
Panopticon: A Scalable Monitoring System

Duncan Clough
Department of Computer

Science, University of Cape
Town, Private Bag X3,

Rondebosch, 7701,
South Africa

dclough@cs.uct.ac.za

Stefano Rivera
Department of Computer

Science, University of Cape
Town, Private Bag X3,

Rondebosch, 7701,
South Africa

srivera@cs.uct.ac.za

Michelle Kuttel
Department of Computer

Science, University of Cape
Town, Private Bag X3,

Rondebosch, 7701,
South Africa

mkuttel@cs.uct.ac.za

Vincent Geddes
∗

Department of Computer
Science, University of Cape

Town, Private Bag X3,
Rondebosch, 7701,

South Africa
vgeddes@cs.uct.ac.za

Patrick Marais
Department of Computer

Science, University of Cape
Town, Private Bag X3,

Rondebosch, 7701,
South Africa

patrick@cs.uct.ac.za

ABSTRACT
Monitoring systems are necessary for the management
of anything beyond the smallest networks of computers.
While specialised monitoring systems can be deployed to
detect specific problems, more general systems are re-
quired to detect unexpected issues, and track performance
trends.

While large fleets of computers are becoming more com-
mon, few existing, general monitoring systems have the
capability to scale to monitor these very large networks.
There is also an absence of systems in the literature that
cater for visualisation of monitoring information on a large
scale.

Scale is an issue in both the design and presentation of
large-scale monitoring systems. We discuss Panopticon,
a monitoring system that we have developed, which can
scale to monitor tens of thousands of nodes, using only
commodity equipment. In addition, we propose a novel
method for visualising monitoring information on a large
scale, based on general techniques for visualising massive
multi-dimensional datasets.

The monitoring system is shown to be able to collect
information from up to 100 000 nodes. The storage sys-
tem is able to record and output information from up to
25 000 nodes, and the visualisation is able to simultane-
ously display all this information for up to 20 000 nodes.
Optimisations to our storage system could allow it to scale
a little further, but a distributed storage approach com-
bined with intelligent filtering algorithms would be neces-
sary for significant improvements in scalability.

∗Now at Amazon.com Development Centre South Africa

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAICSIT ’10, October 11-13, Bela Bela, South Africa
Copyright 2010 ACM 978-1-60558-950-3/10/10 ...$10.00.

Categories and Subject Descriptors
C.2.3 [Computer]: Communication Networks—Network
Operations: Network monitoring ; H.3.3 [Informational
Systems]: Information Storage and Retrieval—Informa-
tion Search and Retrieval: Retrieval models; H.5.2 [Infor-
mational Systems]: User Interfaces—Graphical user in-
terfaces (GUI)

General Terms
Design, Management

Keywords
Monitoring System, Scalability, Visualisation

1. INTRODUCTION
The last decade has seen the emergence of massively

large data centres composed of tens of thousands of nodes.
The scale of data centres run by companies such as Ama-
zon and Google has expanded rapidly as consumers de-
mand ever more resources. As systems begin spanning
data centres, large scale monitoring becomes essential.

With an ever increasing number of nodes, redundancy
has moved outside the individual server, giving more im-
portance to effective management and monitoring of an
entire fleet of servers. However, few of the mature mon-
itoring systems, that are constantly used in system ad-
ministration, are designed for supervision of very large
networks.

There are a variety of monitoring systems for identi-
fying and detecting different classes of problem. While
specialised monitoring systems can be deployed to detect
most specific problems, more general systems are required
to handle unexpected systemic issues [4]. General moni-
toring systems usually measure metrics such as CPU us-
age, free memory, network traffic, and availability [12].
Given such a set of metrics from a fleet of nodes (comput-
ers); system load, application performance, and outages
can be readily interpreted. This has applications ranging
from diagnosing performance bottlenecks in a single node
to optimising cluster-usage in Capacity Computing.

Designing a scalable and efficient monitoring system is
not a trivial task. A näıve implementation may impose

1

a heavy burden on a network, wasting a resource that
the monitoring system is intended to preserve [14]. A
large scale fleet will produce a massive amount of infor-
mation that will need to be efficiently stored and quickly
displayed. Panopticon is our experimental system that
is able to non-intrusively monitor, efficiently store and
quickly retrieve metrics from a very large fleet. As a pro-
totype, it was not required to implement all the features
of a general purpose monitoring system.

The monitoring and storing of metrics on a large scale
is not the only difficulty; effectively visualising them is a
problem that is often overlooked. If not displayed effec-
tively, this information can easily overwhelm the user, hin-
dering their ability to identify problems [4]. Traditionally,
graphs are used for visualising metrics and are very effec-
tive on a small scale. However, on a large scale, graphs
become visually limited by the number of curves that can
be plotted simultaneously. Therefore, a new method of
visualising monitoring information is required — one that
can deal with massive sets of data, and takes into ac-
count the multi-dimensional nature of the information.
A purely large-scale overview would not provide enough
node-specific detail to be useful for identifying problems in
individual nodes. Panopticon’s Visualisation component
presents a solution to these issues with our Node-map that
provides information at multiple levels of detail, and our
Metric-map that shows an overview of the fleet status.
Thus, the visualisation provides a general overview of the
status of all nodes, while also allowing access to the met-
rics of a specific node. Live changes in metric values are
highlighted for easy identification and historic information
on monitored nodes is also accessible.

We evaluated Panopticon by monitoring a live test clus-
ters of 56 computers over a period of 4 months, as well as
with simulated data for significantly larger fleets. Our
analysis shows that the Panopticon approach can scale to
very large fleets, with the potential to scale to millions of
monitored nodes and be extended into a viable production
monitoring system.

2. RELATED WORK
For small scale monitoring, RRDTool is widely used

for storage of metrics and their visualisation [13]. Its
approach of storing individual, time-granularity-specific
metric values in their own separate databases has been
very effective, but quickly becomes inefficient when deal-
ing with thousands of computers [12]. As the scale in-
creases, communicating information from nodes to the
databases also becomes problematic.

CARD [1] is an early example of a monitoring sys-
tem that employs a hierarchical approach specifically to
improve scalability. This approach was modernised by
Ganglia [12], with a multi-level tree of aggregation nodes
pulling information up from monitoring agents on individ-
ual computers. Communication bottlenecks were avoided
by only storing information in top-level RRDTool databases,
thus eliminating network usage during information retrieval.
Despite having a scalable architecture for collecting infor-
mation, reliance on RRDTool storage limited the system
to below 10 000 nodes. This highlights the need for scala-
bility to be central in the design of all aspects of a large
scale monitoring system.

Another approach is to distribute the storage of met-
rics across all nodes in the hierarchy, with queries being
pushed down the hierarchy to be serviced by all inter-
ested nodes. Astrolabe [18] showed that this method is

particularly scalable, with the system capable of handling
a theoretical maximum of 300 000 nodes. Unfortunately,
Astrolabe was designed for data mining and not visualis-
ing detailed information, so queries are limited to aggre-
gates in order to reduce network usage. We improve on
this limitation, making individual metric values from all
nodes viewable.

A high level of fault tolerance is important to any mas-
sively scalable monitoring system. On a very large scale,
problems become inevitable and agents have to gracefully
recover from these problems [12]. Both Ganglia and Astro-
labe use multiple levels of redundancy to increase robust-
ness. Astrolabe goes further, using a randomised point-to-
point message exchange to limit reliance on single chan-
nels.

The third aspect to a scalable monitoring system, vi-
sualising the monitoring information in a scalable man-
ner, is often overlooked. Simultaneously visualising data
from tens of thousands of computers leads to a user being
presented with so much information that it is extremely
difficult, if not impossible, to comprehend it effectively.
A fleet of a million nodes would only compound this is-
sue. Traditional graphs become too cluttered to effectively
display information [11]. Tools such as OVIS-2 [3] suggest
that statistical methods should be used to highlight im-
portant information. While this is effective at reducing in-
formation overload, our research specifically investigated
techniques for visualising all the information rather than a
subset. OVIS-2 also includes a physical 3D representation
of a cluster, with components being coloured individually
according to metric values. Although the physical repre-
sentation is very useful in relation to actual clusters, it
also limits the visual scalability.

Our monitoring information is multi-dimensional as there
are multiple metrics to consider. This compounds the
problem of large amounts of information to be expected
from a large fleet. In order to build an effective, scalable
visualisation for our monitoring system we looked at gen-
eral visualisation techniques for massive, multi-dimensional
datasets.

Pixel-oriented [9, 16, 15] aggregation solves the problem
of loss of detail in multiple zoom levels by rearranging in-
formation into a more suitable format for the current zoom
level. Hierarchical [7, 11] aggregation attempts to group
related information to provide a meaningful overview of
and context for substructures. These techniques allow a
visualisation to provide a broader context to smaller sub-
sets of data. Since nodes within a fleet have a logical and
physical layout, aggregation is appropriate to monitoring
systems.

Orthogonal projections from higher dimensions into un-
derstandable 3D or 2D coordinates help reduce the com-
plexity of multi-dimensional data-sets, but have an associ-
ated loss of information [2]. ShapeVis [11] uses projections
to group objects with similar multi-dimensional character-
istics in similar 3D spacial locations — a concept that in-
spired our Metric-map. Parallel Coordinates [8, 10] are a
popular method of rendering multi-dimensional data, but
require aggregation techniques for better scaling [11]. We
therefore decided not to include Parallel Coordinates in
our visualisations.

Perspective manipulation and user-interaction can be
used to enhance a visualisation. Filtering [2], linking and
brushing[17] (propagating selection between different vi-
sualisations), zooming and distortion [11] are examples of
methods that can improve a visualisation.

2

Figure 1: Overview of Panopticon system architec-
ture, showing the separate Visualisation, Storage
& Retrieval, and Collection components

Although each of the discussed techniques can be in-
dividually successful, it is a combination of techniques
that often results in the most successful visualisations [10].
Our visualisations were, therefore, designed to use multi-
ple techniques.

3. DESIGN & IMPLEMENTATION
Panopticon is the combination of three separate compo-

nents, each focussing on one part of a much larger prob-
lem: Visualisation, Storage & Retrieval, and Monitoring
& Collection (Figure 1). Each component runs as a sep-
arate entity, and communicates with other components
over the network. This allowed each component to be
developed and evaluated independently.

As a prototype system, the aim of Panopticon is to in-
vestigate scalability in the order of tens of thousands of
nodes. Many features that would be desirable in produc-
tion monitoring systems are considered non-vital to our
research.

3.1 Monitoring Component
A monitoring system is responsible for measuring met-

rics of monitored nodes and collating the data without ad-
versely affecting the performance of those nodes or their
network [12]. It should be lightweight so that it does not
interfere with activities on nodes and is able to continue
reporting even when nodes are under intense load. It must
be highly reliable and robust, as reporting failures will be
perceived as node failures. It should also require as little
maintenance as possible, so that it is not an administrative
burden on a network. The importance of these character-

istics only increases with scale [18].
In a similar approach to Astrolabe [18], the monitoring

and aggregation system is a hierarchical network of agents
(the node-tree). The agent is installed as a daemon on
each node. It is responsible for observing and recording
host system metrics, and providing them to other nodes
on request. Internal nodes in the tree will poll their chil-
dren for recent metrics. This information is propagated
up through the tree, recording the route within the data.
The root node receives metrics from every node in the sys-
tem while only having to communicate with a few child
nodes.

The system can handle unreliable hardware and net-
works by using multiple parent nodes for each child, all
the way up to multiple roots. Duplicate data is automati-
cally reconciled by ignoring the oldest data for a particular
node.

For our purposes, we selected a similar small set of met-
rics as Ganglia [12]: uptime, usage, load (1, 5, and 15
minute averages), network usage, and free memory. These
metrics are commonly used by monitoring systems, and
easily available on POSIX. The exact metrics monitored
would have negligible effect on our scalability evaluation,
which is dependant on data quantity, rather than content.

The inter-agent communication uses a very simple client-
server binary protocol. The only supported operations
are requests for all available metrics on a particular node
(both aggregated and locally observed) and a status report
on the availability of aggregated data.

For communication with other systems, agents could
run a Web Service Interface. Requests followed the REST
architecture [6] and data was encoded in JSON [5]. This
interface was used between the root node and the Storage
and Retrieval system.

3.2 Storage & Retrieval Component
Determining the cause of a problem on a network of-

ten requires looking into the past and comparing against
previous behaviour. Therefore, as well as providing up-
to-date information on the current state of a fleet, a mon-
itoring system should store any collected information for
later use. We required Panopticon to store all live met-
rics at least once every 5 minutes, and to retrieve metrics
as requested by the Visualisation component in real-time.
The Storage & Retrieval component requires a high degree
of availability, as it provides critical information without
which system administrators are blind.

Our storage system was built around a high-performance
SQL database, MySQL. Having a centralised MySQL server
is an obvious limit to scalability and reliability: It is a sin-
gle point of contention and failure. However, the simplic-
ity of this approach in our proof-of-concept is considered
to be enough of a gain to outweigh these issues.

A time granularity of 5 minutes is widely used by moni-
toring systems (it is MRTG’s default [13]). It strikes a rea-
sonable balance between information detail and network
and storage overhead. In early tuning experiments, our
RDBMS was shown to be capable of inserting 10 million
rows in 170 ± 32 s. This gave us an upper bound of be-
ing able to capture the information from 14 million nodes
with a 5 minute resolution. Since this was well above our
desired scale, a centralised RDBMS was considered suffi-
cient for our system: it provided a good starting point for
testing, while having reasonable scalability.

Storage and retrieval features are implemented sepa-
rately. Storage is accomplished via a daemon polling mul-
tiple root aggregation nodes in parallel, and storing re-

3

100

80

60

40

20

0
Fri Sat Sun Mon Tue Wed Thu Fri Sat

Figure 2: A graph of memory usage in only 20
machines over a week, highlighting the problem of
graph clutter.

trieved metrics in the database. Incoming data is times-
tamped on the storage node (to remove the requirement
that every participating node have accurate time) and
quantised into 5-minute buckets. Only two database ta-
bles are used: a node list table (with static information
and last-seen time stamp), and a full historical archive ta-
ble. The archive table is indexed with a primary key on
the (address, time stamp) tuple so that full table scans
are never needed for the supported queries (below).

Retrieval is handled by a separate daemon, answering
requests from a visualisation front-end and sending up-
dates as they become available. The protocol is text-
based, for ease of debugging. As the number of moni-
tored nodes may be very large, the responses are delta-
compressed where possible.

Commands supported are: selecting metrics and/or nodes
of interest, and enabling or disabling live status updates.
Historical queries can be performed for fleet status at a
specific point in time, or for a set of consecutive metric
values from a specific node that are suitable for a time-
axis graph.

3.3 Visualisation Component
The central issue addressed in this work is the prob-

lem of monitoring and visualising a huge number of nodes
simultaneously. So, above all, the visualisation must be
scalable. We also required low-level information to still be
easily accessible within our system. To meet these needs,
we designed two different overview visualisations (Node-
map and Metric-map) combining visualisation techniques
discussed in Section 2. Additionally, we provided tradi-
tional per-node historical graphs. The key difference be-
tween the two visualisations is their approach to solving
the problems of viewing low- and high-level information.
The visualisations were also able to interact through two-
way selection propagation.

The Visualisation component aims to present informa-
tion about the state of the fleet to the user. This is done
so that the user can identify problems with the fleet and
their potential causes. New information needs to be pre-
sented to the user as soon as it is available and historic
data also needs to be accessible.

Graphs can become too cluttered if too many comput-
ers are being monitored, and therefore are not applicable
to Panopticon as the main visualisation (see Figure 2).

Zoom Out

Node Detail Group Detail Group Summary

161.58.175.23

CPU: 4 %
Network: 0 %
RAM: 52 %

Zoom Out

Figure 3: The three different levels of detail of the
Node-map.

CPU Network RAM

Dead nodes

All nodes above threshold

Most nodes below threshold

All nodes below threshold

Few nodes above threshold

Figure 4: Information in the Group Summary
level of detail is summarised using an adjustable
threshold value, and represents an overview of ac-
tivity within a Group.

Update
Received

Selection
Made

Figure 5: An example of how selection and update
highlighting are visualised on the Node-map.

Group Summary Level Node Level

Figure 6: Update highlighting shown in the con-
tect of a fleet, where areas of change are easily
identifiable.

4

However, as they are still useful when only looking at a
single monitored machine, a historical graphing tool is in-
cluded for that purpose. Nodes can be selected in both
visualisations, and have their historic information plotted
according to various time-granularities.

3.3.1 The Node-Map
The Node-map is designed to be the main source of low-

level information, while also providing an aggregated view
for a general summary of a fleet’s status. Nodes are ag-
gregated by logical layout and displayed in multiple levels
of detail as shown in Figure 3. Metrics are grouped to
be above or below an adjustable threshold. This reduces
the amount of information presented by the Node-map,
reducing the information needing to be processed by the
user. The Node-map also briefly highlights any nodes that
have had changes in their metric values, so that a user can
easily notice any changes that occur (Figures 5 and 6).

When dealing with large numbers, viewing each node
individually becomes infeasible because (i) too much infor-
mation is then presented to the user, and (ii) most window
tool-kits struggle to render tens of thousands of shapes in
real time. Therefore, once the user has zoomed out, a
group of nodes is replaced with a summary of the status
of those nodes. This significantly reduces the amount of
information that the user has to process, and reduces the
complexity of the scene to be rendered.

The summary is designed to highlight the number of
dead nodes, and the number of nodes on either side of the
threshold for all three metrics being monitored. The dead
nodes are represented by a black rectangle at the top of
the top of the group. The width of the rectangle is set to
be the group width, and the height is calculated by

dead_heightg =

{
max

{
dg
ng
, 5%

}
× heightg , if dg > 0

0 , otherwise

where a group g has ng nodes, dg of which are dead. In
the case where a tiny proportion of the total nodes are
dead, we increase the proportion of the height to 5% of
the group’s height so that the black rectangle will at least
be noticeable by the user.

The remaining space is then divided into three columns
to represent information about each of the three metrics
(in this case we are using CPU, Network and RAM us-
ages, but these could be any three arbitrary metrics). An
example is shown in Figure 4.

When at this level of detail, the user is now able to select
entire groups of nodes. Selecting a group has the same ef-
fect as individually selecting every node within the group.
Since individual nodes are not visible, the selection is ag-
gregated as well. Instead of a border, a semi-transparent
blue rectangle is drawn on top of the Group Summary,
that represents the percentage of nodes within the group
that are currently selected (Figure 5).

3.3.2 The Metric-Map
The Metric-map was designed to give a high-level overview

of the status of the fleet and, as a result of this focus, spe-
cific details are not directly accessible. The base of the
Metric-map is a hexagon, with coloured circles represent-
ing information about the fleet using their position, area,
opacity and borders (Figures 7, 8 and 9).

When nodes are given to the Metric-map, their met-
rics are quantised (rounding down) to percentages in the
set Q = {0%, 20%, 40%, 60%, 80%, 100%}. Then, nodes
with the same values across all three metrics are put into

RAM

CPU Net

Many Nodes
High Network
Low CPU, RAM
Quarter Selected

Few Nodes
All Metrics Low
RAM Lowest
All Selected

b

a

b is darker than a, because
the average of b's metrics is
more than that of a's metrics

Figure 7: The features of the metric-map.

Large group of
nodes with high

RAM and network
usage

No nodes with
only high network

usage

Large group of
nodes with high
RAM and CPU

usage

Lots of small dots
indicate varied

usage

Figure 8: An example scenario on the metric-map.

A problem in
60% of nodes
in the system

Large Change

A normal update
with no problems

Minor Change

Figure 9: Visualising differences in fleet status on
the metric-map.

5

bins, where each bin can be represented by a tuple b =
(m1,m2,m3) ∈ Q3.

For placement, the higher anmi is, the more it is“pulled”
towards its corresponding corner, ~µi. The exact position
p ∈ R2 of a bin b is calculated as a sum of each mi mul-
tiplied with its corresponding ~µi:

p =

3∑
i=1

mi~µi

This calculation does not result in a unique p for all b.
For example (1%, 1%, 1%) and (40%, 40%, 40%) both map
to the point (0, 0). Therefore the Metric-map also adjusts
the alpha intensity based on the overall load for a given
bin, with higher intensity corresponding to higher load.
The alpha intensity αb of a given bin b is calculated as
an average of each mi thresholded to a maximum of 1:

αb = min

{
1,

1

3

3∑
i=1

mi

}
This method was used because it is intuitive to have richer
colours linked to more activity, and fainter colours linked
to less activity.

Bins are plotted as circles on the diagram. The radius
of the circle is logarithmically proportional to the number
of nodes represented by the bin. A logarithmic scale al-
lows the Metric-map to scale well as the number of nodes
increases.

Bins are selectable; clicking on a bin will select all nodes
within that bin and highlight it with a thick black border.
In the case that there is a partial selection within a bin,
the bin is only partially bordered. The exact formula for
the degrees of a bin b to be bordered is:

θb =

{
max

{
sb
nb
× 360, 1

}
, if sb > 0

0 , otherwise

where sb is the number of selected nodes in b, and nb

is the total number of nodes in b. In the case where sb
nb

is very small, we make sure that a selection is visible by
making θb at least 1.

3.4 System Design Methodology
An iterative methodology was followed for the develop-

ment of our system. Firstly, the simplest working solu-
tion was put together, using scripting tools where possi-
ble. Additional functionality was developed as, and when,
required by other components in the system.

Components were developed in different languages, as
each component was developed using the most appropri-
ate tools for its task. The Monitoring system was written
in D, a low level systems programming language. The
Database interface was implemented in Python, a script-
ing language. C++ and the Qt toolkit were used for the
Visualisation front-end, using Qwt for historical graphing.
OpenGL (via the Qt Graphics View Framework) was used
for the main visualisations. Development and testing was
done in Linux.

4. EVALUATION
Since access to upwards of 500 nodes was infeasible,

simulated data was used at various stages to represent
a very large fleet. Each component was subjected to an
individual evaluation and tested with simulated data as

Table 1: Overview of our test fleets.

System nodes clusters location

EC2 Cluster 20 1 off-site

TSL 36 1 on-site

Everything 56 2 mixture

well as data from our live test fleet over a period of four
months.

Panopticon was tested on two separate clusters, as well
as a single WAN cluster made by combining both the sepa-
rate clusters (see Table 1). The TSL cluster was an active
university computer laboratory being used by undergradu-
ate students. Load was periodically generated on the EC2

cluster by using a custom parallel n-body simulation.

4.1 Monitoring and Collection
In testing the monitoring system, we were faced with a

practical problem: we had around 100 computers at our
disposal, but wanted to see if our system could cope when
10 000 or more nodes were monitored. Therefore, we sim-
ulated fake zones which then aggregated their fake infor-
mation to their parent aggregation nodes. Since the exact
values of the information being monitored did not affect
the behaviour of the collection system, the simulated re-
sults give a reliable indication of expected performance on
real hardware. All reported results are based on average
of 9 test-runs.

4.2 Storage and Retrieval
Over the four month test period the Storage and Re-

trieval system collected around one million rows of data
(i.e. node-measurements) at a resolution of 5 minutes per
node.

Raw storage component rates were determined by sim-
ulating a 10 000 node fake zone on a single root node and
polling it continuously. Since the actual values of the data
do not affect the database performance (within certain
limits), pseudo-random data was used.

The performance of the data retrieval subsystem was
evaluated for a fleet of a million nodes. Similarly, psuedo-
random data was used, as the only effect the data has on
performance is its delta-compressibility.

4.3 Visualisation
The Visualisation component was evaluated by two ex-

pert users: a departmental systems administrator from
our university and a developer from Amazon EC2 Web
Services. While using our prototype system, these expert
users were asked questions regarding the efficacy of the
visualisations, with their responses being recorded. More
detailed usability testing was not applicable, as Panopti-
con was developed to be a proof-of-concept, not a produc-
tion system.

The expert users were shown the system in two different
configurations: with live reported data to demonstrate the
real-time aspects and with simulated data to demonstrate
scalability. For the live data, 120 nodes were visualised
due to intentional duplication in the aggregation compo-
nent’s configuration. Of these, around 55 nodes were ac-
tive and reporting. Since there were at most only a few
hundred computers at our disposal, a simulated monitor-
ing system was required in order to test the Visualisation
component with large fleets (we simulated 15 000 nodes).

6

0

5

10

15

20

25

30

35

0 20 000 40 000 60 000 80 000 100 000
0

50

100

150

200

250

300

350
B

a
n
d
w

id
th

(M
b
p
s)

/
C

P
U

U
sa

g
e

(%
)

M
em

o
ry

(M
iB

)

Number of Nodes

Bandwidth
Memmory

CPU Usage

Figure 10: The resources required of Panopticon’s
top aggregation node — they are well within the
limits of current hardware.

Unlike the other components which could be tested with
random data, the Visualisation component requires re-
alistic and sensible data for any meaningful evaluation
to take place. However, implementing a back-end that
can (i) realistically simulate a real-time monitoring sys-
tem, (ii) supply realistic and consistent historic data, and
(iii) have metrics that realistically relate to each other, is
an extremely complex task requiring prolonged access to
many more computers than we had access to. As a com-
promise, we generate pseudo-realistic monitoring informa-
tion, with relative ease, by assigning simulated nodes to
a set of characteristic usage classes (e.g. web servers, sim-
ulation clusters, general-use computer laboratories). The
nodes are collected into groups according to usage classes,
as could be expected in an orderly data centre. Each class
was assigned common failure modes through consultation
with expert users.

5. RESULTS AND CONCLUSIONS
In our four month real world monitoring exercise, our

monitoring agents proved themselves to be robust and
have a low system overhead. CPU and memory usage on
monitored nodes was found to be negligible, even when
polling once every 15 seconds. Aside from some minor
MySQL dead-lock issues, which occurred even at the low-
est transactional isolation level, everything ran well and
was stable. During the last two months, the Visualisation
component regularly connected to the retrieval system and
was able to view the state of our test fleet.

In evaluations with simulated data, the performance
requirements of aggregated nodes was shown to be well
within the limits of consumer hardware; Table 2 and Fig-
ure 10 show our system was easily capable of aggregating
information from 100 000 nodes to a single aggregation
node on a LAN. Further protocol improvements, such as
incorporating data compression, would be required for the
system to be applicable to WANs or larger fleets.

The Storage component produced approximately 100 MiB
of data and indices in the four month test, yielding an av-
erage of 30 KiB per node per day. Therefore, 1 TiB of
storage would be able to hold a 90-day monitoring his-
tory for just under 400 000 computers — a trivial expense
when considering the cost of maintaining a fleet of that
size. When dealing with these quantities of information

Table 2: Results for scalability evaluation. CPU
usage was negligible and excluded.

Node Count Bandwidth Memory

(Mbps) (MiB)

100 0.03 2.44

500 0.13 4.72

1 000 0.25 8.72

5 000 1.22 16.76

10 000 2.59 31.76

25 000 6.20 74.76

50 000 12.28 126.76

75 000 18.32 188.76

100 000 21.41 310.76

Table 3: Time taken for visualisation queries on 1
million nodes, averaged over 100 tests.

Query Wall Time

Full State 31.9 ± 0.3 s

Update 19.9 ± 0.2 s

Rewind 13.2 ± 0.1 s

Historic Data < 0.002 s

we found it important to ensure that database queries
avoid full table scans and only return relevant informa-
tion wherever possible.

The monitoring system communicated with the stor-
age via a text-based JSON protocol. JSON was chosen
for simplicity and readability, but parsing the informa-
tion sent from the monitoring system became a significant
bottleneck. Using Python’s simplejson parser, our system
was able to poll 10 000 nodes in 95±5 s, leading to a limit
of 25 000 nodes when monitoring at a 5-minute resolution.

The performance of the data retrieval subsystem was
evaluated for a virtual fleet of a million nodes (see Ta-
ble 3). It takes 32 s for a Full State query to complete,
which is acceptable since it is a once off start-up cost.
Update times of 20 s are also suitable, given the 5-minute
monitoring resolution and the fact that this is a back-
ground operation that the user is not aware of. Historic
Queries are instantaneous and therefore well within ac-
ceptable limits. Only the rewind time of 13 s is unac-
ceptable, as near real-time response times are required for
replay functionality to be immediately useful.

Despite these limitations, our system showed that an or-
dinary RDBMS could be used to store and retrieve infor-
mation from a monitoring system with the order of 100 000
nodes in real-time. We suggest that in future work, a
distributed storage system be investigated to achieve fur-
ther scalability. While a centralised RDBMS is suitable
in terms of storage requirements for a million-node fleet,
other approaches would have to be followed to improve
retrieval performance. We suggest either a decentralised,
non-ACID-compliant storage system or a high degree of
partitioning across multiple servers.

In the Visualisation component evaluations, overall, the
expert users reported our visualisations to be useful when

7

Table 4: Reported feedback from our two expert users on the Visualisation component, obtained during
an interview while they experimented with the system.

Positive Comments Suggested Improvements

Node-map Intuitive to use Recent History view

Layout is simple to understand

Effective group summary

Rewind ability is valuable

Metric-map Surprisingly intuitive to use Metric-map should be the em-
phasised feature in the GUI

Provides a useful overview Update highlighting

Historic Information Replay Tool very useful More complex graphing tool

Recent History as part of main
visualisation

General Visualisations very effective for
100s of nodes

More than 3-level hierarchies for
visualisation

Effective up to 20 000 nodes Update highlights should also
appear on the Metric-map

Selection propagation between
visualisations is valuable

monitoring up to 20 000 computers. Although initially
unfamiliar, the Metric-map was said to be “surprisingly
intuitive” to use. One user stressed the importance of pro-
viding context to a current visualisation, through access
to historic information. While the Replay Tool provided
basic functionality in this regard, it was suggested the vi-
sualisations should incorporate a view of recent history. It
was also noted that the expert users did not make use of
the Node-detail level of detail. Table 4 lists all significant
expert user feedback.

The expert users reported that the Visualisation com-
ponent provided an effective visualisation of the overall
fleet status. The Metric-map was seen to be better at
representing overall information, with the Node-map be-
ing better suited to individual information. However, the
interaction between the two visualisations, through selec-
tion propagation, was seen as the most important aspect
of both.

Including easily accessible recent history provides a valu-
able perspective on current information. Users proposed
that this would be convenient for identifying possible is-
sues with the current state of a fleet. Making this recent-
history visible alongside the real-time visualisation is a
possible extension to enhance the Visualisation compo-
nent, but would also require improvements to the data-
retrieval process. While our system focussed on providing
an alternative to graphing as a means of viewing moni-
toring information, graphs were still seen as necessary for
viewing specific, long-term, historic information.

Features such as logical grouping, aggregation, multiple
levels of detail and selection propagation between indepen-
dent views enhanced our system’s scalability. Information
filtering techniques would be useful to further increase the
scalability of the Visualisation component.

As a proof-of-concept system, Panopticon was success-
ful. All components were shown to be able to scale ef-
fectively into the tens of thousands of monitored nodes,
mainly limited by the Visualisation component and infor-
mation retrieval speeds.

6. REFERENCES
[1] E. Anderson and D. Patterson. Extensible, scalable

monitoring for clusters of computers. In LISA ’97:
Proceedings of the 11th USENIX conference on
System administration, pages 9–16, 1997.

[2] D. Asimov. The grand tour: a tool for viewing
multidimensional data. SIAM Journal of Scientific
and Statistical Computing, 6(1):128–143, January
1985.

[3] J. M. Brandt, B. Debusschere, A. C. Gentile, J. R.
Mayo, P. P. Pébay, D. Thompson, and M. H. Wong.
OVIS-2: A robust distributed architecture for
scalable RAS. In Proceedings of 22nd IEEE
International Parallel and Distributed Processing
Symposium, pages 1–8, April 2008.

[4] J. M. Brandt, A. C. Gentile, D. J. Hale, and
P. Pébay, P. Ovis: A tool for intelligent, real-time
monitoring of computational clusters. In Proceedings
of 20th IEEE International Parallel and Distributed
Processing Symposium, April 2006.

[5] D. Crockford. RFC 4627: The application/json
Media Type for JavaScript Object Notation (JSON).
IETF The Internet Society, July 2006.

[6] R. T. Fielding. Architectural Styles and the Design
of Network-Based Software Architectures. PhD
thesis, University of California, Irvine, 2000.

[7] J. Goldstein and S. F. Roth. Using aggregation and
dynamic queries for exploring large data sets. In
B. Adelson, S. Dumais, and J. Olson, editors,
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: Celebrating
interdependence, pages 23–29. ACM, April 1994.

[8] A. Inselberg and B. Dimsdale. Parallel coordinates:
A tool for visualizing multidimensional geometry. In
A. Kaufman, editor, Proceedings of the 1st
Conference on Visualization ’90, pages 361–378.
IEEE Computer Society Press, October 1990.

[9] D. A. Keim. Designing pixel-oriented visualization

8

techniques: Theory and applications. IEEE
Transactions on Visualization and Computer
Graphics, 6(1):59–78, January 2000.

[10] D. A. Keim. Information visualization and visual
data mining. IEEE Transactions on Visualization
and Computer Graphics, 8(1):1–8, January 2002.

[11] M. Kreuseler, N. Lopez, and H. Schumann. A
scalable framework for information visualization. In
Proceedings of IEEE Symposium on Information
Vizualization 2000, page 27. IEEE Computer
Society, 2000.

[12] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: design,
implementation, and experience. Parallel
Computing, 30(7):817–840, 2004.

[13] T. Oetiker. MRTG - the multi router traffic grapher.
In Proceedings of the 12th USENIX Conference on
System Administration, pages 141–148, December
1998.

[14] F. Sacerdoti, M. Katz, M. Massie, and D. Culler.
Wide area cluster monitoring with ganglia. In
Proceedings of the IEEE International Conference
on Cluster Computing, pages 289–298. IEEE Press,
December 2003.

[15] J. Schneidewind, M. Sips, and D. A. Kiem. An
automated approach for the optimization of
pixel-based visualizations. Information
Visualization, 6(1):75–88, March 2007.

[16] M. Sips, J. Schneidewind, D. A. Keim, and
H. Schumann. Scalable pixel-based visual interfaces:
Challenges and solutions. In Proceedings of Tenth
International Conference on Information
Visualization. IEEE Press, July 2006.

[17] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A
system for query, analysis, and visualization of
multidimensional relational databases. IEEE
Transactions on Visualization and Computer
Graphics, 8(1), January 2002.

[18] R. Van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and
data mining. ACM Transactions on Computer
Systems, 21(2):164–206, May 2003.

9

