
EFFICIENT PATH

FINDING FOR TILE-

BASED 2D GAMES

Masilo Mapaila
University of Cape Town

Rondebosch
Cape Town, South Africa

mplmas002@myuct.ac.za

KEYWORDS

Path finding, A*, A Star, Path searching, Heuristics

ABSTRACT

In this paper we investigate different heuristics

used in an A* (A Star) algorithm. This algorithm

can be used to achieve efficient path finding within

tile-based games. Path finding is a computationally

expensive problem that is solved by searching. We

investigate different optimisation techniques and

further develop techniques which can be

incorporated within the existing algorithm. These

techniques make path finding for 2D static and

dynamic environments faster with less use of

memory.

INTRODUCTION

Often tile-based games have characters that are

controlled by players. Whenever a player issues a

command, it is intended that they behave

intelligently in a manner consistent with their roles.

This may include carrying a box, painting a wall,

etc. But to do these tasks, they have to move from

one place to another. This requires a realistic

looking path between the two locations. As the

number of characters increases, multiple

simultaneously paths may be required. In general,

human movement is an artificial intelligence (AI)

or robotics problem for which there exists a general

solution, Exhaustive Search, which is inefficient.

Therefore, the aim of this study is to investigate the

A* algorithm from the artificial intelligence which

can be used for efficient path finding. Moreover,

we will develop a tool to find an optimal solution to

the path finding problem.

In modern tile-based games, most of the resources

are used in the enhancement of graphics and

physics and very few are available for AI.

Therefore, it is assumed that very limited resources

are available (with respect to memory and

processing) for finding paths in real time. Further,

we assume a 2D environment so that much of the

work can be focused on the development of

efficient algorithm rather than dealing with the

complexities associated with the 3D environments.

The efficiency of path finding within an

environment mainly depends upon the complexity

of the environment. By complexity, we mean how

big the environment is, whether it is static or

dynamic and how many and how large the

obstacles within the environment are. Further, these

obstacles can also be static or dynamic. Therefore

our study will focus on both static and dynamic

environments that have a range of obstacle sizes.

Moreover, the obstacles will sometimes be static

and sometimes move around the environment.

BACKGROUND

Path finding is an AI robotics problem that cannot

be solved without searching. The main problem in

path finding is obstacle avoidance. One of the ways

to approach this problem is by ignoring the

obstacles until one encounters them (Stout, 1996).

This is a simple step-taking algorithm that requires

the unit’s current position and its destination

position to evaluate a direction vector and

information as to whether the units neighbouring

region is clear or blocked. This algorithm finds the

path along with the movement but the paths

generated by this are unrealistic, computationally

expensive and require lots of memory. Therefore it

becomes necessary to have entire knowledge of

path before the movement is applied. This is also

necessary in the case where there are weighted

regions and finding the cheapest path is important.

Various algorithms exist from conventional AI that

can be used for path searching before its execution.

These algorithms are presented in terms of changes

in the state or traversal of nodes in a graph or a

tree. Russell et al (1995) suggested these

algorithms and broadly classified them into two

classes. One class is uninformed search algorithms

such as: Breadth First Search (BFS), Bidirectional

BFS, Depth First Search (DFS), Iterative

Deepening DFS, etc. These algorithms have no

additional information beyond the problem

definition and they keep on generating

neighbouring states or nodes blindly unless they

find the goal. These algorithms do not consider

weighted regions, are computationally expensive,

requires more memory and may not yield paths in

real time. However, they are simple to implement.

The other class of algorithms uses problem specific

knowledge or heuristics to find an efficient

solution. These include algorithms such as

Dijkstra's algorithm, Best First Search (BeFS) and

mailto:mplmas002@myuct.ac.za

A-Star (A*). Both the Dijkstra's and the BeFS finds

an efficient and optimal path when there are no

obstacles within the environment. However, in an

environment with obstacles, the former yields a

shortest path but is computationally expensive,

whereas the later works less but generates

non-optimal paths. The A* on the other hand,

combines the best of both algorithms and is

guaranteed to yield the most efficient and shortest

path. It is probably the best choice for path finding

since it can be significantly faster, is flexible and

can be used in wide range of contexts.

Typically, the A* algorithm traverses within an

environment by creating nodes that correspond to

various positions it explores. These nodes not only

hold a location but also have three attributes

associated with them, as suggested by Matthews

(2002), which are as follows:

1. Goal Value (g): This represents cost to get

from starting node to this node. This is the

exact cost that depends on the

environment.

2. Heuristic Value (h): This represents

estimated cost from this node to the goal

node.

3. Fitness Value (f): This is the sum of g and

h values. This represents the best guess for

the cost of this path going through this

node. The lower the value of f, the better is

the path.

The g value represents the path from start that is

supposed to minimise any cost related factor such

as distance travelled, time of traversal, fuel

consumed, etc. Other factors can also be added

such as penalties for passing through undesirable

areas, bonuses for passing through desirable areas,

aesthetic considerations such as making diagonal

moves more expensive than orthogonal moves, etc.

On the other hand, the h value gives an estimate of

cost to the goal. It is the most important factor in

the efficiency of the A*. A bad heuristic can slow

down A* and/or produce bad looking paths.

Generally, a heuristic is an under-estimate of the

actual cost to goal so that A* always generates

shortest paths. However, under-estimating the

heuristic too much is also not beneficial to A* as it

will allow the A* to look for more and more better

paths and would take longer time to return the path.

The A* extracts the node which has minimum f

value and uses two lists, namely an Open and a

Closed lists, for unexamined and examined nodes,

respectively. These lists form the basis for the A*

and their associated data structures determine how

efficient the A* works.

The implementation of A* in tile-based games

depends on:

 The nature of the game.

 The representation of the world.

 Information about the neighbours of each

node.

 The cost functions (including heuristics).

 Speed and memory issues associated with

path finding.

No matter how the world looks like, its background

has to be quantized so that A* has available

required search space. Stout (2000) suggested

various ways to quantize the world such as

Rectangular Grids, Quad Trees, Convex Polygons,

Navigation Meshes, etc. Most of these

representations require a great deal of interaction

with artists and modellers of the world. For 2D

environments, rectangular grids offer an easy way

of representing the search space by partitioning into

a regular grid of squares. This also allows efficient

access of neighbouring nodes to speed up

searching. For a typical node at location (x, y), a

neighbour can simply be generated at location

(x+1, y), (x, y+1), (x+1, y+1), (x-1, y), etc. For

other techniques, a lookup table is created

consisting of information about the neighbours for

fast access of the neighbour’s locations.

So far it has been discussed that heuristics form a

major part in the workings of A* but what kind of

heuristic to be used is another issue. The types of

heuristics used mostly depend on the search space

representations, on speed and accuracy issues

associated with the path finding. Patel (2001)

suggests some heuristics such as Manhattan

Distance, Diagonal Distance (Delta-Max) and

Straight Line (Euclidean) Distance as possible

heuristic choices that can be used and tweaked on

rectangular grids to the needs of one’s game.

Although A* is the best search algorithm, it should

be used wisely within a game as it may lead to

wasting of resources. This is typically the case

when there are large environments within a game

that leads to the generation of hundreds and

thousands of nodes in the Open and Closed lists.

This not only requires excessive amounts of

memory but also requires too much processing

time, which a game cannot afford. Apart from that,

there could be a situation when no possible path

exists, causing the A* to be inefficient as it

examines every possible location from the start

before determining that it is impossible to get to the

goal. Moreover, paths generated by A*, although

shortest, may not be aesthetically acceptable and

would possibly need to be straightened up, even

making them smoother and direct. Thus to

overcome the weaknesses of A* and to have the

optimal use of resources, it requires optimisations

on the A* and the path finding. These are discussed

in detail as they are dealt with in this study.

THE PATHFINDER TOOL

The Initial Framework

We base our initial design on the Model-View-

Controller (MVC) design pattern. The MVC has

been proven to be most powerful architecture for

GUI. It separates the modelling of the domain, the

presentation, and the actions based on user input

into three classes (Burbeck, 1992). The figure 1

below represents the relationship between these

three classes namely the model, the view and the

controller.

Figure 1: Model-View-Controller pattern

We decide to use MVC pattern as it will allow

adding new functionality in the future without

making any drastic changes. These additions may

include creation of multiple views and controllers

and maintaining synchronisation of the views

whenever a model changes, addition of models of

different types with separate views and/ or

controllers for these models, porting of existing

work to another platform, etc.

The A* Algorithm

The A* forms the core of the study. It needs

information regarding memory (storage),

environment (search space) and start and end

locations. As discussed, we partitioned the space

into a rectangular grid with the same height and

width as the size of the environment. This

partitioning is carried out in two levels of

inheritance as suggested by Higgins (2002). This

has two significant advantages. Firstly, a generic

path finding engine can be built to support different

environments with the same basic functionality.

Secondly, this technique emphasises the use of

templates instead of base classes and virtual

functions, which significantly reduces the assembly

overhead associated with the virtual functions.

Further, A* requires some information from the

grid that determines whether a particular grid

square is passable or obstructed. In addition, it

needs information as to whether a particular node is

in the Open or Closed list. This information needs

to be passed to A* as quickly as possible and at the

same time it should be stored efficiently. We

approached this by using an unsigned char data

structure that stores these different states as status

flags. Figure 2 shows C/ C++ representation of the

status flags.

Figure 2: A* states as status flags

By using a single variable, it requires 1 byte per A*

node to store its state information which can be

retrieved by simple array as a lookup. The size of

the array is made to the maximum size of the

search space and storage and retrieval of

information is made efficient by use of bitwise

operators. With this, a node can be in more than

one state at one time. This not only reduces

memory requirements but also allows path-finding

data to be made independent of the search space.

This allows path finding for multiple characters to

be done simultaneously.

The A* uses this node information in order to keep

track of nodes presence in either an Open or Closed

list. For this, efficient data structures are needed for

both the lists. With the above status flags, no

additional data structure is used for the Closed list

as its functionality is achieved by simply updating

the status flags. However, the main task of A* lies

in the working of the Open list. Typically, Open list

operations include extraction from a sorted list,

insertion into a sorted list, updating the cost of a

node in the list and resorting the list, and

determining whether it is empty or not. Patel

(2001) suggested different data structures that can

be used for the Open list and recommended the use

of priority queues as the most efficient data

structure. Although, priority queues can be

implemented by standard template library (STL) as

suggested by Nelson (1996), its STL

implementation is limited and does not perform all

Open list operations. Instead, we implement

priority queues as binary heaps and used STL heap

operations on STL vector containers. A binary heap

is a sorted tree in which a parent always has a value

lower than its children. However, there is no

ordering among the siblings and so it is not a

completely ordered tree but is sufficient for A* to

perform the insertions and extractions in only

O(log n) (Lester, 2003). Figure 3 and 4 shows a

typical case of a binary heap in a tree and array

(STL vector) representation, respectively.

Figure 3: Binary heaps tree representation

Figure 4: Array representation of binary heap of

figure 3

Memory Management

A* requires memory for extraction of nodes and so

it is important to have a memory manager which

provides an efficient way of dynamic memory

allocation for A* nodes. We implement this by

using the buffering technique (Figure 5). In

buffering, a piece of memory is kept aside by the

system to be used for dedicated task. Here we

reserve this for the storage of A* nodes.

For A*, it is a good way to manage nodes because

A* requires lot of nodes to progress its search.

Initially, when a request is made, a piece of

memory is dedicated before A* starts execution.

During the course of execution, if all the memory

gets exhausted, a new buffer is created to progress.

The size of this buffer is allowed to change so that

less memory is wasted. This size mainly depends

on the complexity of the environment and therefore

requires tuning before it is used in an application.

This design has significant advantages even though

sometimes extra memory is allocated, which

increases the memory requirement. Firstly, this

results in better use of memory with respect to

fragmentation. If smaller nodes are created and

deleted on the fly, it leads to fragments in the

memory that would make this piece of memory

unsuitable for other purposes. Secondly, creation

and deletion of new nodes at run time requires the

same time as creating one large chunk of memory.

If smaller nodes were created at run time then this

would affect the performance.

Figure 5: Buffering for memory management

Costs and Heuristics

This forms the main part of research within this

study. A* requires two cost functions to proceed its

search. These are the actual cost (g) and the

heuristic cost (h), which depends on the

environment and search space representation.

For rectangular grids, we assume movement in all

possible directions and therefore each A* node has

a maximum of eight neighbours (four diagonal and

four orthogonal) (figure 6). For A* to generate

straight paths, a penalty is added for a movement

towards the diagonal neighbour as shown in

figure 6. However, this cost is scaled by a factor of

10 in order to avoid any floating point calculations

to speed up searching within the A*.

Figure 6: A* node with its neighbours and their

respective costs of movement.

Initially the Manhattan Distance heuristic is used as

it is supposedly the best underestimating heuristic

for rectangular grids (Patel, 2001). The

underestimated Manhattan distance simply adds the

absolute values of the difference of their respective

X and Y coordinates (figure 7). This is further

scaled by factor of 10 in order to avoid floating

point calculations and to make it consistent with the

scale of actual cost.

Figure 7: Manhattan distance heuristic

The Manhattan distance heuristic generates optimal

paths in real time. However, this is true in the case

where there are no or very few static obstacles. As

the size and the number of obstacles increases, A*

not only spends more time on searching but also

requires more memory for the nodes as it needs

more nodes to find a path. Thus in order to reduce

the time and memory requirements when finding

paths with obstacles, Rabin (2000) suggested an

overestimation in heuristics. Such overestimation

works such that the sub optimal realistic looking

paths are generated with a speed consistent with a

regular Manhattan distance heuristic function with

no obstacles. This requires combining of an

underestimated Manhattan distance heuristic along

with an overestimated heuristic. However

overestimation is a research issue and no general

solution exists at present. We approached this

problem by using ideas from Patel (2001) diagonal

movement cost (Delta-Max) along with lot of

experimentation and have come up with an

overestimate as shown in figure 8.

Figure 8: Overestimate heuristic cost.

The value of 15 as a scale factor is determined by

constantly tuning the heuristic on a series of data

sets. Initially A* algorithm runs on the Manhattan

distance heuristic till it encounters an obstacle and

then it runs on the overestimated heuristic. This not

only has significant performance improvement both

in terms of memory and the speed of path finding

but also results in realistic and optimal looking

paths as generated with Manhattan distance

heuristic only.

Another heuristic is the Euclidean distance which is

calculated to be the straight-line distance from the

start node to the target node. A sample test of this is

shown in the following section.

A Sample Test

We checked the developed heuristic on a

predefined set of start and end locations in an

environment which has large static obstacles. The

following figures (9, 10 and 11) show and compare

the type of path generated by using different

heuristic functions for same start and end location.

Clearly from figures 9 and 10, the paths generated

are the same, but this is not always the case. The

Euclidean distance heuristic requires A* to search

more nodes in order to generate the shortest path.

This is evident from figure 9 which shows the

nodes searched in different colour from the original

grid colour.

Figure 9: Path finding example using Euclidean

distance heuristic. (Optimal path)

Figure 10: Path finding example using Manhattan

distance heuristic. (Optimal path)

On the other hand, the Manhattan heuristic

generates the same path as figure 9 while making

A* search fewer nodes.

Figure 11: Path finding example using Delta-Max

distance heuristic. (Optimal path)

The Delta-Max generates a different path from

figure 9 and 10 while making A* search more

nodes.

CONCLUSION AND FUTURE WORK

In this paper we presented a build up to an efficient

tool for path finding for 2D environments. At

present, this tool has limitations and we see the

work presented here as a step towards the

development of a complete tool. The current work

focussed on static and dynamic environments and

we have worked with both fixed and dynamic cost

environments.

We incorporated a number of optimisations while

developing the A* algorithm. In future, we will

extend this to post processing techniques. These are

mainly application specific and therefore utility

libraries would be developed so that they can be

used depending upon the application.

In summary, much remains to be done in the field

of path finding in games. Most of the research in

academic AI has been focused on robotics and very

little has been done towards their application in

tile-based games. This study bridges that gap and

with further research, it would be possible to

develop a complete tool that would be useful in

academia and would certainly benefit the game

industry.

REFERENCES

Beman Dawes, David Abrahams, 1998-2005.

Available: http:www.boost.org

Burbeck S, 1992. Applications Programming in

Smalltalk-80(TM): How to use Model-View-

Controller (MVC) [online], University of Illinois at

Urbana Champaign, Available:

http:// st www.cs.illinois.edu/users/smarch/st-

docs/mvc.html

Higgins D F, 2002. How to Achieve Lightning-Fast

in Rabin S, AI Game Programming Wisdom,

Hingham, Massachusetts: Charles River Media,

pp. 133-144

Lester P, 2003. Using Binary Heaps in

A* Pathfinding [online], Available:

http://www.policyalmanac.org/games/binaryHeaps.

htm

Matthews J, 2002. Basic A* Pathfinding Made

Simple, in Rabin S, AI Game Programming

Wisdom, Hingham, Massachusetts: Charles River

Media, pp. 105-113

Nelson M, 1996. Priority Queues and the STL

[online], Dr. Dobb’s Journal. Available:

http://marknelson.us/1996/01/01/priority-queues/

Patel A J, 2001. Amit’s Game Programming

Information [online], Stanford University.

Available: http://www-cs-

students.stanford.edu/~amitp/gameprog.html

Rabin S, 2000. A* Speed Optimizations, in Deloura

M, Game Programming Gems, Rockland,

Massachusetts: Charles River Media, pp. 272-287

Russell S and Norvig P, 1995. Artificial

Intelligence: A Modern Approach, 2nd edition,

Upper Saddle River, N.J.:

Prentice Hall

http://marknelson.us/1996/01/01/priority-queues/
http://www-cs-students.stanford.edu/~amitp/gameprog.html
http://www-cs-students.stanford.edu/~amitp/gameprog.html

Stout B W, 1996. Smart Moves: Intelligent

Path-Finding [online], Game Developer (October),

pp. 28-35

Available:http://www.gamasutra.com/view/feature/

3317/smart_move_intelligent_.php

Stout B W, 2000. The Basics of A* for Path

Planning, in Deloura M, Game Programming

Gems, Rockland, Massachusetts: Charles River

Media, pp 254-262

http://www.gamasutra.com/view/feature/3317/smart_move_intelligent_.php
http://www.gamasutra.com/view/feature/3317/smart_move_intelligent_.php

