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Abstract

This paper presents a novel interface for generating procedural models, textures, and other content, motivated
by the need for interfaces that are simpler to understand and more rapidly utilize. Instead of directly manipulating
procedural parameters, users specify adjectives that describe the content to be generated. By making use of a
training corpus and semantic information from the WordNet database, our system is able to map from the set
of all possible descriptions, adjective space, to the set of all combinations of procedural parameters, parameter
space. This is achieved through a modification to radial basis function networks, and the application of particle
swarm optimization to search for suitable solutions. By testing with three very different procedural generation
systems, we demonstrate the wide applicability of this approach. Our results show that non-technical users not
only prefer an adjectival interface to one offering direct control over the procedural parameters, but also produce
content that more closely matches a given target.
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1 Introduction

In today’s world of fast-paced technological growth, the
performance of CPUs and GPUs is increasing at an incred-
ible rate. As such, the modern home computer is becoming
much more capable of presenting ever larger and more com-
plex digital content — for example, virtual environments,
which are used extensively in computer games and simula-
tions. There has been a corresponding demand to leverage
these advances, by creating larger and more complex con-
tent and thus pushing the limits of the hardware available.

Fortunately, procedural methods [6] have come to the rescue,
providing a means for machines to perform the mundane
and repetitive aspects of digital content generation, and
freeing up human resources for more interesting tasks. In
essence, procedural methods are any form of procedure that
takes some input — usually quite simple in nature — and
transforms that input into complex content through a me-
chanical process. Whilst there are various interfaces to pro-
cedural methods (such as via sketches or image maps), most
methods employ a parametrised interface for some aspect of
control. Some methods rely solely on a parametrised inter-
face — for example, the tree generation technique of Weber
and Penn [21], which employs 80 parameters to control the
generation of a single tree.

Whilst parametrised procedural models do well to abstract
away the complexity of content generation, they do not
necessarily provide a useful interface to all users. The na-
ture of the parameters is typically such that a knowledge
of the underlying procedure is required, in order to fully
understand how the parameters affect the resulting out-
put. As such, long training periods are typically required
for users — such as visual effects artists — to become fully
conversant with modern modeling systems.

Whilst striving to provide a simpler interface, it would also
be prudent to maintain the fine degree of control afforded
by procedural models to advanced users. As such, care
must be taken not to over-simplify the interface and in
so doing limit the power and flexibility of the procedural
models.

In this paper, we present a technique that allows the user
to generate procedural content using adjectival descriptors.
This is achieved as an additional layer of abstraction that
establishes a mapping between adjectives and the under-
lying procedural parameters, and thus addresses the issues
raised thus far by providing the following features:

Allows large and complex procedural content to
be created quickly. Existing procedural models are em-
ployed “under the hood”, and these already provide for
quick generation of complex output.

Provides a simpler interface, that is also usable by
novice and non-technical users. All people communi-
cate with language, using adjectives to guide their descrip-
tions of objects and occurrences. An adjectival interface
should thus be readily usable by both technical and non-
technical users.

Maintains the flexibility afforded by parametrised
procedural models. As the technique presented is im-
plemented as an abstract layer on top of the procedural
parameters of the model, it provides a form of learning
support — known as intrinsic scaffolding — in that the
adjectival interface can be used for initial generation of
content, and further minor modifications can be made af-
terwards by the user at the procedural parameter level.
The adjectival interface can also be seen as an intermedi-
ate bridging method, providing an easy means for a user

to generate content until they are fully conversant with the
underlying procedural parameters.

Having motivated and briefly introduced our technique, we
now examine prior work in interfaces to procedural models,
and in the use of adjectival descriptors. In Section 3 we
discuss the details of our technique, which is followed in
Section 4 by a discussion of our testing and the results
obtained. Section 5 draws final conclusions, and presents
ideas for future work in this area.

2 Related work

As our technique presents an adjectival interface to the
generation of procedural content, we focus our attention
on related work in the fields of interfaces to procedural
content, and on the prior use of adjectival descriptions.
We assume that the reader is conversant with the general
concept of procedural modeling and its applications.

2.1 Interfaces to procedural modeling

Somewhat paradoxically, the automation motivating the
use of procedural models is also a weakness, as the manip-
ulation of procedural parameters offers less control than
direct manipulation of the final output. As such, various
interfaces to procedural modeling are used in an attempt
to regain greater control.

Image maps [15] offer one means for improving usability
and control, as they exploit most users’ familiarity with
image manipulation software. Image maps have been used
extensively for a variety of purposes, such as land usage
data for city generation [14], controlling feature placement
for terrain synthesis [22], and for specifying distribution
and density of plants in outdoor scenes [5].

Many complex objects exhibit shapes that are not easily
captured via mechanical rules or inferences. Human de-
signers are often far more adept at capturing such shapes
through the use of sketching, and these sketches can be
used to guide particular procedural modeling techniques.
Successful uses of sketching include, amongst others, the
procedural modeling of trees [11], motion [18], clothing [19]
and terrain [3].

2.2 Use of adjectival descriptors and natural lan-
guage

The use of textual descriptions in tagging media for later
synthetic constructions has been explored extensively. One
area which has received much attention is the creation of
stylized character motion [16, 2]. A common paradigm for
the representation of these stylistic features is to assign
adverb descriptors axes in a multidimensional space, known
as adverb space and coined by Rose et al. [16]. Given a
point in adverb space and an action, the problem is then to
produce a corresponding motion that takes on the adverb
characteristics specified.

Using verbal descriptors in a different context, Barnard
and Forsyth [1] present a method for hierarchically orga-
nizing a dataset of images by combining the semantic in-
formation of word-tags associated with each picture, with
visual information given by features extracted from the im-
ages. Natural language has also been employed to describe
the relationships between objects, for example in the sys-
tem WordsEye [4] — an automatic text-to-scene conversion
system that decomposes a piece of text into a dependency
hierarchy, and uses the object names to index a database
of models.



Hultquist et al. [9] make the first step of applying adjectival
descriptors to parametrised procedural content, by propos-
ing an adjectival interface for the creation of procedural
virtual environments. Similar to the adverb space of Rose
et. al., they define adjective space as the set of possible
descriptions of an environment. They then posit the core
problem as one of function approximation, and the need to
find a function that maps from adjective space to param-
eter space. Using a radial basis function network (RBFN)
[12], they show how this technique could be applied to a
simple procedural landscape controlled by 16 parameters,
and utilizing 7 adjectives.

2.3 Contributions made by our technique

Similarly to Hultquist et. al., we use adjectival descriptors
to establish a simpler interface to parametrised procedural
content. As such, our approach is very general and can
be applied to a wide variety of procedural models, unlike
the other interfaces discussed (sketching and image maps),
which need to be configured specially for each procedural
method. Our technique, however, differs significantly from
that of Hultquist et. al. — through a different mapping
and optimization scheme we overcome the deficiencies in
their technique, and using an extension to RBFNs com-
bined with semantic information from WordNet [7], our
technique allows for the use of adjectival descriptors not
necessarily tied to an axis of adjective space.

3 Implementation

We suppose that the user of our system will describe the
content they wish to generate using a number of adjectival
descriptors chosen from a set A. Each adjective is tied to a
dimension of adjective space, given by A = [−1; 1]|A|. The
value x in any dimension of A is the scalar value associated
with a descriptor, and indicates the extent to which that
descriptor applies — -1 denotes a definite absence of the
adjectival descriptor, whilst 1 indicates a definite presence.
We denote the set of procedural parameters by P, and
parameter space P as the subspace of R

|P| in which each
dimension is restricted to the range of real values spanned
by the corresponding parameter.

To map between adjective space and parameter space, a
number of points in parameter space are randomly chosen
and fed through the procedural system to generate content.
An expert user or artist then assigns adjectival descriptors
to each piece of content, effectively giving pairs of corre-
sponding points in adjective space and parameter space.
By employing function approximation techniques on this
training data, a mapping between the two spaces can be
established. In our implementation, we employ RBFNs
[12] as these are well established and also afford the in-
corporation of a useful extension, discussed in Section 3.3.
Setting the parameters of RBFNs (such as basis function
centers and their support radii) is known to be difficult,
but we have found that making use of Orr’s regression tree
methods gives good results.

3.1 Mapping between adjective space and param-
eter space

In order to establish a mapping between adjective space
and parameter space, we approximate the function f :
P → A. Whilst this may seem counter-intuitive as we
seek a method for mapping from adjectives to procedural
parameters, a solution exists in the form of space-searching
techniques such as particle swarm optimization [10] or ge-
netic algorithms [8]. If the user wishes to generate content

with a description given by a ∈ A, then what is required is
to solve f(p) = a. As f may not be onto, we relax this to
instead solve f(p) ≈ a by minimizing the squared error

E(p) = ‖f(p) − a‖2 (1)

In our implementation, we make use of the particle swarm
optimization algorithm. The goal of the swarm of particles
is to locate a point in parameter space that best matches
the output in adjective space, using the error metric de-
fined in Equation 1. The swarm will tend to move in the
direction of the current best solution, but with a stochastic
element which may lead it to find even better solutions as
it converges.

Specifically, 2000 particles are assigned random positions
with uniform probability, and initially have a velocity of 0.
The particles’ positions and velocities are then adjusted in
an iterative fashion, drawing particles closer towards the
locally and globally best observed positions whilst also ap-
plying stochastic perturbations. The algorithm terminates
when either the error E(p) of some particle p is less than
0.001, or when 15000 iterations have completed. As the
algorithm is easily parallelized by dividing up the swarm,
the running time of the algorithm can be kept below 30
seconds.

Our use of particle swarm optimization instead of a genetic
algorithm is largely due to the fact that genetic algorithms
are more intuitively suited to discrete problem domains,
although there do exist means for genetic algorithms to be
applied to real-valued domains. We have found that par-
ticle swarm optimization performs adequately; similar re-
sults could likely be achieved by using a genetic algorithm.

Using the inverse mapping affords a number of benefits:

Well-defined mapping. It is conceivable that two differ-
ent pieces of generated content, with corresponding points
p1 and p2 in parameter space, could have the same descrip-
tion given by a ∈ A. With our mapping this is perfectly
acceptable, and since it is reasonable to suppose that any
particular piece of content will be described by a user in a
unique way, f is well defined. If instead one approximated
the function g = f−1 : A → P , it would be unclear what
g(a) should map to.

Interaction of procedural parameters. Multidimen-
sional function outputs are typically addressed by approxi-
mating a separate function for each output dimension — as
such, approximating g would lead to the procedural param-
eters being separated, which is undesirable in procedural
models that exhibit interactions between their parameters.
Our approximation of f overcomes this by instead separat-
ing the adjectival descriptors, and thus allowing for com-
plex interactions and dependencies amongst the procedural
parameters.

Reduced adjectival description burden. Since g maps
from adjective space to parameter space, evaluating g re-
quires the user to specify a value for every dimension of
adjective space. Similarly, during training the expert user
or artist would be required to specify a value for every di-
mension of adjective space for every piece of training con-
tent. For a large number of adjectives this can be quite a
daunting proposition. Using f affords a more concise train-
ing by only requiring the expert user to specify adjectives
which are pertinent to each individual piece of content. It
also makes for easier content generation as users only need
specify selected adjectival descriptors. If I is the set of
dimension indices corresponding to descriptors chosen by
the user, then this infers a modification of the sum-squared



error from Equation 1 to give

E(p,I) =
X

i∈I

[f(p)i − ai]
2

3.2 Dynamic use of additional adjectives

The presentation of adjective space thus far has made use
of a fixed set of adjectival descriptors that the user is forced
to use. Whilst this simplifies the problem and gives some
degree of objectivity, it does confer an element of bias by
suggesting to the user which descriptors they should use,
as well as not allowing for other valid descriptors that may
seem more natural to the user. The major difficulty in
supporting new descriptors is in establishing relations to
other known descriptors — if one were able to do this,
then some degree of information could be inferred about
the new descriptor so as to facilitate its usage.

We address this issue by using the WordNet database [7],
which groups words into synsets — groups of words that
in a given context have the same meaning — and also pro-
vides links between synsets that have similar and opposite
meanings. To incorporate this information into the realm
of adjective space, we associate with each training point an
additional certainty value, ki, that confers a measurement
of the certainty of the observation. This can be used in
conjunction with WordNet to amplify adjective space, by
traversing the semantic relationship graph with decreasing
certainty.

Formally, if content with procedural parameters p is de-
scribed during the training process with descriptor X and
associated scalar value x, then as the root descriptor this
would be assigned a certainty value of kX = 1. If descrip-
tor Y is similar to X according to the WordNet database,
then we could also describe p with descriptor Y and scalar
value x, but with a lower degree of certainty kY = d · kX ,
where 0 < d < 1 is a value controlling the rate of decay
in certainty. Antonymic relationships can be captured in a
similar fashion, by associating the antonym with a scalar
value of −x. This propagation of training data to related
descriptors can then be repeated, either up to a certain
number of levels from the root descriptor or until the cer-
tainty values fall below a predefined threshold.

Additionally, certainty values allow for further data ampli-
fication — if during training a particular descriptor is not
used to describe some content, then this suggests that it
does not apply to the content and so we could associate it
with a scalar value of -1. It is possible, though, that the
user simply overlooked the descriptor — certainty values
come to the rescue, by assigning these inferred data points
using a lower certainty value (k = 0.2 has worked well in
our studies).

3.3 Incorporating certainty values into function ap-
proximation

As our technique requires the use of a space searching tech-
nique, a form of function approximation that provides rapid
results is imperative in order to support the many compu-
tations performed during the search. RBFN’s are one such
candidate, and are also suitable for the incorporation of
certainty values as will now be demonstrated.

A typical RBFN is a function of the form f(x) =
Pm

j=1
wjhj(x), where the hj are the basis functions and

the wj are solved for by minimizing the cost function

C =
n

X

i=1

[f(xi) − yi]
2 +

m
X

j=1

λjw
2

j (2)

for n training pairs (xi, yi) and regularization parameters
λj . Recall that certainty values, as the name implies, con-
fer a measurement of the certainty of an observation. We
would thus expect data that is less certain to have less
impact on the approximant, and thus Equation 2 can be
injected with certainty values to give

C =
n

X

i=1

ki [f(xi) − yi]
2 +

m
X

j=1

λjw
2

j

Following a derivation similar to that of a normal RBFN,
this gives rise to a solution for the weights of

w = A
−1

H
#
Ky

where

A = H
#
KH +Λ, H =

0
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4 Testing and results

In order to evaluate the effectiveness of our technique, we
conducted a user study in which the adjectival interface is
compared and contrasted to an interface that offers direct
manipulation of the numerical procedural parameters. A
procedural model was created using Houdini [17], offering
49 procedural parameters that control the generation of an
outdoor landscape. 500 points in the parameter space of
this model were randomly chosen to train the RBFNs, and
a set of 22 adjectival descriptors were used to describe the
generated landscapes. Using WordNet to extrapolate to
semantically connected synsets with a decay of d = 0.7, a
total of 81 adjectival descriptors were made available to the
user (see Appendix B). After the user chooses a subset of
these adjectives, PSO finds a matching point in parameter
space and the landscape is generated. The user is free to
then modify their description and generate further land-
scapes until they are satisfied.

Objectively testing whether our interface provides any ben-
efits over the direct manipulation of procedural parameters,
is non-trivial. One could present the user with a piece of
procedurally generated content, and have them use one of
the interfaces to generate matching content, but in this
case users may focus too much on minor matching details
instead of considering a higher-level match. We address
this concern through a two-stage experimental process.

In the first stage, users were shown a photograph of a real-
world landscape, and were asked to create a virtual land-
scape that captured the spirit of the photograph as faith-
fully as possible. Each user was presented with either the
adjectival1 or direct manipulation interface, after first be-
ing given a 2 minute demonstration. To test for subject
fatigue or learning bias, each user repeated the task with
a second, different photograph. The users were limited to
22 minutes in which to perform each task, and once the

1Although the adjectival interface can be utilised as a form
of scaffolding, in this study users of the adjectival interface were
not permitted to “remove” the scaffolding and reveal the direct
specification interface; they had to make sole use of the adjectival
interface.



time had elapsed they were presented with all the land-
scapes that they had generated and were asked to select
the best one. In this way, we avoid the possibility that
users could focus on low-level matchings, due to the differ-
ence in realism between the photographs and the generated
landscapes (see, for example, Figure 1). After completing
the task, users completed a questionnaire relating to their
experience — asking on a scale of 1 to 10 about how well
they thought they had performed, their degree of frustra-
tion, the ease of use and understanding of the interface,
and whether they could improve their performance with
practice. This would provide quantitative data with which
the two groups qualitative experience could be statistically
compared.

The second stage of the user study made use of the final
landscapes generated by users of the first stage. Partic-
ipants in the second stage were presented with a photo-
graph and two generated landscapes (one from each in-
terface, unknown to the participant), and asked to choose
which landscape more faithfully captured the photograph.
This allows us to perform a blind and objective analysis of
which interface produced more faithfully matching content.

In total, 5 photographs were used and randomly assigned
to 35 first stage participants — 17 using the direct ma-
nipulation interface, and 18 using our adjectival interface.
Appendix A shows the scores that users gave in response
to the questionnaire (Tables 1, 2, 3 and 4), and Table 5
presents the results of t-tests used to compare the two user
groups. This statistical analysis shows that users of the
adjectival interface found the interface easier to use and
understand, rated the matching of their generated environ-
ments more highly, and performed their task more quickly
than users of the direct manipulation interface — all with
a confidence level of greater than 95%.

In the second stage, 89 participants took part and each ana-
lyzed 15 sets of data, giving 1335 data points. Of these, 566
selected landscapes created using the direct manipulation
interface, whilst 769 chose those created using the adjecti-
val interface. To establish the statistical significance of this
distribution, a binomial test gives a p-value of 1.522e-08 —
well within the standard confidence interval of 95%. This
indicates that the users’ choices cannot have been made
by a random process, and that users are statistically more
likely to prefer landscapes generated using our adjectival
interface, over those generated using the direct manipula-
tion interface.

To show the applicability of our technique to other do-
mains, we present some additional examples in the gener-
ation of trees [21]. Weber and Penn present a method for
the procedural generation of a wide variety of tree types,
focusing on the geometric structure of the tree as opposed
to strictly adhering to botanical principles. They make
use of 80 parameters which exhibit inherently complex in-
teractions — for example, a parameter that controls the
number of levels of branching, and which affects whether
various parameters are used at all. Figure 2 shows some
examples of how adjectival descriptors map to generated
trees.

We have also applied our technique to the technique of
Oudeyer [13], who describes an algorithm for the genera-
tion of meaningless baby-like speech that is able to impart
various emotions, and which is controlled by 10 procedural
parameters. Examples are available for download at http:
//people.cs.uct.ac.za/∼chultqui/speech samples/.

5 Conclusions and future work

In conclusion, we have presented a more natural approach
to the generation of parametrised procedural content, by
using adjectival descriptors. As an additional layer above
procedural parameters, our approach does not replace ex-
isting procedural techniques but augments them with an
alternative interface, providing scaffolding until a user is
fully conversant with the model. User experiments have
shown that novice users not only prefer this technique,
but also that it results in content which more accurately
matches the user’s intentions. Finally, we have shown how
this interface can be applied to various different procedural
models.

Our approach is not without caveats, however, and there
is room for further improvements and extensions, such as:

Improved learning mechanism. Currently, the onus
of training the RBFNs is on a single designer, or possibly
a small group of designers who reach a consensus on de-
scriptions for training data. This can be a large amount
of work, and may make the use of this technique infeasible
in some cases. The opinions of one designer may also not
be well matched to the average opinion of the public as a
whole, in which case even a well trained RBFN may not
achieve adequate results for the average user. One means
of addressing these issues might be through the use of a
more widespread data collection process, with a suitable
means for identifying outliers and normalizing the data.
Certainty values may be of use here to weight data based
on its trustworthiness.

Improved space-searching technique. Whilst we have
achieved positive results, a potential bottle-neck in the pro-
cess was the particle swarm optimization. To achieve fast
optimization we utilized several network-linked machines;
running on a single machine would have taken much longer
to complete the optimization step, and would have severely
impacted the interactivity of the task. It is possible that
an improved learning mechanism might help by providing
functions that are more easily optimized. In general, how-
ever, it would be interesting to further explore this opti-
mization step by assessing the impact of different starting
conditions, and also additional optimization algorithms.

Per-user training. Hultquist et al. correctly note that
users express themselves in different ways, and that the
function learned for one user may therefore not adequately
map the perceptions of another user. Whilst we have not
explicitly dealt with this issue — due, in part, to our achiev-
ing positive results without the need for this support — one
way in which this could be approached is again through the
use of certainty values. By augmenting the training data
with a small number of additional examples that are pro-
vided on a per-user basis, and by assigning these greater
certainty values, the function will more closely approxi-
mate the data provided by each user but will still use the
common training corpus as a guide to the overall function
approximation.

Exploration of other tools for dealing with higher
dimensions. The curse of dimensionality means that dis-
crete sampling becomes increasingly futile in higher dimen-
sions. Whilst our testing has not suffered from this, some
specific problem domains may require the use of some more
complicated techniques. Methods such as principal compo-
nents analysis or the use of latent variables may be useful
in reducing the dimensionality of the space before applying
our technique, or the use of newer function approximation
methods that are specifically geared towards higher dimen-
sions (such as that of Vijayakumar [20]) may be of better
benefit than our RBFN implementation.



(a) Direct manipulation (b) (c) Adjectival

(d) Direct manipulation (e) (f) Adjectival

(g) Direct manipulation (h) (i) Adjectival

Figure 1: Some examples of our adjectival technique in comparison to direct manipulation of procedural parameters. (a)
and (c) show user responses to the photo in (b); (d) and (f) in response to the photo in (e); (g) and (i) in response to the
photo in (h). (c) was described as volcanic, tropical, sandy, rocky and not flat; (f) was described as coastal, fragmented,
sandy, tropical and not craggy; (i) was described as sunbaked, not flooded, sandy and lush. As can be seen in (i), the
adjectival interface does have some limitations and does not always correctly map the intentions of the user — in this case,
the resulting content clearly is not lush. This could be because the user’s perceptions differ from those of the expert user
who trained the system, or could indicate that greater sampling of parameter space is required during the training phase.
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A Questionnaire data

Accuracy
1

Accuracy
2

Easy to
under-
stand

Easy to
use

Frustration
Expectations

met
Combined

score

6 4 7 7 6 4 22
8 5 4 10 8 6 25
1 5 3 7 3 5 18
5 3 2 3 7 4 10
1 3 1 2 6 3 4
6 4 7 7 1 5 28
5 5 2 3 6 3 12
6 7 6 9 4 4 28
6 5 5 6 2 3 23
3 6 3 8 8 2 14
2 4 2 3 8 2 5
3 2 3 10 3 1 16
3 5 3 3 5 5 14
4 5 6 8 6 5 22
1 5 1 2 7 3 5
6 5 4 7 6 5 21
6 8 6 10 4 6 32

Mean 4.24 4.76 3.82 6.18 5.29 3.88 17.59
Std deviation 2.17 1.44 2.01 2.92 2.14 1.45 8.58

Table 1: Responses from users of the direct specification interface in the first stage.

Accuracy
1

Accuracy
2

Easy to
under-
stand

Easy to
use

Frustration
Expectations

met
Combined

score

9 4 5 6 7 5 22
4 6 8 8 6 4 24
6 8 9 10 6 4 31
6 7 6 8 6 3 24
6 4 9 10 6 3 26
6 6 10 10 5 3 30
7 5 10 10 7 5 30
5 4 6 6 7 3 17
3 6 8 7 9 4 19
4 5 10 8 4 4 27
4 8 10 10 6 2 28
7 3 10 10 4 4 30
5 7 10 10 8 4 28
6 8 9 10 7 6 32
4 7 10 8 5 6 30
4 5 9 10 5 4 27
7 7 10 9 3 4 34
6 3 6 6 5 4 20

Mean 5.5 5.72 8.61 8.67 5.89 4 26.61
Std deviation 1.5 1.67 1.72 1.57 1.49 1.03 4.74

Table 2: Responses from users of the adjectival interface in the first stage.



Additional time
needed

(minutes)

Expected time
needed per
photograph

after practise,
(minutes)

10 20
15 10
5 7
20 15
60 15
0 7
60 30
0 7
10 10
30 10
60 12
30 30
0 10
20 10
20 40
0 10
20 5

Mean 21.18 14.59
Std devi-

ation
20.96 9.84

Table 3: Responses from users of the direct specification
interface in the first stage, on how much additional time
they required per photograph and the expected time that
they would need to spend on each photograph after suf-
ficient practise.

Additional time
needed

(minutes)

Expected time
needed per
photograph

after practise,
(minutes)

0 10
0 22
0 15
0 10
0 15
10 10
0 10
10 10
0 12
0 5
0 5
10 10
15 10
10 18
5 15
10 10
0 15
0 16

Mean 3.89 12.11
Std devi-

ation
5.3 4.32

Table 4: Responses from users of the adjectival interface
in the first stage, on how much additional time they re-
quired per photograph and the expected time that they
would need to spend on each photograph after sufficient
practise.

Null hypothesis t df p

µADJ(accuracy 1) ≤ µDS(accuracy 1) 1.9953 28.366 0.02785

µADJ(accuracy 2) ≤ µDS(accuracy 2) 1.8189 32.719 0.03905

µADJ(easy to understand) ≤ µDS(easy to understand) 7.5573 31.586 7.154e-09

µADJ(easy to use) ≤ µDS(easy to use) 3.1152 24.244 0.002338

µADJ(frustration) ≥ µDS(frustration) 0.9478 28.38 0.8244

µADJ(expectations met) ≤ µDS(expectations met) 0.275 28.693 0.3926

µADJ(combined score) ≤ µDS(combined score) 3.8195 24.632 0.000401

µADJ(extra time) ≤ µDS(extra time) 3.303 17.931 0.001986

µADJ(expected time) ≤ µDS(expected time) 0.9549 21.692 0.1751

Table 5: T-test results comparing the scaled data in Tables 1, 2, 3 and 4. µADJ(x) indicates the mean of column x in the

adjectival interface data; µDS(x) indicates the mean of column x in the direct specification interface data. The t, df and p

columns give the t-value, degrees of freedom and p-value of the test, respectively.



B Adjectival descriptors provided for landscape experiment

dry wet even
full dried heavy

humid misty steep
tacky inland rheumy
sloppy sticky washed
watery air-dry coastal
covered divided gradual
inshore seaward thirsty
undried abundant besprent
detached dried-up dry-shod
maritime rainless semi-dry
semiarid bone-dry volcanic
air-dried steepish overgrown
patterned coastwise kiln-dried
landlocked equatorial distributed
sparse, thin clammy, dank bedewed, dewy
inhospitable steep-sided perpendicular

proportionate sodden, soppy arid, waterless
drippy, drizzly showery, rainy rough, unsmooth

steaming, steamy reeking, watery bluff, bold, sheer
flat, level, plane tropical, tropic damp, dampish, moist

argillaceous, clayey muggy, steamy, sticky desiccated, dried-out
freestanding, separate abrupt, precipitous, sharp arenaceous, sandy, sandlike

interior, midland, upcountry rocky, bouldery, bouldered, stony bare, barren, bleak, desolate, stark

cragged, craggy, hilly, mountainous disproportionate, disproportional
adust, baked, parched, scorched,

sunbaked
disconnected, disunited, fragmented,

split
dotted, flecked, specked, speckled,

stippled
exuberant, lush, luxuriant, profuse,

riotous

afloat, awash, flooded, inundated,
overflowing

dried-up, sere, sear, shriveled,
shrivelled, withered

boggy, marshy, miry, mucky, muddy,
quaggy, sloppy, sloughy, soggy,
squashy, swampy, waterlogged

Table 6: A list of the descriptors provided to users of the adjectival interface in the first stage of the landscape experiment.
Each entry in the table corresponds to a synset from the WordNet database, and lists the adjectives comprising that synset.


