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Abstract 
 

Virtualisation is a method of partitioning one physical computer into multiple 

“virtual” computers, giving each the appearance and capabilities of running on its own 

dedicated hardware. Each virtual system functions as a full-fledged computer and can 

be independently shutdown and restarted. Xen is a form of paravirtualisation 

developed by the University of Cambridge Computer Laboratory and is available 

under both a free and commercial license. Performance results comparing Xen to 

native Linux as well as to other virtualisation tools such as VMWare and User Mode 

Linux (UML) were published in the paper “Xen and the Art of Virtualization” at the 

Symposium on Operating Systems Principles in October 2003 by (Barham et al, 

2003). (Clark et al, 2004) performed a similar study and produced similar results. 

 

In this thesis, a similar performance analysis of Xen is undertaken and also extended 

to include the performance analysis of OpenVZ, an alternative open source 

virtualisation technology. This study made explicit use of open-source software and 

commodity hardware. 
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Chapter 1: Introduction 

 

Virtualisation is the creation of a virtual version of a physical resource or device, such 

as an operating system, a server, a storage device or network resources, etc. 

Virtualisation can be described as the abstraction and simulation of physical resources 

or devices.  

 

Virtualisation software allows physical hardware (“the host”) to run multiple 

operating system images at the same time (“the guests”). Each virtual machine or 

guest is like a computer within the computer and functions as if it is the only 

operating system utilising the hardware. (Symantec, 2010) states that the technology 

had its start on mainframes decades ago, allowing administrators to avoid wasting 

expensive processing power. This decades-old technology is becoming popular again, 

especially in the context of energy-saving and datacentre consolidation. 

 

Various forms of virtualisation are available, e.g. virtual machine or hardware 

emulation in the form of VMWare
1
, paravirtualisation in the form of Citrix XenServer 

(Xen)
2
 and operating system virtualisation in the form of OpenVZ

3
. 

 

Virtual machine or hardware emulation enables various operating systems to run on 

the host. The guest operating systems communicate with the physical hardware via the 

virtual machine monitor (VMM). The VMM emulates or virtualises the physical 

hardware for each virtual machine. 

 

Paravirtualised guest operating systems are modified to recognise the VMM. 

(Barham et al, 2003) describe Xen as a VMM which allows more than one operating 

system to share commodity hardware in a safe and resource managed approach, 

without sacrificing performance or functionality. Linux and various UNIX versions 

have been paravirtualised to run using the Xen environment. The VMM in this case is 

referred to as a hypervisor and marshals guest access to the physical hardware 

resources. 

                                                 
1
 http://www.vmware.com 

2
 http://www.xen.org 

3
 http://wiki.openvz.org 
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Operating system virtualisation supports only the same operating system in each 

guest. It replicates components of the host operating system into each guest and has 

no emulation through a VMM or hypervisor.  

 

These forms of virtualisation are offered as proprietary as well as open source 

solutions, each with its own pros and cons. 

Virtualisation offers many possibilities and benefits, but how these virtual systems 

perform in practice compared to a physical system still requires some more research. 

 

In the following section the motivation behind the research is discussed. 
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1.1 Motivation 
 

Common problems in datacentres are the provision of space, heat and power to house 

server hardware. Growing server farms require more floor space, cooling and 

electricity. The advent of rack-based servers has taken some steps to address the 

problem of floor space, but has increased the amount of cooling and power needed. 

 

Physical resource allocation on the average server in a datacentre is hardly optimally 

deployed. For instance, a web server may utilise quite a bit of memory in order to 

serve page requests effectively, however, the CPU usage would be relatively low. 

This underutilised CPU resource could be used more effectively by a CPU-intensive 

application that does not require lots of memory, eliminating the need for two 

physical servers. These separate environments would need to be totally isolated and 

only have access to the resources assigned to them. 

 

The interest in virtualisation is increasing, especially in the context of our power crisis 

and load-shedding as it provides a means of consolidating server hardware, thus 

reducing power and cooling needs and facilitating optimal resource usage on the 

physical machines. 

 

The question which must be considered: Are virtual environments as good as the 

physical server? 

 

The following section outlines the main objectives of this research. 
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1.2 Aims and Objectives 
 

The aim of this research was to 

 

Investigate the performance of virtualisation techniques, using benchmarking 

software and commodity hardware. 

 

The precise objectives of the research were: 

 

1. To select, install and setup open source paravirtualisation and operating system 

virtualisation on commodity hardware. 

 

2. To quantify the performance of each environment, physical and virtual, by using 

open source benchmarking software. 

 

In the following section, the methodology used in order to achieve the objectives is 

described. 
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1.3 Methodology 
 

(Barham et al, 2003) compared the performance of Xen to VMWare, native Linux and 

User-mode Linux in terms of the total system throughput. (Clark et al, 2004) 

reproduced the tests independently and extended the study to compare the 

performance of Xen on commodity hardware to a high-end server. 

This experiment extends the methodology used by both (Barham et al, 2003) and 

(Clark et al, 2004) by introducing OpenVZ as an alternative virtualisation platform to 

Xen.  This research also makes explicit use of open source benchmarking tools as well 

as commodity hardware. 

 

Paravirtualised Xen and OS-virtualised OpenVZ “guest” systems were benchmarked 

against a physical system, using open-source benchmarking software. The physical 

system also served as the host for each form of virtualised guest. 

 

The study made use of entry-level, commodity hardware and the chosen operating 

system was Debian GNU/Linux
4
. The latest versions of the Xen hypervisor, OpenVZ 

and their respective administration tools, available in the Debian repository at the time 

of the study, were used. 

 

The following open source benchmarks were used: 

 

 lmbench3
5
 

 nbench/BYTEmark* Native Mode Benchmark
6
 

 UnixBench
7
 

 

 

 

 

 

 

                                                 
4
 http://www.debian.org 

5
 http://lmbench.sourceforge.net/ 

6
 http://www.tux.org/~mayer/linux/bmark.html 

7
 http://www.tux.org/pub/tux/niemi/unixbench/ 
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Alternative benchmarking tests were evaluated from the Linux Benchmark Suite
8
 and 

the Linux Benchmark Project
9
, including HBench-OS

10
 however, compiling this 

software was not successful. 

 

The following section highlights the assumptions made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
8
 http://lbs.sourceforge.net 

9
 http://www.tux.org/bench/html/frame.html 

10
 http://www.eecs.harvard.edu/~vino/perf/hbench/ 
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1.4 Assumptions 
 

It is assumed that virtualisation has practical applications, and that, using virtualised 

systems to consolidate physical systems has benefits such as energy-saving and 

datacentre consolidation as discussed in 1.1. 

 

The experiment assumed that the use of differing versions of the 2.6 branch of the 

linux kernel, 2.6.18-4 on the host, 2.6.18-6 with Xen and 2.6.18-12 with OpenVZ, 

would not materially affect the outcome of the benchmark tests. 

 

It was also assumed that having xend and vzctl, the Xen and OpenVZ administration 

software, installed but not running on the host, would not adversely affect the host’s 

performance during benchmarking. 

 

The next section outlines the scope and limitations of the project. 
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1.5 Scope and Limitations 
 

This experiment is focused on benchmarking virtualised systems to a physical system. 

The scalability of these virtual environments was not tested and the study is limited to 

a single Xen and OpenVZ virtual environment.  

 

The experiment does not attempt any application benchmarking, such as measuring 

the performance of web or database servers in each environment. Neither does it 

attempt to assess which benchmarking software is best. 

 

The next section outlines the organisation of this dissertation. 
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1.6 Organisation of this Dissertation 
 

This section provides a chapter by chapter breakdown of the dissertation: 

 

Chapter 2: Background and Literature Review 

 

This chapter provides an overview of the technologies used in this investigation and 

provides a summary of existing research done in similar areas. 

 

Chapter 3: Method and Analysis 

 

This chapter describes the process and tools used to perform the investigation. The 

benchmarks and tests are discussed. 

 

Chapter 4: Results 

 

This chapter provides an evaluation of the results. 

 

Chapter 5: Conclusion 

 

This chapter summarises the findings of the investigation and discusses to what extent 

the original aims of the project were met. The implications of problems encountered 

are discussed and suggestions for future work are made. 
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Chapter 2: Background  
 

This section gives an overview of datacentres and the various virtualisation 

technologies used in this study. It also gives a summary of similar research done in 

this area. It includes a description of some of the types of virtualisation and introduces 

Xen and OpenVZ in more detail. 

 

Various levels of virtualisation are available and this research will focus on the 

performance of paravirtualisation, using Xen, and OS-virtualisation, using OpenVZ. 

The performance of a virtualised system can be compared to a physical system by 

performing identical actions on each, then quantifying and comparing the results. 

 

This review will present some background on datacentres and the underlying 

principles of virtualisation through insights into various types of virtualisation. This 

will be followed by findings in the form of previous work in the area of performance 

benchmarking and how this is can be applied to virtualisation. 
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2.1 Data Centres 
 

Servers are usually housed in datacentres, which warrants some background 

discussion about datacentres. Understanding the application and usefulness of virtual 

systems will be more beneficial when the environment in which the physical server is 

housed is better understood. 

 

(Andrzejak et al, 2002) defines datacentres as physical premises, used to 

accommodate large quantities of physical computing resources and management 

hardware. A distinction between the computing hardware, including the applications 

they serve within the datacentre and the physical datacentre premises has to be made 

as this study focuses on the former. 

 

In addition to physical servers and the applications they serve, datacentres also 

include storage and networking components. Networking and network topologies are 

beyond the scope of this discussion, data storage is discussed briefly. 

 

The applications provided by datacentres are reliant on the server hardware to accept 

input, execute the processing and ultimately deliver the service or output. The role of 

the server hardware is to serve applications and the role of the application is to 

perform a function. Each physical server can therefore serve or perform multiple 

functions. 

 

According to (Tate et al, 2003), organisations have an increasing need to store and 

manage data. This data is often unique to an organisation and collected over a period 

of time. Various storage options are available for datacentres, including physical 

disks, Storage Area Networks, Network Attached Storage and Server Attached 

Storage, to name a few. 

 

Due to their complexity, datacentres are prone to several problems and these are often 

used by companies to market their virtualisation technology. Inefficient resource 

utilisation of physical resources is a common shortcoming of datacentres. (VMWare, 

2007) markets a substantial increase in resource utilisation rates when deploying their 

virtualisation products, inferring that physical servers suffer from severely inefficient 
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resource utilisation. (Andrzejak et al, 2002) undertook a study of six datacentres 

housing a multitude of servers and corroborate the claims. This waste of resources 

translates into excess capacity as the physical hardware is being underutilised.  

 

According to the Hewlett-Packard Systems Architecture Group
11

, datacentres should 

be robust and able to cope with resource outages and unpredictable demand.  

Following on from (Andrzejak et al, 2002) and (VMWare, 2007), applications served 

by datacentres are typically served by dedicated physical resources. Applications are 

therefore served from over-provisioned physical hardware in order to meet the needs 

of excess demand, in the event of that need arising. The result is poor resource 

allocation. 

 

According to (Carolan et al, 2004), cost reduction in the datacentre is a high priority 

as managing the physical systems consumes a huge portion of Information 

Technology budgets. These costs are incurred to keep services at an acceptable level 

to meet demand. 

 

Datacentres are expected to meet varying demands and over-provision physical 

servers, resulting in large numbers of servers that need to be managed and maintained. 

According to (Sliwa and Vijayan, 2002) the management of multiple physical servers 

is a costly exercise. These applications served by the physical servers are often 

interdependent, compounding the problem. 

 

Factors contributing to excessive physical hardware include having n-tier applications 

served from multiple physical servers, with each server serving one or more tiers. 

Other examples are those where multiple physical servers are deployed to serve 

separate development, testing and production environments. 

 

 

 

 

 

                                                 
11

 http://www.hpl.hp.com/research/dca/system/ 
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Most literature concerning datacentres focuses on the requirement for cooling, 

uninterruptable power, fire suppression and general compliance with organisational 

governance and regulatory requirements. It is harder to find literature on the serving 

of applications and the physical hardware which enables the application serving. Most 

of the information was obtained from literature published by Hewlett-Packard and 

VMWare, showing a strong link between datacentres and vendors. 
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2.2 Virtualisation 
 

 

Various types of virtualisation are available today. These are both proprietary and 

open-source and run on high-end as well as commodity hardware. 

 

(OpenVZ, 2008) define virtualisation as “a framework or methodology of dividing the 

resources of a computer into multiple execution environments. Virtualisation 

techniques create multiple isolated partitions — Virtual Machines (VM) or Virtual 

Environments (VEs) — on a single physical server”. 

 

For the purposes of narrowing this definition, three approaches to virtualisation are 

defined: 

 

 System Virtual Machines 

 Paravirtualisation 

 Operating System Virtualisation 
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2.2.1 System Virtual Machines 

 

System virtual machines can be split into three broad groups based on the method of 

implementation used (King et al, 2003) (Robin et al, 2000). 

 

These groups are: 

 

 Type I Virtual Machine Monitors 

 Type II Virtual Machine Monitors 

 Hybrid Virtual Machine Monitors 

 

Type I VMM 

 

According to (King et al, 2003), Type I Virtual Machine Monitors are also known as 

Native Virtual Machine Monitors. Type I VMMs are characterised by having the  

virtualisation layer directly between the physical hardware and guest operating 

system. The Type I VMM operates in a higher privilege mode that any other 

application on the physical server. 

 

As stated, Type I VMMs do not have a host operating system between the physical 

hardware and the VMM. Type I VMMs manage the physical hardware resources 

directly and although this does improve performance, it comes at the cost of 

complexity (Robin et al, 2000). Type I VMMs suffer from the inability to make use of 

the I/O services of the host operating system. 

 

 

 

Figure 1: An illustration of a Type I VMM (King et al, 2003) 
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Type II VMM 

 

Type II VMMs are characterised by having the VMM hosted on an operating system 

installed on the physical hardware. Although this is a less efficient approach, it is a 

simpler approach as the VMM can utilise the host operating system services. Each 

virtualised guest is implemented as a process on the physical host (King et al, 2003). 

An example of a Type II VMM is User Mode Linux
12

.  

 

(Höxer et al, 2002) examined issues which arose when the kernel is ported to the 

system call interface of the host operating system as implemented under Type II 

VMMs. They identified problems with the system calls from applications running on 

a hosted kernel as a common issue. According to (Höxer et al, 2002) these rogue 

system calls could be handled by an intermediate process which would redirect them 

to the hosted kernel instead. 

 

According to (Dike, 2000), hardware is emulated and functionality is provided by the 

physical host. This emulation layer introduces significant overhead according to 

(Barham et al, 2003). The overhead incurred by context switching between processes 

is particularly high. According to (Robin et al, 2000), the security of Type II VMMs 

depends on the security of the operating system installed on the physical host. A 

weakness in the host operating system could be exploited and compromise the 

security of the guest. 

 

 

 

Figure 2: An illustration of a Type II VMM (King et al, 2003) 

 

                                                 
12

 http://usermodelinux.org/ 
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Hybrid VMM 

 

Hybrid VMMs are hosted partially in privileged mode and partially in non-privileged 

mode and is also known as Dual-Mode VMMs (King et al, 2003). According to (King 

et al, 2003), hybrid VMMs access the physical host hardware directly, however, these 

guests rely on the physical host’s operating system for I/O functionality. This does 

suggest that switching between the VMM and the physical host’s operating system 

during I/O operations would introduce a certain level of overhead. The benefit of 

hybrid VMMs is that these guests can use the hardware drivers of the physical host’s 

operating system. 

 

According to (Sugarman et al, 2001) hybrid VMMs generally have three components: 

The native component interacts directly with the physical hardware. 

The user component uses the physical host’s operating system to perform I/O 

functions and assign resources. 

The driver component is visible to the physical host as a device driver and provides a 

communication network between the native and user components. 

 

(OpenVZ, 2008) states that this approach emulates hardware and requires access to 

physical resources on the host. It is used by most emulators and the guest can be run 

without modification as it is unaware that it is not utilising real hardware resources. 

This approach requires the VMM to monitor instructions in real-time and ensure they 

executed safely. Further examples include VMware, QEMU
13

 and Microsoft Virtual 

Server
14

. 

 

 

 

 

 

 

 

                                                 
13

 www.qemu.org 
14

 www.microsoft.com/windowsserversystem/virtualserver 
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Figure 3: An illustration of VMWare ESX Server Architecture 

(http://www.vmware.com) 

 

Figure 3 depicts the structure of a virtual machine running VMWare ESX Server, 

hosting various guest operating systems, including the Console OS (VMM) and 

emulation/virtualisation layer. 
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2.2.2 Paravirtualisation 

 

Adapted from (Barham et al, 2003), paravirtualisation involves modifying an 

architecture to make it more suitable for virtualisation. Under the paravirtualisation 

approach, guest operating systems are fully aware that they are hosted on a VMM. 

Handshaking is used as a communication network between the VMM and the guest 

operating system. This approach improves coordination between the VMM and the 

guest operating system. An added advantage is that duplication of functionality in the 

VMM and guest operating system is reduced. 

 

Paravirtualisation involves the virtualisation of physical resources; each resource type 

is discussed briefly. 

 

Processor Virtualisation 

 

According to (Barham et al, 2003), paravirtualisation systems such as Xen alter the 

guest operating system to operate in a lower privilege mode. A further idiosyncrasy of 

the Xen architecture, highlighted by (Barham et al, 2003) is the removal of 

instructions which cannot be isolated safely. 

 

Guest operating systems modified for paravirtualisation have a special handler for 

system calls thus bypassing the need for these calls to be sent to the hypervisor 

(VMM). This suggests a boost in performance as the VMM is relieved of this extra 

overhead. Leading CPU manufacturers, Intel and AMD have introduced hardware 

support for processor virtualisation through Intel VT and AMD Pacifica technology 

designed to simplify VMM implementation and boost performance. 

 

 

 

 

 

 

 

Memory Virtualisation 
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According to (Barham et al, 2003), keeping shadow page tables up to date incurs a 

performance overhead and paravirtualisation can improve the performance of memory 

virtualisation. Xen makes use of guest operating systems modified to only access 

memory pages allocated to them by the Xen hypervisor. The Xen hypervisor is 

responsible for confirming updates to the page table. This suggests an improvement in 

performance as this approach removes the need for shadow page tables. 

 

Handshaking, defined earlier, can also be used to remove the need for shadow pages 

by specifying non-paged mode as an option when initiating the VMM. An additional 

handshaking approach, pseudo-page-fault handling, allows the Xen hypervisor to 

handle page faults while allowing the guest operating system to schedule another 

process. Intel’s VT and AMD’s Pacifica, discussed previously, also provide 

extensions for memory virtualisation at the hardware layer. 

 

Input/Output (I/O) Virtualisation 

 

Further challenges for designers of virtualisation systems highlighted by (Barham et 

al, 2003) include supporting a wide range of hardware devices. Type II and Hybrid 

VMMs have the benefit of accessing device drivers on the physical host’s operating 

system, at the cost of extra overhead. Type I VMMs, such as VMWare ESX Server 

(figure 3) generally need to include device drivers for hardware they need to support. 

Alternatively, a dedicated I/O virtual machine can be used to access devices on the 

physical host. According to (Fraser et al, 2004), this functionality was added to Xen 

and state that using this approach ensures the guest operating system is protected from 

being compromised by the failure of device drivers. 

 

 

 

 

 

 

 

Resource Scheduling and Guarantees 
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VMMs have control over the resources of the physical host machine and can 

implement resource guarantees to the guests. Physical resources such as CPU 

capacity, memory, and disk quotas can be controlled and allocated by the VMM. 

Schedulers are used to control the physical resources types mentioned above. 

 

(Padala et al, 2008) and (Sukaridhotoy et al, 2009) state that the Xen hypervisor 

contains a CPU scheduler that implements scheduling policies, along with other 

modules such as memory management. A detailed discussion of the extensive range 

of schedulers and scheduling techniques is beyond the scope of this study, however, 

Lottery and Stride schedulers are common examples. 

 

(OpenVZ, 2008) states that like system virtual machines, the paravirtualisation 

approach also requires a VMM, but most of its work is performed on the guest 

operating system. Paravirtualisation also enables different operating systems to run on 

a single server; however they need to be modified to run under the hypervisor. 

According to (Sukaridhotoy et al, 2009), the Xen hypervisor provides a thin software 

virtualisation layer between the guest OS and the underlying hardware. Each guest is 

a modified version of the OS, as the hardware presented by the hypervisor is not 

identical to the physical hardware.  
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Figure 4: An illustration of Paravirtualisation Architecture  

(Barham et al, 2003) 

 

Figure 4 depicts the structure of a machine running the Xen hypervisor, hosting a 

number of different guest operating systems, including Domain0 running control 

software in a Xen Linux environment. 
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2.2.3 Operating System Virtualisation 

 

An alternative to system virtual machines and paravirtualisation involves creating a 

virtual environment within a single operating system. “Container” will be used to 

commonly refer to the virtualised portion of the operating system. Containers provide 

varying degrees of isolation within a single operating system with each container 

appearing as a separate server. 

 

Although resource containers do not provide virtualisation functionality, the resource 

management concepts described by (Banga et al, 1999) are crucial for providing 

isolation for OS virtualisation. These concepts will be discussed briefly. 

 

(Banga et al, 1999) defines a resource container as an abstract operating system that 

contains all the system resources used by an application to accomplish a specific 

action. (Banga et al, 1999) identifies a number of shortcomings of operating systems 

and states that this approach can be used to overcome them. Resource containers treat 

operating system processes as independent activities, unlike many server applications 

which often create multiple processes. 

 

Another common scenario identified by (Banga et al, 1999) occurs when a single 

process handles all requests. Additionally, kernel processing is often not counted as a 

resource used by a process, an example would be a process such as networking. 

By grouping related activities, resource containers can be utilised to overcome these 

examples of resource management shortcomings. 

When combining resource containers with accurate resource accounting, the 

allocation and management of physical resources can be improved. Resources can be 

allocated to a container instead of an individual process. 
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Container-based virtualisation systems present the user with what seems to be 

multiple virtual servers. These are however containers which may in fact share a 

single kernel with many other containers on the same physical host. Securing and 

isolating each container is as important as providing the impression of a separate OS 

instance. (Kamp et al, 2000) state that this approach is compatible with practically all 

applications. Each container has its own root password, IP address and a subset of the 

original filesystem. This isolation ensures that processes in one container cannot 

access information about processes in another container. Similar to the 

paravirtualisation approach, this functionality is implemented by modifications to the 

underlying OS on the physical host. (Kamp et al, 2000) discuss these modifications 

with reference to the security of FreeBSD jails and state that this approach has very 

little overhead. Each container can have resources assigned to them and be rebooted 

independently. 

 

Fewer resources are consumed to enable container-based functionality compared to 

system virtual machines which incurs extra overhead through by using multiple 

operating system instances. Virtualisation is implemented at the system call level, at 

the cost of sharing a single kernel across containers. A disadvantage of this approach 

would be when one container causes the kernel to crash, affecting all other running 

containers. As mentioned, containers require modifications to the operating system 

and share a single kernel. The result is a comparatively lower level of isolation than 

system virtual machines and paravirtualisation. 

 

(OpenVZ, 2008) states that most applications running on a server can easily share a 

physical host machine with others, provided these guests could be isolated and 

secured. According to (OpenVZ, 2008), different operating systems are not required 

on the same server, simply multiple instances of a single operating system. OS 

virtualisation has been designed to provide the required isolation and security to run 

multiple instances of the same operating system (but different distributions) on the 

same physical host. Examples include OpenVZ, Solaris Zones
15

 and FreeBSD Jails
16

. 

 

                                                 
15

 http://www.sun.com/software/solaris/ds/containers.jsp 
16

 http://www.freebsd.org/doc/handbook/jails.html 
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The main distinction between OpenVZ and Xen is that the former approach uses a 

single kernel shared by all the guests whereas the latter approach does not 

(Sukaridhotoy et al, 2009). Therefore, according to (Sukaridhotoy et al, 2009), 

OpenVZ cannot provide the same fault isolation level as in Xen. 

 

 

 

 

Figure 5: An illustration of Operating System Virtualisation Architecture  

(http://www.linuxdevices.com/files/misc/openvz-architecture.jpg) 

 

Figure 5 depicts the structure of a machine running OpenVZ, hosting a number of 

identical guest operating systems, including the shared virtualisation layer in a Linux 

environment. 

 

These three approaches present a subset of various virtualisation techniques and the 

rest of this review will focus purely on paravirtualisation as provided by Xen and OS 

virtualisation as provided by OpenVZ. 
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2.3 Findings 
 

In order for virtualisation to be adopted in industry it is necessary to measure its 

performance. Comparing systems by benchmarking one against another is frequently 

used to gauge performance. 

 

(Padala, et al, 2008) state there is rich literature on the Xen virtualization system. 

(Barham et al, 2003) undertook a performance evaluation of Xen, using SPEC 

CPU2000
17

, OSDB
18

, dbench
19

 and SPECWeb
20

 benchmarks and the results were 

publicised in the first Symposium on Operating Systems Principles paper on Xen.  

 

According to the online documentation, SPEC CPU2000 is a software benchmark 

product developed by the Standard Performance Evaluation Corporation (SPEC). It 

consists of a benchmark for measuring and comparing CPU integer performance and a 

benchmark for measuring and comparing CPU floating point performance. 

 

As described on the website, OSDB (Open Source Database Benchmark) evolved out 

of a small project at Compaq Computer Corporation, originally designed to test the 

I/O throughput and processing power of GNU Linux/Alpha. The result was a database 

benchmarking suite. 

 

According to the description online, dbench is a tool to simulate I/O workloads to a 

local filesystem or to a networked file server. 

 

According to the online documentation, SPECWeb is a benchmark for evaluating the 

performance of web servers. 

 

(Barham et al, 2003) compared the performance of Xen to VMWare, native Linux and 

User-mode Linux in terms of the total system throughput. (Clark et al, 2004) 

reproduced the tests independently. 

 

                                                 
17

 www.spec.org/cpu2000/ 
18

 http://osdb.sourceforge.net/ 
19

 http://dbench.samba.org/ 
20

 http://www.spec.org/web99/ 
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(Barham et al, 2003) list various studies comparing Xen to other virtualisation 

approaches as well as physical hardware. Their study was targeted at hosting up to 

100 virtual machine instances simultaneously on a modern server. They allow 

operating systems such as Linux and Windows XP to be hosted simultaneously for a 

negligible performance overhead, at most a few percent compared with the physical 

host. Their results show Xen considerably outperforms competing commercial and 

freely available virtualisation solutions, VMWare and User-mode Linux, in a range of 

micro-benchmarks and system-wide tests (Barham et al, 2003). As mentioned above, 

these benchmarks included SPEC CPU2000, OSDB, dbench and SPECWeb, 

benchmarking CPU, database, filesystem and web server performance. The 

developers of Xen also have some performance benchmarking statistics on their 

website
21

 where they show the results of comparisons to native Linux, VMware 

Workstation 3.2, and User-mode Linux. These indicate a performance gain using the 

paravirtualisation approach over VMWare and User-mode Linux. 

 

(Clark et al, 2004) extends the paper of (Barham et al, 2003) and provides good 

insights into benchmarking tools and techniques. In their study, they repeat (Barham 

et al, 2003)’s performance analysis of Xen and also extend the analysis in several 

ways, including comparing XenoLinux on x86 to an IBM zServer. (Clark et al, 2004) 

state that they use their study as an example of repeated research and argue that this 

model of research, which is enabled by open source software, is an important step in 

transferring the results of computer science research into production environments. 

 

(Clark et al, 2004) state that they had great difficulty in replicating the Xen team’s 

results. Specifically, (Clark et al, 2004) had trouble replicating the physical host 

environment and settled for a different SCSI controller than used by (Barham et al, 

2003). Secondly, (Clark et al, 2004) did not replicate the performance tests exactly; 

substituting some of the closed source tests with their own equivalent. They also 

comment that reproducing or extending existing research validates the original 

published work. This would also result in additional insights beyond the scope of the 

original research. Reproducing an existing body of research also serves as a third-

                                                 
21

 www.xen.org 
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party verification of the original results and serves as a platform for transferring 

research in to a production environment (Clark et al, 2004). 

 

(Clark et al, 2004) also highlighted the fact that commercial software can sometimes 

be extremely expensive and free alternatives exist which could be used to accomplish 

similar research objectives. 

 

(Clark et al, 2004) performed a set of scalability tests on low-end commodity 

hardware and produced good results, indicating that performance testing is possible as 

long as the number of guest environments is kept low. A number of tests could be 

applied during the benchmarking process and (Clark et al, 2004) tried to replicate the 

tests of (Barham et al, 2003) as closely as possible. They even went as far as 

replicating the specific hardware used by (Barham et al, 2003). (Clark et al, 2004) 

specifically discuss their approach to replacing closed or proprietary testing suites 

with open source equivalents. 

 

(Clark et al, 2004) were able to repeat the performance measurements of (Barham et 

al, 2003) and found that Xen lives up to its claim of high performance virtualisation of 

the x86 platform. They also found that Xen can easily support 16 moderately loaded 

servers on a relatively inexpensive server class machine, but did not manage the 100 

guest target they set. (Clark et al, 2004) found that Xen performs well in tests on an 

older PC and that Xen on x86 compares surprisingly well to an entry model IBM 

zServer machine designed specifically for virtualisation.  

 

As previously stated in section 2.2.2, a paravirtualised machine gives the guest 

operating system access to the host operating system’s hardware resources through a 

hypervisor. It could therefore be inferred that benchmarking the performance of a 

paravirtualised machine is possible in much the same way as benchmarking the 

physical machine. As previously stated in section 2.2.3, operating system 

virtualisation is simply identical guest operating systems with access to the host 

operating system’s kernel. It could therefore be inferred that benchmarking the 

performance of this virtual environment is possible in much the same way as 

benchmarking the physical machine. 
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(Makhija et al, 2006) state that these benchmarks however, were specifically designed 

for physical machines and not for virtualised machines. (Makhija et al, 2006) continue 

by stating that because these benchmarks test hardware under load to prove that they 

are capable of a certain performance, this may not be applicable to test a guest 

operating system on a host machine running multiple virtual guest machines at the 

same time as the results could be misleading. (Barham et al, 2003) and (Clark et al, 

2004) were successful at benchmarking virtual systems and published their findings. 

The benchmarks used in this research are discussed in section 3.3. 
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2.4 Summary 
 

Many forms of virtualisation are available, and these are offered as proprietary as well 

as open source solutions each with its own pros and cons. 

 

The methodology and results of performance testing of paravirtualised systems were 

examined and form the basis of this research, as well as extending the study to include 

performance testing of operating system virtualisation, using OpenVZ. 

 

Although (Clark et al, 2004)’s research was successful and corroborated the findings 

of (Barham et al, 2003) they had trouble replicating the environment and tests exactly, 

substituting some of the closed source tests with their own equivalent. 

Some areas of concerns highlighted in the literature include the difficulty of applying 

a benchmark test to a virtual system running on a host with several other guests. 

 

Some benchmarking software is not freely available and could be a stumbling block if 

no open source alternative is available. It is important to identify a suitable suite of 

benchmarking tests that could be applied fairly to a physical system as well as a 

paravirtualised system and an operating system virtualised environment in order to 

produce comparative results. 
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Chapter 3: Method, Analysis and Evaluation 
 

The previous chapter contained an overview about how both Xen and OpenVZ are 

structured as well as highlighting their respective approach to virtualisation. 

 

The scope of this experiment was to test each of these forms of virtualisation and 

compare them to each other as well as a physical system. This chapter is dedicated to 

the discussion of these tests, starting with a description of each environment. This is 

following by a description of benchmarking as well as a discussion on running and 

interpreting the various open source benchmark results. 

 

As stated, the objective is to provide a performance comparison by applying a 

standard set of benchmarks across all environments. The outcome of these 

benchmarking tests will then be presented by summary results in chapter 4. The 

detailed results are presented in the appendices. 
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3.1 The Physical and Virtual Environments 
 

The physical system will serve as both a test environment as well as host to the two 

virtual environments. In order for the objectives of the experiment to be met, certain 

conditions have to exist to ensure that each benchmark test within each environment is 

applied as consistently as possible. 

 

Debian GNU/Linux (Etch) was chosen as the operating system for both the physical 

and virtual environments. There are many reasons for this choice, the main ones 

being: 

 

 Debian GNU/Linux uses mainly free software in their repository. 

 OpenVZ and Xen are available in binary (.deb) form. 

 It is used as the basis for derivative Linux systems such as Ubuntu and 

Knoppix. 

 

The following hardware system was used for the installation of a host environment: 

 

 AMD Athlon XP 3000+ 2165MHz 333MHz FSB CPU 

 512KB L2 Cache 

 Gigabyte GA-7VM400M-RZ Socket A Motherboard 

 1GB DDR333 PC2700 Memory 

 40GB Seagate IDE Hard Drive 

 Onboard 10/100MBit Ethernet 

 

The host was set up as follows: 

 

OS  : Debian GNU/Linux (Etch) 

Kernel  : 2.6.18-4-486 

C compiler : gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21) 

libc  : libc-2.3.6.so  
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The test environment was set up to allow the optimal allocation of physical resources 

as follows: 

 

A physical host with a single Xen and a single OpenVZ guest was created. 

Identical resources were configured for the virtualised Xen and OpenVZ 

environments by modifying the configurations files of each to match the physical 

hardware described above as close as possible (see Appendix D and E). 

 

The following open source benchmarks were chosen to measure the performance of 

each environment: 

 

 lmbench3-alpha1 

 

 BYTEmark* Native Mode Benchmark ver. 2 (10/95) 

Index-split by Andrew D. Balsa (11/97) 

Linux/Unix* port by Uwe F. Mayer (12/96,11/97) 

 

 UnixBench Version 4.0.1 -- 1997.06.20 

 

Apart from the base installation of the Debian GNU/Linux operating system, the 

following packages were installed from the local Debian repository: 

 

Xen packages 

 

 xen-hypervisor-3.0.3-1-i386-pae_3.0.3-0-4 

 xen-linux-system-2.6.18-6-xen-686_2.6.18.dfsg.1-22etch2 

 2.6.18-6-xen-686 (Xen domain0 kernel) 
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OpenVZ packages 

 

 vzctl 3.0.22-1dso1 

 vzquota 3.0.11-1dso1 

 vzctl-ostmpl-debian-4.0-i386-minimal_20080518 

 2.6.18-12-fza-686 (OpenVZ kernel) 

 

Both the Xen and OpenVZ guests were set up with a base installation of the Debian 

GNU/Linux operating system. Additionally, the guest environments have also been 

provided with the GNU C Compiler gcc version 4.1.2 20061115 (prerelease) (Debian 

4.1.1-21) in order to compile the benchmarks from source.  

 

Benchmarking each environment, physical and virtual, will be discussed in detail in 

section 3.3. The host and the guests have been installed on one hard disk. OpenVZ 

was installed in physical folder whereas Xen was installed in an image.  

 

Each environment, physical and virtual makes use of the third extended filesystem, 

(ext3)
22

. The ext3-filesystem was chosen as it is widely used by a variety of Linux 

variants, including Debian GNU/Linux. 

 

The /etc/apt/souces.list file contains the list of repositories used 

 

# DEBIAN SECURITY REPOSITORY 

deb http://security.debian.org/ etch/updates main contrib 

deb-src http://security.debian.org/ etch/updates main contrib 

 

# DEBIAN MAIN AND CONTRIB REPOSITORY 

deb http://debian.mirror.ac.za/debian etch main contrib 

deb-src http://debian.mirror.ac.za/debian etch main contrib 

 

# OpenVZ REPOSITORY 

deb http://download.openvz.org/debian-systs etch openvz 

                                                 
22

 http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html 
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These repositories were used on the host as well as the OpenVZ and Xen virtual 

environments. 

 

The OpenVZ installation requires a custom kernel to be installed on the physical host 

as well as the OpenVZ administration tools. These customised kernels and 

administration tools are available directly from OpenVZ as well as third party 

providers. OpenVZ guests are created using pre-built templates, and therefore the 

OpenVZ template cache needs to be created as well. Once these requirements are met, 

OpenVZ guest environments can be created. Detailed installation requirements and 

instructions are available in the OpenVZ manual
23

. OpenVZ was installed and the 

resources were allocated to the guest. 

 

The physical host configuration, as described in section 3.1, does not contain CPU 

extensions for hardware virtualisation, therefore, an unmodified installation of Debian 

GNU/Linux is not possible. As was the case with the OpenVZ kernel and 

administration tools, the equivalent Xen kernel and administration tools are also 

available in binary form from the Debian repository. Once the necessary software is 

installed, the host will become the privileged domain, referred to as Dom0, or 

Domain0 in Xen terms. Dom0 contains the hypervisor, facilitating paravirtualisation 

of virtual environments. The unprivileged virtual environments are known as DomU 

or DomainU in Xen terms. Xen was installed and the resources were allocated to the 

guest. 
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 http://ftp.openvz.org/doc/OpenVZ-Users-Guide.pdf 
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3.2 Benchmarking 
 

Having completed the installation, it was possible to test the relative performance and 

distribution of resources of both virtual environments by using benchmark tests.  

 

The aim of this thesis is to quantify the performance overhead of paravirtualisation 

and OS virtualisation. The best way to achieve these results is through simulating 

workloads targeting various hardware and system components and interpreting the 

output. 

 

The benchmarks selected need to be freely available and easy to install and execute. 

Preference would be given to standard, widely used benchmarks. (Barham et al, 2003) 

and (Clark et al, 2004) used lmbench in their analysis as it includes both latency and 

throughput tests. A general overview on several benchmark tests available can be 

found at http://lbs.sourceforge.net/. Each benchmark test was performed five times on 

the host, Xen guest and OpenVZ guest to determine consistency. The comparative 

“score” for each benchmark is the arithmetic average of each set of individual tests. It 

is important to note that these benchmarks are software applications running on an 

operating system and may be affected by other running processes, resulting in a 

margin of error. The standard deviation of each of the five tests was calculated to 

measure this variation (see appendices for the detailed results tables). 

 

The host score was based to 1 and each guest’s over- or under-performance is 

expressed relative to this index. 
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3.2.1 Synthetic Benchmarks 

 

Synthetic benchmarks are designed to measure the performance of individual 

components of computer hardware. A good example of a synthetic benchmark is the 

Whetstone suite, originally programmed by Harold Curnow in 1972 (Curnow et al, 

1976). This benchmark measures the floating-point performance of a CPU. 

 

According to (Balsa, 1997), the main criticism of synthetic benchmarks is that they do 

not represent performance of real-world situations. For instance, the Whetstone suite’s 

main loop is very short and easily fits in the primary cache of a CPU, keeping the 

FPU queue filled and testing it to its full capability (Balsa, 1997). The interpretation 

of synthetic benchmarking results must therefore be done very carefully when testing 

modern CPUs. 

 

According to (Balsa, 1997), synthetic benchmarks should test the performance of 

hardware components in isolation. (Balsa, 1997) gives the example of benchmarking 

Ethernet card I/O on various hardware configurations and states that the results should 

be relatively similar. 
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3.2.2 High-level vs. Low-level Benchmarks 

 

According to (Balsa, 1997), low-level benchmarks directly measures the performance 

of hardware components like the CPU clock, memory cycle times, average hard disk 

access times, latency, etc. 

 

(Balsa, 1997) states that high-level benchmarks are used for evaluating the 

performance of the hardware driver and operating system, for a specific aspect of a 

physical computer system. For example, file I/O performance or application 

benchmarking. 

 

Low-level benchmarks are classified as synthetic whereas high-level benchmarks may 

be synthetic or application benchmarks (Balsa, 1997). 
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3.3 Benchmarking Software Selected 
 

 

The benchmarks selected for this project were lmbench, nbench/BYTEMark and 

UnixBench. These were chosen because they met the criteria of being freely available, 

widely used, ease of installation and well documented test output. These benchmarks 

also met the criteria of being synthetic benchmarks as discussed in section 3.2.1. The 

aim of this thesis is not to quantify the actual workloads experienced by the physical 

and virtual environments, rather it aim is to quantify the extent of performance lost by 

using paravirtualisation and OS virtualisation. Synthetic benchmarks are well suited to 

deliver these tests. 

 

(Barham et al, 2003) and (Clark et al, 2004) made use of lmbench in their evaluations 

of Xen and using lmbench in this study would allow for comparative analysis with 

their findings. 

 

Nbench/BYTEMark and UnixBench, like lmbench also offer throughput tests and  

would provide a useful way of confirming the results produced by the lmbench tests.   
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3.4 lmbench 
 

lmbench is described as a GPL'd suite of atomic benchmarks developed by Larry 

McVoy and has no publishing restrictions. 

 

According to (McVoy and Staelin, 1996), lmbench provides a suite of benchmarks 

that attempt to measure the most commonly found performance bottlenecks in a wide 

range of system applications. (McVoy and Staelin, 1996) identified these bottlenecks, 

then isolated, and reproduced them in a set of small ‘microbenchmarks’. These 

microbenchmarks measure system latency and bandwidth of data movement among 

the processor and memory, network, file system, and disk. The intent was to produce 

numbers that real applications would reproduce, instead of the less easily reproducible 

marketing material claimed by hardware manufacturers. 

 

(McVoy and Staelin, 1996) state that performance issues are usually caused by 

latency problems, bandwidth problems, or some combination of the two. Each 

benchmark exists because it captures some unique performance problem present in 

one or more applications.  

 

(McVoy and Staelin, 1996) state that lmbench measures only a system’s ability to 

transfer data between processor, cache, memory, network, and disk. It does not 

measure other parts of the system, such as the graphics subsystem, nor is it a MIPS, 

MFLOPS, throughput, saturation, stress, graphics, or multiprocessor test suite. 

The benchmarks are designed to be portable and similar over a wide set of UNIX 

systems. 

 

lmbench is freely distributed under the Free Software Foundation’s General Public 

License, with the additional restriction that results may be reported only if the 

benchmarks are unmodified (McVoy and Staelin, 1996). 

According to the lmbench man pages
24

, the microbenchmarks fall into three general 

classes: bandwidth, latency, and ‘other’. 
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 http://lmbench.sourceforge.net/man/lmbench.8.html 
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The bandwidth benchmarks have two main components: operating system overhead 

and memory speeds. According to the lmbench man pages, the bandwidth benchmarks 

report their results as megabytes moved per second but cautions that the data moved is 

not necessarily the same as the memory bandwidth used to move the data. 

 

bw_file_rd reading and summing of a file via the read(2) interface. 

bw_mem_cp memory copy. 

bw_mem_rd memory reading and summing. 

bw_mem_wr memory writing. 

bw_mmap_rd reading and summing of a file via the memory mapping mmap(2) 

interface. 

bw_pipe reading of data via a pipe. 

bw_tcp  reading of data via a TCP/IP socket. 

bw_unix reading data from a UNIX socket. 

 

Table 1: lmbench Bandwidth Test descriptions 
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The latency measurements are intended to show how fast a system can perform some 

operation. The pipe, rpc, tcp, and udp transactions are all identical benchmarks. 

Latency numbers are mostly in microseconds per operation. 

 

lat_connect the time it takes to establish a TCP/IP connection. 

lat_ctx  context switching; the number and size of processes is varied. 

lat_fcntl fcntl file locking. 

lat_fifo  ‘hot potato’ transaction through a UNIX FIFO. 

lat_fs creating and deleting small files. 

lat_pagefault the time it takes to fault in a page from a file. 

lat_mem_rd memory read latency (accurate to the ~2-5 nanosecond range, 

reported in nanoseconds). 

lat_mmap time to set up a memory mapping. 

lat_ops  basic processor operations, such as integer XOR, ADD, SUB, 

MUL, DIV, and MOD, and float ADD, MUL, DIV, and double 

ADD, MUL, DIV. 

lat_pipe ‘hot potato’ transaction through a Unix pipe. 

lat_proc process creation times (various sorts). 

lat_rpc ‘hot potato’ transaction through Sun RPC over UDP or TCP. 

lat_select select latency 

lat_sig signal installation and catch latencies. 

Also protection fault signal latency. 

lat_syscall non trivial entry into the system. 

lat_tcp ‘hot potato’ transaction through TCP. 

lat_udp  ‘hot potato’ transaction through UDP. 

lat_unix ‘hot potato’ transaction through UNIX sockets. 

lat_unix_connect the time it takes to establish a UNIX socket connection. 

 

Table 2: lmbench Latency Test descriptions 

 

 

 



 

43 

 

Other measurements: 

 

mhz processor cycle time 

tlb TLB size and TLB miss latency 

line cache line size (in bytes) 

cache cache statistics, such as line size, cache sizes, memory parallelism. 

stream John McCalpin’s stream benchmark 

par_mem memory subsystem parallelism. How many requests can the memory 

subsystem service in parallel, which may depend on the location of the 

data in the memory hierarchy. 

par_ops basic processor operation parallelism. 

 

Table 3: lmbench ‘Other’ Test descriptions 
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3.5 BYTEmark* Native Mode Benchmark (nbench) 
 

(Helvick, 2008) states that nbench is based on BYTE Magazine’s BYTEMark 

benchmark program. NBench is a synthetic benchmark used to test the CPU, GPU and 

memory. The tests include reporting CPU, cache and memory, integer and floating-

point results. 

 

NBench runs ten single-threaded tests, including integer and string sorting, Fourier 

coefficients and Huffman compression. Scores in nbench represent measurements 

baselined to those of a Pentium90 and AMD K6/233. According to (Williams, 2000), 

BYTEmark reports both raw and indexed scores for each test. The example given by 

(Williams, 2000) says that the numeric sort test reports the number of arrays it was 

able to sort per second as its raw score. The indexed score is the raw score divided by 

the raw score of the baseline machine, a 90Mhz Pentium with 16MB of memory. The 

index score is an effort to normalise the raw scores, therefore an index score of 2 can 

be interpreted as performing twice as fast as the baseline (Williams, 2000). The unit 

of measure is number of iterations per second, compared to the baseline as discussed 

above (Helvick, 2008). 

 

BYTEmark reports an Integer and Floating-point index. The integer index is the 

geometric mean of the tests that involve integer processing. The floating-point index 

is the geometric mean of the remaining tests (Williams, 2000). 

  

A unique feature of nbench is that it analyses its own results for confidence levels in 

real-time and increases the number of runs if necessary. Theoretically, this means that 

nbench could be run on a system under load and still produces accurate results, 

although it may produce a larger variance and take longer to run.  
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nbench consists of 10 tests: 

 

Numeric sort Integer-sorting benchmark 

String sort String-sorting benchmark 

Bitfield Bit manipulation package 

Emulated floating-point Small software floating-point package 

Fourier coefficients Numerical analysis benchmark for calculating series 

approximations of waveforms 

Assignment algorithm Task allocation algorithm 

Huffman compression Well-known text and graphics compression algorithm 

IDEA encryption Block cipher encryption algorithm 

Neural net Black-propagation network simulator 

LU Decomposition Robust algorithm for solving linear equations 

 

Table 4: nbench Test descriptions 
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3.6 UnixBench 
 

According to the byte-unixbench
25

 website, UnixBench development started in 1983 

at Monash University, as a simple synthetic benchmarking application. Linux 

compatibility modifications were made by Jon Tombs, and original authors Ben 

Smith, Rick Grehan, and Tom Yager. Similar to nbench, the tests evaluate UNIX-like 

systems by comparing their results to a set of scores set by running the code on a 

baseline system, which in this case is a SPARCstation 20-61, indexed at a value of 

10.0. The entire set of index values is then combined at the end of the test to make an 

overall index for the system. 

 

(Hatt et al, 2007) state that the purpose of UnixBench is to provide a straightforward 

indicator of the performance of a UNIX-like system; hence, multiple small tests are 

used to evaluate various aspects of the system's performance. According to (Hatt et al, 

2007), UnixBench is a system benchmark, not a CPU, memory or disk benchmark and 

focuses on different aspects of OS functionality like process spawning, inter-process 

communication and filesystem throughput. The results will depend not only on the 

physical hardware, but on the operating system, libraries, and even compiler. 
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 http://code.google.com/p/byte-unixbench/ 
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UnixBench consists of nine tests, described in the flowing table: 

Dhrystone Focuses on string handling, as there are no floating point operations.  

Whetstone Measures the speed and efficiency of floating-point operations using 

a wide variety of C functions including sin, cos, sqrt, exp, and log as 

well as integer and floating-point math operations, array accesses, 

conditional branches, and procedure calls. This test measure both 

integer and floating-point arithmetic. 

Execl 

Throughput 

Measures the number of execl calls that can be performed per second. 

Execl is part of the exec family of functions that replaces the current 

process image with a new process image. 

File Copy Measures the rate at which data can be transferred from one file to 

another, using various buffer sizes. File read, write and copy tests 

capture the number of characters that can be written, read and copied 

in a specified time (default is 10 seconds). 

Pipe 

Throughput 

Pipe throughput is the number of times (per second) a process can 

write 512 bytes to a pipe and read them back. 

Pipe-based 

Context 

Switching 

Measures the number of times two processes can exchange an 

increasing integer through a pipe. The test program spawns a child 

process with which it carries on a bi-directional pipe conversation. 

Process 

Creation 

Measures the number of times a process can fork and reap a child that 

immediately exits. Process creation refers to actually creating process 

control blocks and memory allocations for new processes, so this 

applies directly to memory bandwidth. 

Shell Scripts Measures the number of times per minute a process can start and reap 

a set of one, two, four and eight concurrent copies of a shell script 

where the shell script applies a series of transformations to a data file. 

System Call 

Overhead 

Estimates the cost of entering and leaving the operating system 

kernel, i.e. the overhead for performing a system call. It consists of a 

simple program repeatedly calling the getpid
26

 system call. The time 

to execute such calls is used to estimate the cost of entering and 

exiting the kernel. 

Table 5: UnixBench Test descriptions 

                                                 
26

 returns the process id of the calling process 
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3.7 Evaluation 
 

As discussed in section 3.3, lmbench3, nbench/BYTEMark and UnixBench were 

chosen to test and evaluate the physical host, OpenVZ virtual environment and Xen 

virtual environment on metrics covering CPU utilization, inter-process 

communication, hard disk access and network performance. 

 

Once Xen and OpenVZ guests had been successfully created and tested, all 

benchmark tests were first applied to the host without any guests in place. Thereafter 

each guest was created separately and all the benchmark tests applied to it.  

 

As highlighted in section 3.2, each benchmark test was performed five times on the 

host, Xen guest and OpenVZ guest to determine consistency. Each test produced a set 

of results and these were captured for analysis. 

 

The comparative “score” for each benchmark is the arithmetic average of each set of 

individual tests. Since the benchmarking software itself is run on an operating system 

and may be affected by other running processes, introducing a margin of error, the 

standard deviation of each of the five tests was calculated. 
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Chapter 4: Results 
 

As discussed in section 3.7, the results of each set of five tests for each benchmark, 

within each environment, were captured and summarised for numerical analysis. Each 

benchmark will be discussed individually with summary results describing the 

outcome of each test or group of tests. Detailed results tables are available in 

Appendix A, B and C. 
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4.1 lmbench Results 

 

As described in section 3.2, the individual and averaged lmbench3 test results are 

included in Appendix A. A brief description of each test is included in section 3.4 

(Tables 1, 2 and 3).  

 

As discussed in section 3.4, lmbench only measures a system’s ability to transfer data 

between processor, cache, memory, network, and disk. 

The tests can be grouped in to five categories: 

CPU and process tests, Context switching tests, Communication tests and File and 

VM tests are all latency tests, and therefore smaller index numbers are better. 

On the other hand, for Communication Bandwidth tests, bigger index numbers are 

better as they are measuring throughput. 

 

lmbench CPU & Processes Results: 

 

Both guests produced marginally higher latency results than the host in the following 

tests: 

 

 null I/O test, a simple read and write benchmark, (host 0.21, OpenVZ 0.27, 

Xen 0.24 microseconds) 

 stat test, a simple stat and fstat benchmark which retrieves information about a 

file, (host 1.41, OpenVZ 1.56, Xen 1.38 microseconds) 

 open clos test, a simple file operation benchmark, (host 2.24, OpenVZ 2.68, 

Xen 2.36 microseconds) 

 slct TCP test, a select() system call using TCP, (host 12.42, OpenVZ 10.84, 

Xen 6.76 microseconds) 

 sig inst test, signal handler install benchmark, (host 0.35, OpenVZ 0.45, Xen 

0.43 microseconds) 

 sig hndl test, a signal handler overhead benchmark, (host 1.43, OpenVZ 1.53, 

Xen 1.32 microseconds) 
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These scores indicate there is negligible performance loss incurred by either 

virtualisation layer when executing the above operations. Better than native results 

were produced by both guests in the slct TCP test and by Xen in the sig hndl test. 

 

OpenVZ produced marginally poor results and Xen produced materially poor results 

in the following tests: 

 

 null call test, a simple system call, (host average 0.09, OpenVZ average 0.13,  

and Xen average 0.15 microseconds) 

 fork proc test, a process forking benchmark, (host 101.44, OpenVZ 145.20,  

and Xen 420.60 microseconds) 

 exec proc test, a process execution benchmark, (host 349.40, OpenVZ 472.80,  

and Xen 1100.80 microseconds) 

 sh proc test, a process creation benchmark, (host 2188.20, OpenVZ 2677.60,  

and Xen 3787.80 microseconds) 

 

With the exception of the process-based tests, both guests produce relatively close to 

native test results. However, the magnitude of underperformance of the process-based 

tests does raise some questions on the ability of Xen to cope with process-based 

latency demands. This is an expected result as the hypervisor incurs an extra level of 

overhead between the kernel and guest OS. As discussed in section 2.2.3, OpenVZ 

does not require a VMM and performs relatively consistently. Compared to the CPU 

benchmarking done by (Barham et al, 2003) and (Clark et al, 2004) the Xen results 

are expected. The process-based results are consistent with the Linux build time tests 

performed by (Barham et al, 2003) and (Clark et al, 2004), where an 

underperformance was reported compared to the physical host, however, not to the 

same degree. 
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Figure 6: Process handling latency  

 

 

lmbench Context Switching Results 

 

A context switch is the switching of the CPU from one process or thread to another. 

In terms of these tests, the context switching benchmark expects two parameters; the 

size of the process, in KB and the number of processes to simulate. A 2p/0K test 

would therefore simulate context switching of two processes of 0K in size. 

 

Both guests produced marginally higher latency results than the host in the following 

tests: 

 

 2p/64K test, 2 processes of 64K in size, (host average 5.64, OpenVZ average 

5.81, Xen average 8.71 microseconds) 

 8p/64K test, 8 processes of 64K in size, (host 38.04, OpenVZ 40.46, Xen 

53.74 microseconds) 

 16p/64K test, 16 processes of 64K in size, (host 63.58, OpenVZ 65.02, Xen 

72.06 microseconds) 
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Xen produced materially poor results in the following tests (OpenVZ performed 

consistently as above): 

 

 2p/0K test, 2 processes of 0K in size, (host average 1.14, OpenVZ average 

0.86, Xen average 4.17 microseconds) 

 2p/16K test, 2 processes of 16K in size, (host 0.93, OpenVZ 1.32, Xen 4.39 

microseconds) 

 8p/16K test, 8 processes of 16K in size, (host 2.41, OpenVZ 2.65, Xen 6.42 

microseconds) 

 16p/16K test, 16 processes of 16K in size, (host 2.91, OpenVZ 3.41, Xen 8.14 

microseconds) 

 

OpenVZ produces relatively close to native performance on all context switching tests 

and manages to produce better than native results on one of the tests. Xen 

underperforms the host on all the tests and produces exceptionally poor results for 

four of the seven tests in this group. This is consistent with the results produced by 

(Barham et al, 2003) and indicates the extra overhead of the hypervisor layer. 

 

 

 

Figure 7: Context switching latency 
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lmbench Communication Latencies Results 

 

Xen produced materially poor results in the following tests and OpenVZ unperformed 

materially on one of the following tests: 

 

 UNIX Pipe test, which simulates one process writing to the standard output 

and another process reading from the standard input, (host average 4.54, 

OpenVZ average 5.10, Xen average 21.90 microseconds) 

 AF UNIX test, 2 a local socket for communication between applications on the 

same OS, (host 6.46, OpenVZ 7.59, Xen 15.58 microseconds) 

 UDP test, a network communications benchmark, (host 7.71, OpenVZ 13.10, 

Xen 15.36 microseconds) 

 

Both guests produced marginally higher latency results than the host in the following 

tests: 

 

 TCP test, a network communications benchmark, (host average 13.30, 

OpenVZ average 19.28, Xen average 20.26 microseconds) 

 TCP conn test, a network communications connection benchmark, (host 42.20, 

OpenVZ 58.26, Xen 63.20 microseconds) 

 

Overall, OpenVZ produced near native results. Xen performed worse than both the 

host and the OpenVZ guest, producing exceptionally poor results for four of the six 

tests in this group. (Barham et al, 2003) did not publish comparative test results for 

local communication latencies. 
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Figure 8: Local Communication latency  

 

 

lmbench File & VM Latencies Results 

 

OpenVZ produced marginally higher latency results than the host in the following 

tests; Xen outperformed the host on the following tests: 

 

 0K File Create test, a file creation benchmark, (host average 14.14, OpenVZ 

average 16.66, Xen average 9.96 microseconds) 

 0K File Delete test, a file deletion benchmark, (host 11.92, OpenVZ 15.00, 

Xen 8.19 microseconds) 

 10K File Create test, a file creation benchmark, (host 64.56, OpenVZ 74.10, 

Xen 56.76 microseconds) 

 10K File Delete test, a file deletion benchmark, (host 25.62, OpenVZ 31.72, 

Xen 17.16 microseconds) 

 Prot Fault test, a general protection fault test, (host 0.77, OpenVZ 1.01, Xen 

0.44 microseconds) 

 100fd selct test, benchmarks the time to do a select on 100 file descriptors, 

(host 2.63, OpenVZ 2.73, Xen 2.80 microseconds) 
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Both guests produced materially higher latency results than the host in the following 

tests: 

 

 Mmap Latency test, benchmarks a system call that maps files or devices into 

memory, (host average 4157.80, OpenVZ average 10865.80, Xen average 

15640.00 microseconds) 

 Page Fault test, benchmarks the cost of pagefaulting pages from a file, (host 

1.99, OpenVZ 3.69, Xen 4.92 microseconds) 

 

It would appear that Xen does not suffer from the same latency issues in this group of 

tests compared to the other latency tests performed above, beating the host on five of 

the eight tests in these tests. The underperformance by Xen in the two tests above is 

consistent with the results of (Barham et al, 2003). 

 

 

 

 

Figure 9: File & VM System latency 
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lmbench Communication Bandwidths Results 

 

Both guests produced marginally lower throughput results than the host in the 

following tests: 

 

 UNIX Pipe test, which simulates one process writing to the standard output 

and another process reading from the standard input, (host average 1124.00, 

OpenVZ average 1044.00, Xen average 662.60 MB/second) 

 AF UNIX test, which benchmarks local communication on a socket between 

applications on the same OS, (host 1239.20, OpenVZ 1179.80, Xen 1153.80 

MB/second) 

 TCP test, a network communications bandwidth benchmark, (host 214.00, 

OpenVZ 193.60, Xen 199.00 MB/second) 

 File reread test, a simple file operation, (host 551.16, OpenVZ 541.20, Xen 

511.16 MB/second) 

 Mmap reread test, which benchmarks a system call that maps files or devices 

into memory, (host 1040.70, OpenVZ 1025.20, Xen 1028.00 MB/second) 

 Bcopy (libc) test, benchmarks the user-level library bcopy interface, (host 

376.68, OpenVZ 363.06, Xen 366.72 MB/second) 

 Bcopy (hand) test, a loop that loads and stores associated 8-byte words, (host 

377.70, OpenVZ 357.24, Xen 368.12 MB/second) 

 Mem read test, a loop that sums up a series of integers, (host 1014.80, 

OpenVZ 1000.00, Xen 1001.60 MB/second) 

 Mem write test, a loop that stores a value as an integer  and then increments 

the pointer, (host 637.94, OpenVZ 610.20, Xen 618.86 MB/second) 

 

These results show good local communication throughput with low overhead incurred 

by the virtualisation layer. (Barham et al, 2003) only reported the TCP results and 

these result concur with their findings.  
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Figure 10: Local Communication bandwidth throughput 
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4.2 nbench/BYTEmark* Native Mode Benchmark Results 

 

As described in section 3.2, the individual and averaged nbench/BYTEMark test 

results are included in Appendix B. A brief description of each test is included in 

section 3.5 (Table 4). As discussed in section 3.5, nbench scores are compared to a 

baseline Pentium90, higher scores indicate better performance and the units are 

iterations per second. 

 

The nbench benchmark involves only user-level CPU workload and therefore does not 

cause kernel level memory accesses nor trigger kernel level services. For the purposes 

of this evaluation, the 10 individual tests as well as the composite indices as described 

in section 3.2 will be discussed. 

 

Both guests produced marginally lower throughput results than the host in the 

following tests: 

 

 Numeric Sort test, an integer sorting benchmark, (host average 24.76, OpenVZ 

average 24.94, Xen average 24.81 iterations /second) 

 String Sort test, a string sorting benchmark, (host 73.75, OpenVZ 73.47, Xen 

73.60 iterations /second) 

 Bitfield test, a bit manipulation package, (host 82.19, OpenVZ 80.98, Xen 

82.90 iterations /second) 

 Emulated Floating-point test, a small software floating point benchmark, (host 

75.91, OpenVZ 75.75, Xen 75.90 iterations /second) 

 Fourier Coefficients test, a numerical analysis benchmark for calculating 

series approximations of waveforms, (host 24.25, OpenVZ 24.15, Xen 24.24 

iterations /second) 

 Assignment Algorithm test, a task allocation benchmark, (host 89.95, OpenVZ 

89.52, Xen 89.88 iterations /second) 

 IDEA Encryption test, a block cipher encryption algorithm, (host 55.59, 

OpenVZ 55.44, Xen 55.64 iterations /second) 

 Huffman Compression test, a text and graphics compression algorithm, (host 

44.33, OpenVZ 44.18, Xen 44.33 iterations /second) 



 

60 

 Neural Net test, a back-propagation network simulator, (host 50.91, OpenVZ 

48.78, Xen 50.37 iterations /second) 

 LU Decomposition test, an algorithm for solving linear equations, (host 57.74, 

OpenVZ 56.10, Xen 56.75 iterations /second) 

  

Both guests perform exceptionally well against the host. As mentioned, nbench only 

tests user-level CPU workload. The VMM layer would incur extra overhead if these 

tests were targeted at system-level CPU workloads. Neither (Barham et al, 2003) or 

(Clark et al, 2004) used nbench in their benchmarking. The nbench results do confirm 

the CPU latency and bandwidth throughput test results produced by lmbench in 

section 4.1. 

 

 

 

Figure 11: nbench/BYTEMark throughput. 
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Nbench/BYTEMark Composite Index Results 

 

After running the 10 tests, BYTEMark produces three composite indices, Memory 

Index, Integer Index and Floating Point Index. The two important indices relate to 

Integer and Floating Point tests. 

The Integer Index is the geometric mean of the integer processing tests; Numeric Sort, 

String Sort, Bitfield, Emulated Floating Point, Assignment Algorithm, Huffman 

Compression and IDEA Encryption. The Floating Point Index is the geometric mean 

of the remaining tests. 

 

Both guests produce marginally lower throughput scores than the host in the 

following tests: 

 

 Memory Index test, the geometric mean of memory test scores, (host average 

16.60, OpenVZ average 16.47, Xen average 16.63 iterations /second) 

 Integer Index test, the geometric mean of integer test scores, (host 13.51, 

OpenVZ 13.50, Xen 13.52 iterations /second) 

 Floating-point Index test, the geometric mean of floating-point test scores, 

(host 23.00, OpenVZ 22.42, Xen 22.78 iterations /second) 

 

 

 

Figure 12: nbench/BYTEMark Composite throughput 
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4.3 UnixBench Benchmark Results 

 

As described in section 3.2, the individual and averaged UnixBench test results are 

included in Appendix C. A brief description of each test is included in section 3.6 

(Table 5).  As discussed in section 3.6, UnixBench, similar to nbench, is baselined to 

a SPARCstation 20-61 (based to 10), higher index numbers indicate better throughput 

performance. 

 

UnixBench CPU Benchmark Results 

 

Both guests produce marginally lower throughput scores for the following tests: 

 

 Arithmetic test, evaluates assignment, addition, subtraction and multiplication 

calculations that substitute datatypes for numbers, (host average 290, OpenVZ 

average 289, Xen average 290 iterations /second) 

 Dhrystone 2 test, evaluates the manipulation of arrays, character strings, 

indirect addressing, and other common non-floating point instructions, (host 

470, OpenVZ 413, Xen 471 iterations /second) 

 

Both guests produce materially lower throughput scores for the following tests: 

 

 Execl Throughput test, evaluate the replacement of a currently running process 

with a new process, (host average 1298, OpenVZ average 841, Xen average 

389 iterations /second) 

 

The results are a mixed bag and indicate where each of the virtualisation layers, as 

used by OpenVZ and Xen, impacts the CPU performance. The Execl Throughput test 

confirms the results of the process latency tests performed using lmbench in section 

4.1. The VMM does indeed impact both latency and throughput for process based 

tasks. 
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Figure 13: CPU throughput  

 

 

UnixBench Inter-Process Communication Benchmark Results 

 

Both guests produced results with materially lower throughput than the host in the 

following tests: 

 

 Pipe Throughput test, evaluates a single process which opens a pipe to itself 

and communicates data in a loop, (host average 824, OpenVZ average 592, 

Xen average 119 iterations /second) 

 Process Creation test, evaluates the repeated creation of a child process which 

immediately dies after its own fork(), (host 1260, OpenVZ 870, Xen 228 

iterations /second) 

 Shell Scripts test, evaluates a shell script that is run by 1, 2, 4, and 8 

concurrent processes, (host 786, OpenVZ 718, Xen 485 iterations /second) 

 System Call Overhead test, evaluates the time required to do iterations of 

dup(), close(), getpid(), getuid(), and umask() calls, (host 1476, OpenVZ 951, 

Xen 875 iterations /second) 
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OpenVZ outperformed Xen on all the IPC tests; however, both guests struggled to 

produce near native performance results in this group of tests. Using these 

simulations, the effect of the virtualisation layers during inter-process communication 

becomes very apparent. This area leaves room for improvement for both virtualisation 

approaches. The IPC bottleneck highlighted by the simulation could likely escalate as 

more guests are added to the host and/or the host or guest system(s) is placed under 

increasing load.  

 

 

 

 

Figure 14: Inter-Process communication throughput 
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UnixBench Filesystem Benchmark Results 

 

The filesystem tests capture the number of characters that can be copied within 10 

seconds based on buffer sizes of 256 bytes, 1 kilobyte and 4 kilobytes. 

 

Both guests performed with materially lower throughput than the host in the following 

tests: 

 

 File Copy 256B test,  (host average 566, OpenVZ average 454, Xen average 

171 iterations /second) 

 File Copy 1K test, (host 450, OpenVZ 414, Xen 212 iterations /second) 

 File Copy 4K test, (host 398, OpenVZ 378, Xen 288 iterations /second) 

 

OpenVZ outperformed Xen on all the Filesystem tests, producing near native results 

on two of the three tests in this group. These results do not corroborate the Filesystem 

and VM microbenchmarks in lmbench even though they test similar characteristics. 

This could be attributed to the way in which UnixBench and lmbench implement their 

tests. Another explanation for the major difference in the filesystem benchmark 

results and the severe relative underperformance experience by the Xen guest is 

OpenVZ was installed as a directory on the host filesystem, whereas Xen was 

installed as an image, which would incur additional overhead under these simulations.  
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Figure 15: Filesystem throughput 

 

 

UnixBench Composite Score 

 

The composite score shows a lower throughput by the guests, compared to the host: 

(host average 679, OpenVZ average 555, Xen average 277 iterations /second). 

 

The UnixBench tests focus on system resources such as CPU, file systems, pipes, and 

processes. These processes interact with kernel services and activate kernel-level 

memory events. UnixBench uses a shell command time, in order to aggregate timing 

performances for each of its benchmarks. Along with counting execution loops of 

each microbenchmark, the timings are used by UnixBench in order to derive 

performance index scores for each microbenchmark. The virtualisation layer will 

greatly influence how these resources are accessed and allocated from host to guest.   

The UnixBench results show that OpenVZ appears twice as efficient as Xen at the 

UnixBench tests according to the composite results (Figure 16). 
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Figure 16: Composite throughput score  
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4.4 Performance Summary 

 

The guests perform relatively well compared to the physical host with a few 

exceptions as highlighted above. They also perform better or worse when compared to 

each other on differing benchmarks and no overall winner can be chosen based on all 

three sets of benchmarks. 

 

This could be attributed to the approach to virtualisation adopted by each of these 

guests. Xen is a hypervisor-based virtualisation technology and OpenVZ is an OS-

level virtualisation technology. Xen is designed to run multiple guest OSes, with a 

shared or isolated kernel whereas OpenVZ shares a single kernel among the guests. 

Xen achieves guest isolation by separating guests into separate memory spaces and 

the guest can only access hardware resources through a set of hypervisor instructions.  

OpenVZ guests are monitored using beancounters and isolation is achieved by 

accounting for the physical resources being used.  

Xen therefore has the extra overhead of the hypervisor which manages the guests and 

resources. 

 

It can therefore be inferred that Xen trades-off performance in favour of isolation, 

whereas OpenVZ trades-off isolation in favour of performance. 

 

This research extended the work of (Barham et al 2003) and (Clark et al, 2004), by 

adding two new benchmarking suites as well as OpenVZ, a new form of 

virtualisation, not tested by (Barham et al 2003) and (Clark et al, 2004). The 

overlapping tests in the lmbench benchmark as used by (Barham et al 2003) and 

(Clark et al, 2004) produce relatively similar results, confirming their claims. The new 

benchmarks used in this research affirm the results of (Barham et al 2003) and (Clark 

et al, 2004) by showing that that the VMM does not impact throughput and the virtual 

environments perform at acceptable levels relative to the host.  

 

Overall, based on these performance results, the performance of virtual environments 

are more than acceptable when compared to the performance of the physical host.  
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Chapter 5: Conclusion and Future Work 
 

5.1 Conclusion 
 

The objective of this research was to investigate the performance of virtualisation 

techniques, using benchmarking software and commodity hardware. 

 

The precise objectives of the research were: 

 

1. To install and setup open source paravirtualisation, using Xen and operating 

system virtualisation, using OpenVZ on commodity hardware. 

2. To quantify the performance of each environment, physical and virtual, by 

using open source benchmarking software. 

 

Objective 1 was achieved by installing Debian GNU/Linux on commodity hardware 

along with Xen and OpenVZ and their respective administration tools and utilities. 

 

Objective 2 was achieved by installing benchmarking software on the host as well as 

Xen and OpenVZ guests. Xen and OpenVZ were benchmarked against the host and 

each other. A quantitative analysis was done to analyse the performance overheads 

incurred by using virtualisation.  

 

The results show that near-native performance is possible using virtualisation, 

however, the type of application being hosted and the number of virtual environments 

running concurrently could impact performance and was beyond the scope of this 

research. There is no conclusive “clear winner” among the paravirtualised 

environment provided by Xen or the OS virtualised environment provided by 

OpenVZ and that could be attributed to the fact that OpenVZ and Xen are essentially 

two differing approaches to virtualisation and would be best suited to different use-

cases. OpenVZ could be used to provision virtual environments where performance is 

more critical than isolation whereas Xen could be more suited to environments where 

isolation and resource guarantees are required. 
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This research and its findings serve as a starting point for systems researchers to 

develop and optimise virtualisation technologies to make them more suited for server 

consolidation. 

 

 

5.2 Future Work 
 

This research can be extended to include performance benchmarking of guests as 

more guest instances are provisioned on the same physical server. It can also be 

extended to quantify application benchmarking with the view to a better 

understanding of the real-world performance implications of hosting applications in 

virtual environments. Enterprise applications such as web and database servers can be 

tested under various resource configurations. 

 

Cloud computing extends the field of virtualisation and opens the way to on-demand, 

high-performance computing. Possible areas of research in cloud computing include 

quantifying the cloud under load and measuring the efficacy of scheduling systems to 

efficiently allocate resources as virtual instances demand them. 
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Appendix 
 

Outliers are highlighted in italics 
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A.1: lmbench Summary Results: Host 

 

Processor, Processes in microseconds (smaller is better) 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

null call 0.08 0.08 0.13 0.08 0.08 0.09 0.02 

null I/O 0.20 0.18 0.27 0.15 0.26 0.21 0.05 

 Stat 1.41 1.35 1.39 1.39 1.49 1.41 0.05 

open clos 2.30 2.21 2.13 2.31 2.26 2.24 0.07 

slct TCP 7.46 19.10 13.10 15.00 7.45 12.42 5.03 

sig inst 0.33 0.33 0.43 0.34 0.34 0.35 0.04 

sig hndl 1.52 1.28 1.53 1.61 1.23 1.43 0.17 

fork proc 105.00 97.50 95.70 106.00 103.00 101.44 4.59 

exec proc 347.00 350.00 338.00 367.00 345.00 349.40 10.78 

sh proc 2190.0 2169.0 2166.0 2233.0 2183.0 2188.2 26.92 

 

Table 6: Physical Host CPU & Processes latency 

 

Context Switching in microseconds (smaller is better) 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

2p/0K ctxsw 1.40 1.17 1.11 0.80 1.22 1.14 0.219 

2p/16K ctxsw 1.06 0.94 1.07 0.87 0.69 0.93 0.156 

 2p/64K ctxsw 5.71 5.52 5.58 5.69 5.68 5.64 0.082 

8p/16K ctxsw 2.47 2.37 2.68 2.19 2.36 2.41 0.180 

8p/64K ctxsw 39.00 34.10 44.60 36.40 36.10 38.04 4.080 

16p/16K ctxsw 2.64 2.85 2.98 2.60 3.48 2.91 0.354 

16p/64K ctxsw 63.70 63.60 63.70 63.20 63.70 63.58 0.217 

 

Table 7: Physical Host Context Switching latency 
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*Local* Communication Latencies in microseconds (smaller is better) 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

2p/0K ctxsw 1.40 1.17 1.11 0.80 1.22 1.14 0.219 

Pipe 4.48 4.39 4.76 4.55 4.52 4.54 0.138 

AF UNIX 8.26 5.44 6.01 5.99 6.59 6.46 1.086 

UDP 6.86 7.70 8.78 7.83 7.39 7.71 0.705 

TCP 12.70 13.90 13.30 12.10 14.50 13.30 0.949 

TCP conn 42.00 44.00 42.00 40.00 43.00 42.20 1.483 

 

Table 8: Physical Host Summary Local Communication latency 

 

 

File & VM System Latencies in microseconds (smaller is better) 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

0K File Create 14.10 14.20 14.40 14.80 13.20 14.14 0.590 

0K File Delete 11.50 12.30 11.40 13.40 11.00 11.92 0.952 

10K File Create 61.90 63.50 63.50 68.10 65.80 64.56 2.418 

10K File Delete 24.50 25.70 25.50 27.30 25.10 25.62 1.045 

Mmap Latency 4248 4363 4148 3882 4148 4158 177.84 

Prot Fault 1.59 1.66 0.06 0.11 0.41 0.77 0.798 

Page Fault 2.70 2.63 1.45 1.57 1.58 1.99 0.625 

100fd selct N/A N/A 2.57 2.60 2.72 2.63 0.079 

 

Table 9: Physical Host File & VM System latency 
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*Local* Communication Bandwidths in MB/s (bigger is better) 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

Pipe 1122.0 1123.0 1122.0 1129.0 1124.0 1124.0 2.915 

AF Unix 1225.0 1256.0 1217.0 1249.0 1249.0 1239.2 17.094 

TCP 212.0 214.0 214.0 218.0 209.0 214.0 3.674 

File reread 553.1 551.3 550.5 550.2 550.7 551.2 1.157 

Mmap reread 1040.6 1040.6 1040.9 1040.7 1040.7 1040.7 0.122 

Bcopy (libc) 369.3 376.6 379.0 380.9 377.6 376.7 4.430 

Bcopy (hand) 371.7 379.4 379.8 379.3 378.3 377.7 3.399 

Mem read 1015.0 1015.0 1015.0 1014.0 1015.0 1014.8 0.447 

Mem write 625.6 635.8 638.8 642.3 647.2 637.9 8.099 

 

Table 10: Physical Host Local Communication Bandwidth throughput 
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A.2: lmbench Summary Results: OpenVZ 
 

Processor, Processes in microseconds (smaller is better) 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

null call 0.13 0.13 0.13 0.13 0.13 0.13 0.00 

null I/O 0.28 0.28 0.31 0.23 0.26 0.27 0.03 

 Stat 1.51 1.56 1.67 1.53 1.53 1.56 0.06 

open clos 2.61 2.68 2.74 2.70 2.68 2.68 0.05 

slct TCP 8.17 8.15 8.16 12.90 16.80 10.84 3.92 

sig inst 0.45 0.45 0.45 0.45 0.45 0.45 0.00 

sig hndl 1.51 1.65 1.48 1.46 1.53 1.53 0.07 

fork proc 139.00 142.00 143.00 146.00 156.00 145.20 6.53 

exec proc 445.00 450.00 468.00 491.00 510.00 472.80 27.53 

sh proc 2651.0 2664.0 2644.0 2712.0 2717.0 2677.6 34.49 

 

Table 11: OpenVZ CPU & Processes latency 

 

Context Switching in microseconds (smaller is better) 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

2p/0K ctxsw 0.59 1.14 0.74 0.88 0.93 0.86 0.207 

2p/16K ctxsw 1.37 1.51 1.02 1.44 1.26 1.32 0.191 

 2p/64K ctxsw 5.92 5.66 6.19 5.53 5.77 5.81 0.254 

8p/16K ctxsw 2.75 2.74 2.65 2.56 2.54 2.65 0.100 

8p/64K ctxsw 42.3 37.0 46.2 37.2 39.6 40.46 3.862 

16p/16K ctxsw 2.93 2.81 2.79 4.80 3.70 3.41 0.865 

16p/64K ctxsw 65.00 64.80 65.20 65.00 65.10 65.02 0.148 

 

Table 12: OpenVZ Context Switching latency 
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*Local* Communication Latencies in microseconds (smaller is better) 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

2p/0K ctxsw 0.59 1.14 0.74 0.88 0.93 0.86 0.207 

Pipe 4.34 4.99 5.26 4.80 6.10 5.10 0.652 

AF UNIX 7.84 6.97 7.8 7.94 7.42 7.59 0.401 

UDP 14.50 12.50 13.10 12.50 12.90 13.10 0.825 

TCP 19.70 19.50 16.90 20.90 19.40 19.28 1.460 

TCP conn 61.00 67.00 69.00 30.30 64.00 58.26 15.921 

 

Table 13: OpenVZ Local Communication latency 

 

 

File & VM System Latencies in microseconds (smaller is better) 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

0K File Create 17.70 16.60 15.50 17.10 16.40 16.60 0.82 

0K File Delete 13.50 15.70 14.50 15.60 15.70 15.00 0.98 

10K File Create 73.90 76.00 74.00 72.40 74.20 74.10 1.28 

10K File Delete 29.00 33.00 30.70 32.80 33.10 31.70 1.81 

Mmap Latency 9829 10900 11000 10900 11700 10866 669.18 

Prot Fault 0.23 3.97 0.21 0.21 0.43 1.01 1.66 

Page Fault 3.84 2.70 3.98 3.94 4.00 3.69 0.56 

100fd selct 2.73 N/A 2.72 2.68 2.80 2.73 0.05 

 

Table 14: OpenVZ File & VM System latency 
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*Local* Communication Bandwidths in MB/s (bigger is better) 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

Pipe 1049 1044 1065 1020 1042 1044 16.171 

AF Unix 1170 1200 1182 1169 1178 1179.8 12.538 

TCP 193 191 202 191 191 193.60 4.775 

File reread 543.80 540.30 541.50 540.00 540.40 541.20 1.560 

Mmap reread 1025.5 1025.4 1024.9 1025.3 1024.9 1025.2 0.283 

Bcopy (libc) 347.40 368.60 362.90 367.00 369.40 363.06 9.106 

Bcopy (hand) 330.30 357.20 364.20 366.10 368.40 357.24 15.631 

Mem read 1000 1000 1000 1000 1000 1000 0.000 

Mem write 598.70 605.70 612.70 615.80 618.10 610.20 7.945 

 

Table 15: OpenVZ Local Communication Bandwidth throughput 
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A.3: lmbench Summary Results: Xen 
 

Processor, Processes in microseconds (smaller is better) 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

null call 0.15 0.15 0.15 0.15 0.16 0.15 0.00 

null I/O 0.24 0.24 0.24 0.24 0.24 0.24 0.00 

 Stat 1.40 1.38 1.36 1.38 1.38 1.38 0.01 

open clos 2.33 2.36 2.35 2.38 2.38 2.36 0.02 

slct TCP 6.92 6.72 6.72 6.73 6.73 6.76 0.09 

sig inst 0.43 0.43 0.43 0.42 0.42 0.43 0.01 

sig hndl 1.34 1.34 1.32 1.31 1.31 1.32 0.02 

fork proc 414.00 415.00 427.00 429.00 418.00 420.60 6.95 

exec proc 1097.0 1120.0 1077.0 1098.0 1112.0 1100.8 16.45 

sh proc 3755.0 3783.0 3776.0 3805.0 3820.0 3787.8 25.35 

 

Table 16: Xen CPU & Processes latency 

 

Context Switching in microseconds (smaller is better) 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

2p/0K ctxsw 4.24 4.17 4.05 4.18 4.19 4.166 0.070 

2p/16K ctxsw 4.32 4.50 4.14 4.32 4.68 4.39 0.205 

 2p/64K ctxsw 8.65 8.85 8.46 8.82 8.78 8.71 0.160 

8p/16K ctxsw 6.27 6.09 6.49 6.25 6.98 6.42 0.346 

8p/64K ctxsw 54.50 47.60 56.00 56.50 54.10 53.74 3.575 

16p/16K ctxsw 7.68 8.06 8.55 8.54 7.89 8.14 0.390 

16p/64K ctxsw 71.30 71.50 72.60 72.20 72.70 72.06 0.635 

 

Table 17: Xen Context Switching latency 
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*Local* Communication Latencies in microseconds (smaller is better) 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

2p/0K ctxsw 4.24 4.17 4.05 4.18 4.19 4.16 0.070 

Pipe 21.80 22.00 21.60 22.40 21.70 21.90 0.316 

AF UNIX 15.50 15.80 15.30 15.70 15.60 15.58 0.192 

UDP 15.20 15.20 15.40 15.50 15.50 15.36 0.152 

TCP 20.30 20.30 20.20 20.30 20.20 20.26 0.055 

TCP conn 63 63 63 64 63 63.20 0.447 

 

Table 18: Xen Local Communication latency 

 

 

File & VM System Latencies in microseconds (smaller is better) 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

0K File Create 9.90 9.89 9.85 10.2 9.94 9.96 0.139 

0K File Delete 8.53 7.98 7.97 8.22 8.25 8.19 0.231 

10K File Create 54.20 56.00 65.40 54.90 53.30 56.76 4.930 

10K File Delete 17.60 16.90 17.10 16.90 17.30 17.16 0.297 

Mmap Latency 15200 15900 15500 15800 15800 15640 288.09 

Prot Fault 0.44 0.42 0.45 0.47 0.40 0.44 0.027 

Page Fault 4.81 4.92 4.90 4.96 4.99 4.92 0.069 

100fd selct 2.97 2.74 2.77 2.77 2.76 2.80 0.093 

 

Table 19: Xen File & VM System latency 
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*Local* Communication Bandwidths in MB/s (bigger is better) 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

Pipe 1016 1007 426 426 438 662.6 318.55 

AF Unix 1155 1153 1153 1154 1154 1153.8 0.837 

TCP 198 199 199 198 201 199 1.225 

File reread 516.50 512.50 512.20 508.90 505.70 511.16 4.072 

Mmap reread 1028.8 1028.4 1027.8 1027.7 1027.3 1028.0 0.596 

Bcopy (libc) 359.10 367.50 367.20 368.90 370.90 366.72 4.504 

Bcopy (hand) 361.60 369.60 369.20 370.20 370.00 368.12 3.665 

Mem read 1003 1002 999 1002 1002 1001.6 1.517 

Mem write 607.10 617.80 621.00 623.30 625.10 618.86 7.118 

 

Table 20: Xen Local Communication Bandwidth throughput 
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B.1: nbench/BYTEMark* Summary Results: Host 
 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

Numeric Sort 24.75 24.74 24.79 24.76 24.74 24.76 0.02 

String Sort 73.72 73.57 73.85 73.94 73.69 73.75 0.14 

Bitfield 80.25 83.91 83.53 79.74 82.19 82.19 2.02 

Floating Point 

Emulation 
75.97 75.86 75.94 75.90 75.89 75.91 0.04 

Fourier Coefficients 24.22 24.30 24.31 24.25 24.19 24.25 0.05 

Assignment 90.09 90.24 89.66 89.69 90.06 89.95 0.26 

IDEA Encryption 55.63 55.54 55.63 55.61 55.54 55.59 0.05 

Huffman Compression 44.37 44.33 44.37 44.31 44.28 44.33 0.04 

Neural Net 51.22 51.11 50.47 50.58 51.18 50.91 0.36 

LU Decomposition 58.11 57.68 57.89 56.88 58.14 57.74 0.52 

Memory Index 16.47 16.72 16.68 16.69 16.43 16.60 0.13 

Integer Index 13.51 13.50 13.52 13.51 13.50 13.51 0.01 

Floating-Point Index 23.08 23.03 22.97 22.83 23.07 23.00 0.10 

 

Table 21: Physical Host BYTEMark throughput 
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B.2: nbench/BYTEMark* Summary Results: OpenVZ 
 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

Numeric Sort 24.91 25.04 24.76 24.64 25.33 24.94 0.27 

String Sort 74.13 72.29 74.58 73.51 72.85 73.47 0.93 

Bitfield 80.16 82.14 81.41 82.20 78.98 80.98 1.39 

Floating Point 

Emulation 
75.76 75.76 75.68 75.78 75.76 75.75 0.04 

Fourier Coefficients 24.13 24.13 24.22 24.13 24.13 24.15 0.04 

Assignment 89.29 89.41 89.34 89.90 89.67 89.52 0.26 

IDEA Encryption 55.41 55.46 55.47 55.48 55.40 55.44 0.04 

Huffman Compression 44.23 44.23 44.21 44.12 44.12 44.18 0.06 

Neural Net 48.78 48.76 48.78 48.80 48.80 48.78 0.02 

LU Decomposition 53.77 57.34 54.36 57.37 57.64 56.10 1.87 

Memory Index 16.45 16.45 16.57 16.58 16.30 16.47 0.11 

Integer Index 13.50 13.52 13.48 13.46 13.55 13.50 0.03 

Floating-Point Index 22.10 22.58 22.21 22.59 22.63 22.42 0.24 

 

Table 22: OpenVZ BYTEMark throughput 
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B.3: nbench/BYTEMark* Summary Results: Xen 
 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

Numeric Sort 24.79 24.92 24.79 24.86 24.69 24.81 0.09 

String Sort 73.41 73.57 73.85 73.61 73.57 73.60 0.16 

Bitfield 82.74 82.90 82.80 83.12 82.96 82.90 0.15 

Floating Point 

Emulation 
75.83 76.01 75.89 75.89 75.90 75.90 0.07 

Fourier Coefficients 24.29 24.22 24.25 24.22 24.23 24.24 0.03 

Assignment 89.72 89.66 90.05 89.85 90.10 89.88 0.20 

IDEA Encryption  55.74 55.61 55.61 55.63 55.61 55.64 0.06 

Huffman Compression 44.37 44.30 44.41 44.28 44.28 44.33 0.06 

Neural Net 50.45 50.36 50.25 50.47 50.32 50.37 0.09 

LU Decomposition 57.67 57.69 58.16 52.13 58.08 56.75 2.59 

Memory Index 16.59 16.61 16.65 16.64 16.64 16.63 0.02 

Integer Index 13.52 13.53 13.52 13.52 13.49 13.52 0.01 

Floating-Point Index 22.93 22.90 22.95 22.15 22.94 22.78 0.35 

 

Table 23: Xen BYTEMark throughput 
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C.1: UnixBench Summary Results: Host 
 

 

CPU Benchmarks 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

Arithmetic Test 

(type = double) 
290 290 290 290 290 290 0.05 

Dhrystone 2 

Using register variables 
469 471 470 471 471 470 0.80 

Execl Throughput 2,201 1,082 1,085 1,059 1,064 1,298 504.75 

 

Table 24: Physical Host CPU throughput 

 

 

Inter-Process Communication Benchmarks 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

Pipe Throughput 940 812 734 855 780 824 78.73 

Process Creation 1,316 1,269 1,218 1,230 1,267 1,260 38.44 

Shell Scripts 

(8 concurrent) 
787 791 781 787 785 786 3.88 

System Call Overhead 1,520 1,523 1,295 1,518 1,522 1,476 101.09 

 

Table 25: Physical Host IPC throughput 

 

 

Filesystem Benchmarks 

Physical Host Test1 Test2 Test3 Test4 Test5 μ σ 

File Copy 256 bufsize 

500 maxblocks 
614 583 535 529 570 566 35.29 

File Copy 1024 bufsize 

2000 maxblocks 
460 448 445 444 454 450 6.88 

File Copy 4096 bufsize 

8000 maxblocks 
400 392 399 400 401 398 3.76 

 

Table 26: Physical Host Filesystem throughput 
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C.2: UnixBench Summary Results: OpenVZ 
 

 

CPU Benchmarks 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

Arithmetic Test 

(type = double) 
289 289 288 289 289 289 0.17 

Dhrystone 2 

Using register variables 
413 412 413 413 413 413 0.47 

Execl Throughput 858 838 838 837 836 841 9.50 

 

Table 27: OpenVZ CPU throughput 

 

 

Inter-Process Communication Benchmarks 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

Pipe Throughput 559 575 616 604 604 592 23.90 

Process Creation 914 857 874 842 861 870 27.18 

Shell Scripts 

(8 concurrent) 
719 718 722 715 715 718 2.94 

System Call Overhead 952 951 951 949 952 951 1.10 

 

Table 28: OpenVZ IPC throughput 

 

 

Filesystem Benchmarks 

OpenVZ Test1 Test2 Test3 Test4 Test5 μ σ 

File Copy 256 bufsize 

500 maxblocks 
463 467 435 452 452 454 12.62 

File Copy 1024 bufsize 

2000 maxblocks 
423 415 413 408 411 414 5.74 

File Copy 4096 bufsize 

8000 maxblocks 
383 385 376 369 375 378 6.26 

 

Table 29: OpenVZ Filesystem throughput 
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C.3: UnixBench Summary Results: Xen 
 

 

CPU Benchmarks 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

Arithmetic Test 

(type = double) 
290 290 290 290 289 290 0.22 

Dhrystone 2 

Using register variables 
472 472 471 471 470 471 0.69 

Execl Throughput 384 387 390 392 394 389 3.91 

 

Table 30: Xen CPU throughput 

 

 

Inter-Process Communication Benchmarks 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

Pipe Throughput 118 118 119 119 120 119 0.76 

Process Creation 226 227 230 230 229 228 1.90 

Shell Scripts 

(8 concurrent) 
487 486 485 483 483 485 1.47 

System Call Overhead 876 876 876 875 871 875 2.40 

 

Table 31: Xen IPC throughput 

 

 

Filesystem Benchmarks 

Xen Test1 Test2 Test3 Test4 Test5 μ σ 

File Copy 256 bufsize 

500 maxblocks 
169 172 170 169 171 170 1.35 

File Copy 1024 bufsize 

2000 maxblocks 
213 211 212 211 211 212 0.63 

File Copy 4096 bufsize 

8000 maxblocks 
288 289 288 289 287 288 0.83 

 

Table 32: Xen Filesystem throughput 
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D.1: OpenVZ global configuration file 
 

## Global parameters 

VIRTUOZZO=yes 

LOCKDIR=/var/lib/vz/lock 

DUMPDIR=/var/lib/vz/dump 

VE0CPUUNITS=1000 

 

## Logging parameters 

LOGGING=yes 

LOGFILE=/var/log/vzctl.log 

LOG_LEVEL=0 

VERBOSE=0 

 

## Disk quota parameters 

DISK_QUOTA=yes 

VZFASTBOOT=no 

 

# The name of the device whose ip address will be used as 

source ip for VE. 

# By default automatically assigned. 

#VE_ROUTE_SRC_DEV="eth0" 

 

# Controls which interfaces to send ARP requests and 

modify APR tables on. 

NEIGHBOUR_DEVS=detect 

 

## Template parameters 

TEMPLATE=/var/lib/vz/template 

 

## Defaults for VEs 

VE_ROOT=/var/lib/vz/root/$VEID 

VE_PRIVATE=/var/lib/vz/private/$VEID 

CONFIGFILE="vps.solo" 
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DEF_OSTEMPLATE="debian-4.0-i386-minimal" 

 

## Load vzwdog module 

VZWDOG="no" 

 

## IPv4 iptables kernel modules 

IPTABLES="ipt_REJECT ipt_tos ipt_limit ipt_multiport 

iptable_filter iptable_mangle ipt_TCPMSS ipt_tcpmss 

ipt_ttl ipt_length" 

 

## Enable IPv6 

IPV6="no" 

 

## IPv6 ip6tables kernel modules 

IP6TABLES="ip6_tables ip6table_filter ip6table_mangle 

ip6t_REJECT" 
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D.2: OpenVZ guest configuration file 
 

# Configuration file generated by vzsplit for 1 VEs 

# on HN with total amount of physical mem 979 Mb 

# low memory 883 Mb, swap size 839 Mb, Max treads 8000 

# Resourse commit level 0: 

# Free resource distribution. Any parameters may be 

increased 

# Primary parameters 

NUMPROC="8000:8000" 

AVNUMPROC="2262:2262" 

NUMTCPSOCK="8000:8000" 

NUMOTHERSOCK="8000:8000" 

#VMGUARPAGES="150470:2147483647" 

VMGUARPAGES="454656:2147483647" 

 

# Secondary parameters 

KMEMSIZE="185323520:203855872" 

TCPSNDBUF="29006506:61774506" 

TCPRCVBUF="29006506:61774506" 

OTHERSOCKBUF="14503253:47271253" 

DGRAMRCVBUF="14503253:14503253" 

OOMGUARPAGES="150470:2147483647" 

#PRIVVMPAGES="150470:165517" 

PRIVVMPAGES="229376:252317" 

 

# Auxiliary parameters 

LOCKEDPAGES="9049:9049" 

SHMPAGES="15047:15047" 

PHYSPAGES="0:2147483647" 

NUMFILE="72384:72384" 

NUMFLOCK="1000:1100" 

NUMPTY="512:512" 

NUMSIGINFO="1024:1024" 
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DCACHESIZE="40478819:41693184" 

NUMIPTENT="200:200" 

DISKSPACE="4181364:4599504" 

DISKINODES="1017425:1119168" 

CPUUNITS="54150" 

VE_ROOT="/var/lib/vz/root/$VEID" 

VE_PRIVATE="/var/lib/vz/private/$VEID" 

OSTEMPLATE="debian-4.0-i386-minimal" 

ORIGIN_SAMPLE="vps.solo" 

IP_ADDRESS="192.168.2.4" 

HOSTNAME="ovz.domain.name" 

NAMESERVER="192.168.2.2" 

ONBOOT="yes" 
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E.1: Xen Xend configuration file 
 

# -*- sh -*- 

 

# 

# Xend configuration file. 

# 

 

# This example configuration is appropriate for an 

installation that  

# utilizes a bridged network configuration. Access to 

xend via http 

# is disabled.   

 

# Commented out entries show the default for that entry, 

unless otherwise 

# specified. 

 

#(logfile /var/log/xen/xend.log) 

#(loglevel DEBUG) 

 

#(xend-http-server no) 

#(xend-unix-server no) 

#(xend-tcp-xmlrpc-server no) 

#(xend-unix-xmlrpc-server yes) 

#(xend-relocation-server no) 

 

#(xend-unix-path /var/lib/xend/xend-socket) 

 

# Port xend should use for the HTTP interface, if xend-

http-server is set. 

#(xend-port            8000) 
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# Port xend should use for the relocation interface, if 

xend-relocation-server 

# is set. 

#(xend-relocation-port 8002) 

 

# Address xend should listen on for HTTP connections, if 

xend-http-server is 

# set. 

# Specifying 'localhost' prevents remote connections. 

# Specifying the empty string '' (the default) allows all 

connections. 

#(xend-address '') 

#(xend-address localhost) 

 

# Address xend should listen on for relocation-socket 

connections, if 

# xend-relocation-server is set. 

# Meaning and default as for xend-address above. 

#(xend-relocation-address '') 

 

# The hosts allowed to talk to the relocation port.  If 

this is empty (the 

# default), then all connections are allowed (assuming 

that the connection 

# arrives on a port and interface on which we are 

listening; see 

# xend-relocation-port and xend-relocation-address 

above).  Otherwise, this 

# should be a space-separated sequence of regular 

expressions.  Any host with 

# a fully-qualified domain name or an IP address that 

matches one of these 

# regular expressions will be accepted. 

# 
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# For example: 

#  (xend-relocation-hosts-allow '^localhost$ 

^.*\.example\.org$') 

# 

#(xend-relocation-hosts-allow '') 

 

# The limit (in kilobytes) on the size of the console 

buffer 

#(console-limit 1024) 

 

## 

# To bridge network traffic, like this: 

# 

# dom0: fake eth0 -> vif0.0 -+ 

#                            | 

#                          bridge -> real eth0 -> the 

network 

#                            | 

# domU: fake eth0 -> vifN.0 -+ 

# 

# use 

# 

# (network-script network-bridge) 

# 

# Your default ethernet device is used as the outgoing 

interface, by default.  

# To use a different one (e.g. eth1) use 

# 

# (network-script 'network-bridge netdev=eth1') 

# 

# The bridge is named xenbr0, by default.  To rename the 

bridge, use 

# 

# (network-script 'network-bridge bridge=<name>') 
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# 

# It is possible to use the network-bridge script in more 

complicated 

# scenarios, such as having two outgoing interfaces, with 

two bridges, and 

# two fake interfaces per guest domain.  To do things 

like this, write 

# yourself a wrapper script, and call network-bridge from 

it, as appropriate. 

# 

(network-script network-bridge) 

 

# The script used to control virtual interfaces.  This 

can be overridden on a 

# per-vif basis when creating a domain or a configuring a 

new vif.  The 

# vif-bridge script is designed for use with the network-

bridge script, or 

# similar configurations. 

# 

# If you have overridden the bridge name using 

# (network-script 'network-bridge bridge=<name>') then 

you may wish to do the 

# same here.  The bridge name can also be set when 

creating a domain or 

# configuring a new vif, but a value specified here would 

act as a default. 

# 

# If you are using only one bridge, the vif-bridge script 

will discover that, 

# so there is no need to specify it explicitly. 

# 

(vif-script vif-bridge) 
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## Use the following if network traffic is routed, as an 

alternative to the 

# settings for bridged networking given above. 

#(network-script network-route) 

#(vif-script     vif-route) 

 

 

## Use the following if network traffic is routed with 

NAT, as an alternative 

# to the settings for bridged networking given above. 

#(network-script network-nat) 

#(vif-script     vif-nat) 

 

 

# Dom0 will balloon out when needed to free memory for 

domU. 

# dom0-min-mem is the lowest memory level (in MB) dom0 

will get down to. 

# If dom0-min-mem=0, dom0 will never balloon out. 

(dom0-min-mem 196) 

 

# In SMP system, dom0 will use dom0-cpus # of CPUS 

# If dom0-cpus = 0, dom0 will take all cpus available 

(dom0-cpus 0) 

 

# Whether to enable core-dumps when domains crash. 

#(enable-dump no) 

 

# The tool used for initiating virtual TPM migration 

#(external-migration-tool '') 

 

# The interface for VNC servers to listen on. Defaults 
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# to 127.0.0.1  To restore old 'listen everywhere' 

behaviour 

# set this to 0.0.0.0 

#(vnc-listen '127.0.0.1') 
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E.2: Xen guest configuration file 
 

#  Configuration file for the Xen instance xen, created  

#  on Fri Oct 10 01:01:27 2008. 

 

#  Kernel + memory size 

# 

kernel  = '/boot/vmlinuz-xen' 

ramdisk = '/boot/initrd.img-xen' 

 

memory  = '896' 

 

#  Disk device(s). 

# 

root    = '/dev/sda1 ro' 

 

disk    = [ 'file:/xen/domains/xen/disk.img,sda1,w', 

'file:/xen/domains/xen/swap.img,sda2,w' ] 

 

#  Hostname 

# 

name    = 'xen' 

 

#  Networking 

# 

vif  = [ 'ip=192.168.2.6' ] 

 

#  Behaviour 

# 

on_poweroff = 'destroy' 

on_reboot   = 'restart' 

on_crash    = 'restart' 
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F: Xen-tools configuration file 
 

# 

# /etc/xen-tools/xen-tools.conf 

# 

#  Global configuration file for the scripts included 

with Xen-tools. 

# 

#  Values may be set here so they don't need to be 

specified upon the 

# command line. 

# 

# Steve 

# -- 

# 

 

 

 

# 

## 

#  Output directory for storing loopback images. 

# 

#  If you choose to use loopback images, which are simple 

to manage but 

# slower than LVM partitions, then specify a directory 

here and uncomment 

# the line. 

# 

#  New instances will be stored in subdirectories named 

after their 

# hostnames. 

#  

## 

dir = /xen 
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# 

 

# 

## 

# 

# If you don't wish to use loopback images then you may 

specify an  

# LVM volume group here instead 

# 

## 

# lvm = skx-vg 

 

 

# 

## 

# 

#  Installation method. 

# 

#  There are four different methods you can use to 

install a new copy 

# of Linux to use in your Xen guest domain: 

# 

#   - Installation via the debootstrap command. 

#   - Installation via the rpmstrap command. 

#   - Installation by copying a directory containing a 

previous installation. 

#   - Installation by untarring a previously archived 

image. 

# 

#  NOTE That if you use the "untar", or "copy" options 

you should ensure 

# that the image you're left with matches the 'dist' 

setting later in 

# this file. 
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# 

#  Note that you can only uncomment one method - they are 

mutually exclusive. 

# However the command line installation method will allow 

you to override 

# the choice you make here. 

# 

## 

#  

# copy = /path/to/pristine/image 

debootstrap = 1 

# rpmstrap = 1 

# tar = /path/to/img.tar 

# 

 

# 

## 

#  Command definitions. 

## 

# 

# The "debootstrap" and "rpmstrap" commands are 

hardwired, but if you 

# wish to alter the commands invoked when using the "--

copy" + "--tar" 

# options you can adjust these two settings: 

# 

# --copy: 

# copy-cmd = /bin/cp -a $src/* $dest 

# 

# --tar: 

# tar-cmd  = /bin/tar --numeric-owner -xvf $src 

# 

# 
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# 

## 

#  Disk and Sizing options. 

## 

# 

size   = 4Gb      # Disk image size. 

memory = 896Mb    # Memory size 

swap   = 880Mb    # Swap size 

# noswap = 1      # Don't use swap at all for the new 

system. 

fs     = ext3     # use the EXT3 filesystem for the disk 

image. 

dist   = etch     # Default distribution to install. 

image  = sparse   # Specify sparse vs. full disk images. 

 

# 

#  Currently supported and tested distributions include: 

# 

#   sid          - Debian 

#   sarge        - Debian 

#   etch         - Debian 

#   dapper       - Ubuntu 

#   centos4      - CentOS 4 

#   fedora-core4 - Fedora Core 4 (codname stentz) 

# 

 

 

 

## 

# Networking setup values. 

## 
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# 

# Uncomment and adjust these network settings if you wish 

to give your 

# new instances static IP addresses. 

# 

gateway   = 192.168.2.1 

netmask   = 255.255.255.0 

# 

# Uncomment this if you wish the images to use DHCP 

# 

# dhcp = 1 

 

 

## 

# Misc options 

## 

 

# 

# Uncomment the following line if you wish to disable the 

caching 

# of downloaded .deb files when using debootstrap to 

install images. 

# 

# cache = no 

# 

 

# 

# Uncomment the following line if you wish to 

interactively setup 

# a new root password for images. 

# 

passwd = 1 

 

# 
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# If you'd like all accounts on your host system which 

are not present 

# on the guest system to be copied over then uncomment 

the following line. 

# 

# accounts = 1 

# 

 

# 

# Default kernel and ramdisk to use for the virtual 

servers 

# 

kernel = /boot/vmlinuz-xen 

initrd = /boot/initrd.img-xen 

 

# 

#  The architecture to use when using debootstrap or 

rpmstrap. 

# 

#  This is most useful on 64 bit host machines, for other 

systems it 

# doesn't need to be used. 

# 

# arch=i386 

# 

 

# 

# The default mirror for debootstrap which can be used to 

install 

# Debian Sid, Sarge, and Etch. 

# 

mirror = http://debian.mirror.ac.za/debian/ 

 

# 
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# A mirror suitable for use when installing the Dapper 

release of Ubuntu. 

# 

# mirror = http://gb.archive.ubuntu.com/ubuntu/ 

 

# 

#  Uncomment if you wish newly created images to boot 

once they've been 

# created. 

# 

boot = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


