dimensions, or low multiplies thereof. As threads are distributed across p, q pairs,
large tiles result in a low number of thread blocks in which all threads are active. The
use of SM in GPU3 to precalculate and store the lookup buffer does not significantly
improve results, as the method used to find the first y value requires fewer cycles than
the memory access required by the look-up method. For large tiles, GPU4 usually has
the best performance, running 20 to 25 times faster than the serial CPU implementation.
Here the SM is used to store the results of calculations involving complex trigonometric
functions. With large tiles, there are enough active thread blocks to effectively hide
shared memory access and synchronization. For all kernels, speeds flatten off once the
hypercubes reach side lengths of ∼64, at which point the GPU is fully utilized.

4. Conclusions

We have demonstrated that our parallel GPU implementations of the 4D sinusoidal
Hough Transformation significantly reduce transformation time by 20 to 25 times. As a
general rule, it is best to use as large a tile size as possible. With GPU implementations,
best results are obtained with the use of SM to store complex calculations and intelligent
loop ordering to allow selection of applicable input pixels. In future work, we will
discuss the power of these transforms for automated blind searching of binary pulsars.

References

Aulbert, C. 2005, Ph.D. thesis, Max Planck Institute for Gravitational Physics, University of
Potsdam, Germany

— 2007. astro-ph/0701097
Camilo, F., Lorimer, D. R., Freire, P., Lyne, A. G., & Manchester, R. N. 2000, Astrophys. J.,

535, 975
Jouteux, S., Ramachandran, R., Stappers, B. W., Jonker, P. G., Van Der Klis, M., & van der

Klis, M. 2002, Astron. Astrophys., 384, 532
Ransom, S. M., Eikenberry, S. S., & Middleditch, J. 2002, Astro J., 124, 1788
Ransom, S. M., Greenhill, L., Herrnstein, J., Manchester, R., Camilo, F., Eikenberry, S., &

Lyne, A. 2001, Astrophys. J. Letters, 546, L25
Ransom, S. M. S., Cordes, J. M., & Eikenberry, S. S. 2003, Astrophys. J., 589, 911

astro-ph/0701097

