
EFFICIENT PATH 

FINDING FOR TILE-

BASED 2D GAMES 

Masilo Mapaila 
University of Cape Town 

Rondebosch 
Cape Town, South Africa 

mplmas002@myuct.ac.za 
 

KEYWORDS 

Path finding, A*, A Star, Path searching, Heuristics 

ABSTRACT 

In this paper we investigate different heuristics 

used in an A* (A Star) algorithm. This algorithm 

can be used to achieve efficient path finding within 

tile-based games. Path finding is a computationally 

expensive problem that is solved by searching. We 

investigate different optimisation techniques and 

further develop techniques which can be 

incorporated within the existing algorithm. These 

techniques make path finding for 2D static and 

dynamic environments faster with less use of 

memory. 

INTRODUCTION 

Often tile-based games have characters that are 

controlled by players. Whenever a player issues a 

command, it is intended that they behave 

intelligently in a manner consistent with their roles. 

This may include carrying a box, painting a wall, 

etc. But to do these tasks, they have to move from 

one place to another. This requires a realistic 

looking path between the two locations. As the 

number of characters increases, multiple 

simultaneously paths may be required. In general, 

human movement is an artificial intelligence (AI) 

or robotics problem for which there exists a general 

solution, Exhaustive Search, which is inefficient. 

Therefore, the aim of this study is to investigate the 

A* algorithm from the artificial intelligence which 

can be used for efficient path finding. Moreover, 

we will develop a tool to find an optimal solution to 

the path finding problem. 

 

In modern tile-based games, most of the resources 

are used in the enhancement of graphics and 

physics and very few are available for AI. 

Therefore, it is assumed that very limited resources 

are available (with respect to memory and 

processing) for finding paths in real time. Further, 

we assume a 2D environment so that much of the 

work can be focused on the development of 

efficient algorithm rather than dealing with the 

complexities associated with the 3D environments. 

 

The efficiency of path finding within an 

environment mainly depends upon the complexity 

of the environment. By complexity, we mean how 

big the environment is, whether it is static or 

dynamic and how many and how large the 

obstacles within the environment are. Further, these 

obstacles can also be static or dynamic. Therefore 

our study will focus on both static and dynamic 

environments that have a range of obstacle sizes. 

Moreover, the obstacles will sometimes be static 

and sometimes move around the environment. 

 

BACKGROUND 

 
Path finding is an AI robotics problem that cannot 

be solved without searching. The main problem in 

path finding is obstacle avoidance. One of the ways 

to approach this problem is by ignoring the 

obstacles until one encounters them (Stout, 1996). 

This is a simple step-taking algorithm that requires 

the unit’s current position and its destination 

position to evaluate a direction vector and 

information as to whether the units neighbouring 

region is clear or blocked. This algorithm finds the 

path along with the movement but the paths 

generated by this are unrealistic, computationally 

expensive and require lots of memory. Therefore it 

becomes necessary to have entire knowledge of 

path before the movement is applied. This is also 

necessary in the case where there are weighted 

regions and finding the cheapest path is important. 

 

Various algorithms exist from conventional AI that 

can be used for path searching before its execution. 

These algorithms are presented in terms of changes 

in the state or traversal of nodes in a graph or a 

tree. Russell et al (1995) suggested these 

algorithms and broadly classified them into two 

classes. One class is uninformed search algorithms 

such as: Breadth First Search (BFS), Bidirectional 

BFS, Depth First Search (DFS), Iterative 

Deepening DFS, etc. These algorithms have no 

additional information beyond the problem 

definition and they keep on generating 

neighbouring states or nodes blindly unless they 

find the goal. These algorithms do not consider 

weighted regions, are computationally expensive, 

requires more memory and may not yield paths in 

real time. However, they are simple to implement. 

 

The other class of algorithms uses problem specific 

knowledge or heuristics to find an efficient 

solution. These include algorithms such as 

Dijkstra's algorithm, Best First Search (BeFS) and  
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A-Star (A*). Both the Dijkstra's and the BeFS finds 

an efficient and optimal path when there are no 

obstacles within the environment. However, in an 

environment with obstacles, the former yields a 

shortest path but is computationally expensive, 

whereas the later works less but generates         

non-optimal paths. The A* on the other hand, 

combines the best of both algorithms and is 

guaranteed to yield the most efficient and shortest 

path. It is probably the best choice for path finding 

since it can be significantly faster, is flexible and 

can be used in wide range of contexts. 

 

Typically, the A* algorithm traverses within an 

environment by creating nodes that correspond to 

various positions it explores. These nodes not only 

hold a location but also have three attributes 

associated with them, as suggested by Matthews 

(2002), which are as follows: 

 

1. Goal Value (g): This represents cost to get 

from starting node to this node. This is the 

exact cost that depends on the 

environment. 

2. Heuristic Value (h): This represents 

estimated cost from this node to the goal 

node. 

3. Fitness Value (f): This is the sum of g and 

h values. This represents the best guess for 

the cost of this path going through this 

node. The lower the value of f, the better is 

the path. 

 

The g value represents the path from start that is 

supposed to minimise any cost related factor such 

as distance travelled, time of traversal, fuel 

consumed, etc. Other factors can also be added 

such as penalties for passing through undesirable 

areas, bonuses for passing through desirable areas, 

aesthetic considerations such as making diagonal 

moves more expensive than orthogonal moves, etc. 

 

On the other hand, the h value gives an estimate of 

cost to the goal. It is the most important factor in 

the efficiency of the A*. A bad heuristic can slow 

down A* and/or produce bad looking paths. 

Generally, a heuristic is an under-estimate of the 

actual cost to goal so that A* always generates 

shortest paths. However, under-estimating the 

heuristic too much is also not beneficial to A* as it 

will allow the A* to look for more and more better 

paths and would take longer time to return the path. 

 

The A* extracts the node which has minimum f 

value and uses two lists, namely an Open and a 

Closed lists, for unexamined and examined nodes, 

respectively. These lists form the basis for the A* 

and their associated data structures determine how 

efficient the A* works. 

 

The implementation of A* in tile-based games 

depends on: 

 

 The nature of the game. 

 The representation of the world. 

 Information about the neighbours of each 

node. 

 The cost functions (including heuristics).  

 Speed and memory issues associated with 

path finding.  

 

No matter how the world looks like, its background 

has to be quantized so that A* has available 

required search space. Stout (2000) suggested 

various ways to quantize the world such as 

Rectangular Grids, Quad Trees, Convex Polygons, 

Navigation Meshes, etc. Most of these 

representations require a great deal of interaction 

with artists and modellers of the world. For 2D 

environments, rectangular grids offer an easy way 

of representing the search space by partitioning into 

a regular grid of squares. This also allows efficient 

access of neighbouring nodes to speed up 

searching. For a typical node at location (x, y), a 

neighbour can simply be generated at location 

(x+1, y), (x, y+1), (x+1, y+1), (x-1, y), etc. For 

other techniques, a lookup table is created 

consisting of information about the neighbours for 

fast access of the neighbour’s locations. 

 

So far it has been discussed that heuristics form a 

major part in the workings of A* but what kind of 

heuristic to be used is another issue. The types of 

heuristics used mostly depend on the search space 

representations, on speed and accuracy issues 

associated with the path finding. Patel (2001) 

suggests some heuristics such as Manhattan 

Distance, Diagonal Distance (Delta-Max) and 

Straight Line (Euclidean) Distance as possible 

heuristic choices that can be used and tweaked on 

rectangular grids to the needs of one’s game.  

 

Although A* is the best search algorithm, it should 

be used wisely within a game as it may lead to 

wasting of resources. This is typically the case 

when there are large environments within a game 

that leads to the generation of hundreds and 

thousands of nodes in the Open and Closed lists. 

This not only requires excessive amounts of 

memory but also requires too much processing 

time, which a game cannot afford. Apart from that, 

there could be a situation when no possible path 

exists, causing the A* to be inefficient as it 

examines every possible location from the start 

before determining that it is impossible to get to the 

goal. Moreover, paths generated by A*, although 

shortest, may not be aesthetically acceptable and 

would possibly need to be straightened up, even 

making them smoother and direct. Thus to 

overcome the weaknesses of A* and to have the 



optimal use of resources, it requires optimisations 

on the A* and the path finding. These are discussed 

in detail as they are dealt with in this study. 

 

THE PATHFINDER TOOL 
 

The Initial Framework 

 

We base our initial design on the Model-View-

Controller (MVC) design pattern. The MVC has 

been proven to be most powerful architecture for 

GUI. It separates the modelling of the domain, the 

presentation, and the actions based on user input 

into three classes (Burbeck, 1992). The figure 1 

below represents the relationship between these 

three classes namely the model, the view and the 

controller. 

 

Figure 1: Model-View-Controller pattern 

 

 

We decide to use MVC pattern as it will allow 

adding new functionality in the future without 

making any drastic changes. These additions may 

include creation of multiple views and controllers 

and maintaining synchronisation of the views 

whenever a model changes, addition of models of 

different types with separate views and/ or 

controllers for these models, porting of existing 

work to another platform, etc. 

 

The A* Algorithm 
 
The A* forms the core of the study. It needs 

information regarding memory (storage), 

environment (search space) and start and end 

locations. As discussed, we partitioned the space 

into a rectangular grid with the same height and 

width as the size of the environment. This 

partitioning is carried out in two levels of 

inheritance as suggested by Higgins (2002). This 

has two significant advantages. Firstly, a generic 

path finding engine can be built to support different 

environments with the same basic functionality. 

Secondly, this technique emphasises the use of 

templates instead of base classes and virtual 

functions, which significantly reduces the assembly 

overhead associated with the virtual functions. 

Further, A* requires some information from the 

grid that determines whether a particular grid 

square is passable or obstructed. In addition, it 

needs information as to whether a particular node is 

in the Open or Closed list. This information needs 

to be passed to A* as quickly as possible and at the 

same time it should be stored efficiently. We 

approached this by using an unsigned char data 

structure that stores these different states as status 

flags. Figure 2 shows C/ C++ representation of the 

status flags. 

 
 

Figure 2: A* states as status flags 

 

By using a single variable, it requires 1 byte per A* 

node to store its state information which can be 

retrieved by simple array as a lookup. The size of 

the array is made to the maximum size of the 

search space and storage and retrieval of 

information is made efficient by use of bitwise 

operators. With this, a node can be in more than 

one state at one time. This not only reduces 

memory requirements but also allows path-finding 

data to be made independent of the search space. 

This allows path finding for multiple characters to 

be done simultaneously. 

 

The A* uses this node information in order to keep 

track of nodes presence in either an Open or Closed 

list. For this, efficient data structures are needed for 

both the lists. With the above status flags, no 

additional data structure is used for the Closed list 

as its functionality is achieved by simply updating 

the status flags. However, the main task of A* lies 

in the working of the Open list. Typically, Open list 

operations include extraction from a sorted list, 

insertion into a sorted list, updating the cost of a 

node in the list and resorting the list, and 

determining whether it is empty or not. Patel 



(2001) suggested different data structures that can 

be used for the Open list and recommended the use 

of priority queues as the most efficient data 

structure. Although, priority queues can be 

implemented by standard template library (STL) as 

suggested by Nelson (1996), its STL 

implementation is limited and does not perform all 

Open list operations. Instead, we implement 

priority queues as binary heaps and used STL heap 

operations on STL vector containers. A binary heap 

is a sorted tree in which a parent always has a value 

lower than its children. However, there is no 

ordering among the siblings and so it is not a 

completely ordered tree but is sufficient for A* to 

perform the insertions and extractions in only 

O(log n) (Lester, 2003). Figure 3 and 4 shows a 

typical case of a binary heap in a tree and array 

(STL vector) representation, respectively. 

 
Figure 3: Binary heaps tree representation 

 

 
Figure 4: Array representation of binary heap of 

figure 3 

 

Memory Management 

 
A* requires memory for extraction of nodes and so 

it is important to have a memory manager which 

provides an efficient way of dynamic memory 

allocation for A* nodes. We implement this by 

using the buffering technique (Figure 5). In 

buffering, a piece of memory is kept aside by the 

system to be used for dedicated task. Here we 

reserve this for the storage of A* nodes. 

 

For A*, it is a good way to manage nodes because 

A* requires lot of nodes to progress its search. 

Initially, when a request is made, a piece of 

memory is dedicated before A* starts execution. 

During the course of execution, if all the memory 

gets exhausted, a new buffer is created to progress. 

The size of this buffer is allowed to change so that 

less memory is wasted. This size mainly depends 

on the complexity of the environment and therefore 

requires tuning before it is used in an application. 

 

This design has significant advantages even though 

sometimes extra memory is allocated, which 

increases the memory requirement. Firstly, this 

results in better use of memory with respect to 

fragmentation. If smaller nodes are created and 

deleted on the fly, it leads to fragments in the 

memory that would make this piece of memory 

unsuitable for other purposes. Secondly, creation 

and deletion of new nodes at run time requires the 

same time as creating one large chunk of memory. 

If smaller nodes were created at run time then this 

would affect the performance. 

 

 
Figure 5: Buffering for memory management 

 

Costs and Heuristics 

 
This forms the main part of research within this 

study. A* requires two cost functions to proceed its 

search. These are the actual cost (g) and the 

heuristic cost (h), which depends on the 

environment and search space representation. 

 

For rectangular grids, we assume movement in all 

possible directions and therefore each A* node has 

a maximum of eight neighbours (four diagonal and 

four orthogonal) (figure 6). For A* to generate 

straight paths, a penalty is added for a movement 

towards the diagonal neighbour as shown in     

figure 6. However, this cost is scaled by a factor of 

10 in order to avoid any floating point calculations 

to speed up searching within the A*. 



 
Figure 6: A* node with its neighbours and their 

respective costs of movement. 

 

Initially the Manhattan Distance heuristic is used as 

it is supposedly the best underestimating heuristic 

for rectangular grids (Patel, 2001). The 

underestimated Manhattan distance simply adds the 

absolute values of the difference of their respective 

X and Y coordinates (figure 7). This is further 

scaled by factor of 10 in order to avoid floating 

point calculations and to make it consistent with the 

scale of actual cost. 

 
Figure 7: Manhattan distance heuristic 

 

The Manhattan distance heuristic generates optimal 

paths in real time. However, this is true in the case 

where there are no or very few static obstacles. As 

the size and the number of obstacles increases, A* 

not only spends more time on searching but also 

requires more memory for the nodes as it needs 

more nodes to find a path. Thus in order to reduce 

the time and memory requirements when finding 

paths with obstacles, Rabin (2000) suggested an 

overestimation in heuristics. Such overestimation 

works such that the sub optimal realistic looking 

paths are generated with a speed consistent with a 

regular Manhattan distance heuristic function with 

no obstacles. This requires combining of an 

underestimated Manhattan distance heuristic along 

with an overestimated heuristic. However 

overestimation is a research issue and no general 

solution exists at present. We approached this 

problem by using ideas from Patel (2001) diagonal 

movement cost (Delta-Max) along with lot of 

experimentation and have come up with an 

overestimate as shown in figure 8. 

 
Figure 8: Overestimate heuristic cost. 

 

The value of 15 as a scale factor is determined by 

constantly tuning the heuristic on a series of data 

sets. Initially A* algorithm runs on the Manhattan 

distance heuristic till it encounters an obstacle and 

then it runs on the overestimated heuristic. This not 

only has significant performance improvement both 

in terms of memory and the speed of path finding 

but also results in realistic and optimal looking 

paths as generated with Manhattan distance 

heuristic only.  

 

Another heuristic is the Euclidean distance which is 

calculated to be the straight-line distance from the 

start node to the target node. A sample test of this is 

shown in the following section. 

 

A Sample Test 

 
We checked the developed heuristic on a 

predefined set of start and end locations in an 

environment which has large static obstacles. The 

following figures (9, 10 and 11) show and compare 

the type of path generated by using different 

heuristic functions for same start and end location. 

 

Clearly from figures 9 and 10, the paths generated 

are the same, but this is not always the case. The 

Euclidean distance heuristic requires A* to search 

more nodes in order to generate the shortest path. 

This is evident from figure 9 which shows the 

nodes searched in different colour from the original 

grid colour. 

Figure 9: Path finding example using Euclidean 

distance heuristic. (Optimal path) 

 



 
Figure 10: Path finding example using Manhattan 

distance heuristic. (Optimal path) 

 

On the other hand, the Manhattan heuristic 

generates the same path as figure 9 while making 

A* search fewer nodes. 

 

 
Figure 11: Path finding example using Delta-Max 

distance heuristic. (Optimal path) 

 

The Delta-Max generates a different path from 

figure 9 and 10 while making A* search more 

nodes. 

 

CONCLUSION AND FUTURE WORK 
 

In this paper we presented a build up to an efficient 

tool for path finding for 2D environments. At 

present, this tool has limitations and we see the 

work presented here as a step towards the 

development of a complete tool. The current work 

focussed on static and dynamic environments and 

we have worked with both fixed and dynamic cost 

environments. 

 

We incorporated a number of optimisations while 

developing the A* algorithm. In future, we will 

extend this to post processing techniques. These are 

mainly application specific and therefore utility 

libraries would be developed so that they can be 

used depending upon the application. 

In summary, much remains to be done in the field 

of path finding in games. Most of the research in 

academic AI has been focused on robotics and very 

little has been done towards their application in 

tile-based games. This study bridges that gap and 

with further research, it would be possible to 

develop a complete tool that would be useful in 

academia and would certainly benefit the game 

industry. 
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