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Abstract ~ Software traceability (ST), in its broadest sense, Software traceability is concerned with tracking a change
is the process of tracking changes in the document corpus whichone artifact to all the others. This is crucial to establish
are created throughout the software development life-cycknd maintain consistency between heterogeneous artifacts used
However, traditional ST approaches require a lot of human effatttroughout the system development life-cycle. In this paper we
to identify and consistently record inter-dependencies amopgesent a tool-assisted automated technique for traceability and
software artifacts. In this paper we present an approach th&t the extent that we used all artifacts normally created in the
reveals traceability links automatically using the informatiorsoftware development life-cycle, we believe this work is unique.
retrieval (IR) techniques of Latent Semantic Analysis (LSA) and
Relevance Feedback and present a software tool to implement 0
these ideas. We discuss in detail how software artifacts can be
represented in a vector space model and how term extractionThe idea of applying information retrieval methods to dis-
and weighting can be accomplished for UML artifacts, suotover traceability links in a artifact corpus is not new. In [12]
as use-cases, interaction and state diagrams, as well as fdarcus and Malectic present a traceability discovery approach
source code and natural language text documents. We atbat is based on LSA and supports traceability between source
explain how structural information which is always inherencode and documentation. In their approach, an artifact corpus
in software artifacts can be preserved in the term extractioA build from text documents that are broken up into smaller
and weighting phase of creating traceable artifacts. Unlikeections or paragraphs, hoping that these will capture a single
other tools, we incorporate human knowledge through relevantspic appropriately. Traceable artifacts are created from source
feedback into the traceability link recovery process with the ainpde files while keywords are extracted from identifiers and
to improve the quality of traceability links. Finally, we illustratecomments. When performing a search, the user can choose the
the effectiveness of our tool-based approach and our proposkisel of dimensionality reduction and a similarity threshold for
through a case study with a pilot software project and compatke documents in the corpus. This approach seems to produce
our results with those of a manual tracing process. promising results. In a set of experiments, it was shown that their

Keywords: Requirements Engineering, Software Traceabilitgpproach was able to discover 83% of all traceability links but
Software Development, Change Management, Latent Semantidortunately only with a precision of 53%, which means that
Indexing, Relevance feedback, Information Retrieval, UML. the number of false links was actually very high.

Another approach that uses LSA for traceability link discov-
I. INTRODUCTION ery is presented by De Luciat al [3]. An existing artifact

The various types of artifacts that are produced throughauwainagement tool was enhanced to not only allow the discovery
the software development life-cycle describe different levels of traceability links between natural language text documents
abstraction and perspectives of a software system. User requémed source code, but also between requirement and design
ments are initially formulated in natural language text duringrtifacts (UML use-cases and interaction diagrams) as well as
the requirements specification phase. During the design phdsst cases. Although some interesting ideas were presented,
a systems architecture is laid out that is capable of implementigigch as variable similarity thresholds and artifact categorization,
the user and system requirements. Software components their case study is not complete. Despite the claim that artifact
identified and further divided into classes that implement theanagement systems can handle natural language text artifacts,
functionality specified in the requirements. A software archiro requirements or architectural specifications were considered
tecture is usually described both in natural language text iastheir case study.
well as in modeling languages such as UML. Many functional Related to the same topic is the paper by Marco Lormans
requirements can be mapped directly to UML use-cases, whahd Arie von Deursen [10]. In this work the authors focused on
are subsequently described in more detail through other UMjenerating various requirements views through LSA between
diagram types like sequence, activity or state diagrams. Finallgguirements-design and requirements-test cases. They applied
a programming language such as Java is used to implementltB& to three case study projects which differ strongly in size
user requirements according to the systems architecture. and provided artifacts. Unfortunately, it was not always clear

. RELATED WORK



what kind of design artifacts they actually used and the results ofOnce the artifact corpus is built the tool allows the engineer
their case studies were rather disappointing. Also in this papter.enter queries. The user either types in keywords that describe
similar to the work of De Lucia [3] a discussion of how ternthe artifact he is looking for, or selects existing artifacts in
extraction from artifacts and their weighting can be done, wélse corpus. In the example shown in Figure2 the engineer has
missing. decided to trace from an end-user requirement, caiféate

In remainder of this paper we first present the function&all, to all system requirement artifacts. The search process
design of LSITrace, a software tool which implements thstarts initially and potentially dependant artifacts are ranked
methodology we discuss in the following three sections. in a list by their similarity to the search query. The engineer
Sec. VII we describe how we build the artifact corpus from theither accepts the suggested artifact list or he can try to improve
various documents, diagrams and software code that comptise results through his expert knowledge by adding relevant
a working software system. Using LSITrace, we describe faedback to the discovery process. If the engineer is not satisfied
case study and the results of experiments with different matwith suggested artifact list, he can remove them from the

reduction, threshold values and weighting techniques. candidate list and added his own suggestions the user-judged
artifact list which the system then uses in a potentially improved
I1l. TOOL SUPPORT search query. The process repeats until the engineer is satisfied

In order to test software traceability with Latent Semanti ith the reSl_JIt or no improvement happens. More details about
Analysis and relevance feedback we implemented the vario stool and its use can be found in the report by H-Bdér [8].
ideas in a software tool. Fig. 1 presents an system overvie
of the tool. It allows one to recover traces among a variet| - . s .t o o o e o oo
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system. Relevance feedbacks assist the engineer to improve the search results.

Indexing (LSI) Weight each term

~

Artifact Corpus

regarding its importance

Cutoff: (= (0.0 | Reduction: [}

00 ] [advanced options...|

[perform tracing | (add relevant artifacts to trace matrix|

IV. THEORY

of different artifacts, including PDF documents, UML use- In order to formalize the traceability process one derives
cases, sequence and state diagrams, as well as source @odector space model (VSM) [17] of the databasecorpus
classes. Firstly, the human engineer is required to import thesfeartifacts. In the VSM, a software artifact is represented as
artifacts in our as an Eclipse plugin [] designed tool. In then n-dimensional vector, where is the number of unique
next phase we extract terms from the artifacts, which includesms, or words, that appear across the database aftifacts
the removal of stop words and optionally the stemming of terna$ the corpus The conceptual vector space is represented
to their morphological root form (see Section VII-D). Softwarenathematically by constructing a sparse matrix of terms by
artifacts that are reduced to a set of terms will be mathematicadlgtifacts defined by
represented as vectors (see Section V). - . o

Every term that is extracted from an artifact hasaatifact Anxm =lagg] i=1,..m5 =1,....m (1)
attribute, i.e., the identifier of source code classes or thgherea;; is the weight of termi in artifact ;.
description of a UML use-case. The terms in an attribute areln order to decide whether two artifacts trace to one another,
weighted differently, according to the attribute’s importance twe compute the dot product, which directly corresponds to the
the content or meaning of the artifact itself. In an additionaiosine of the angle, between the column vecters j =
weighting phase (see Section V-B) we apply commonly uséd...,m. If two artifacts share common terms, their vectors
term weighting schemes, i.eTf-Idf, to the software artifacts will be closer to each other in-dimensional vector space and
and search queries. are thus likely to share common terms.



Similarly, artifact vectors in close proximity to a query vectorsimilar term usage will be closer to each other in rank reduced
which usually represents the artifact from which traceabilitypace. The clustering process groups similar artifacts that are
links will be recovered, have a higher dot product than poterelated to a common concept and separates artifacts that are not
tially unrelated artifacts, and are returned as the highest rankethted to the concept. This process of clustering is illustrated
artifacts. If the dot product of a retrieved artifact is below @& Figures 3 and 4. The latter figure illustrates the rank reduced
chosenthreshold valugimplying that the vectors involved arecorpus in which 3 clusters have been identified. Clearly these
wide apart inn-space, it is considered as not being relevant tre only illustrations since more than 3 dimensions, such as
the query. artifacts will have, cannot be visualized.

In order to overcome the fundamental problemsghonymy
and polysemythat plague many text search approaches which *
match words or terms of queries with words of documents, . |
we apply a technique called Latent Semantic Analysis (LSA) . = . *
[4]. There are usually many ways to express a given concept ©s
in natural language, so the literal terms in a query may not E: .
match those of a relevant document. LSA tries to reveal the . -
underlying or latent semantics among documents that is partially o= A | *
obscured by variability in natural language word choice, which  °* u
is often referred asmoise in the literature. LSA applies a ’ o o1 o2 o5 o4 o5 o5 07 o5 o8 1
powerful technigque in matrix computation known as Singular 4 nd userroqurements M System requirements A Use.Coses
Value Decomposition (SVD) that reduces the dimensionality of Bscquence diograms K Source code State diagrams
a document matrix and as a side effect, reducesithigein the
document corpus. Rather than userar m matrix A,, <., ON€ Fig. 3. Artifact space before clustering through LSA

uses a factorization of the matrix, namely

Anxm = nXlZle‘/ZZm (2)
1
where U, «; and V,«,, are both orthogonal matriceg, = 09 | a
min(n, m) andX;, is a diagonal matrix with elements; = 0, 08 4
wheneveri # j, andd;; = d; > 0. v '. B
It can be shown that it always possible to find non-unique s PY ‘
matricesU,,x; and V;x., such thatd, > ds > -+ > d,41 = 04
... =d, = 0 wherer is the rank of the matrix4,,,,. Note Ez A, B (.
that SVD neatly separates the original matdy, ., into the o1 m
terms in matrixU,,x; from the artifacts in matriX/ . 0
When one can restricts the matrid€sy;, Vixm andX;y; to °ooer 02 o 0s 0308 0T 08 0e
their first k < n rows one obtains an approximatioti,. ,,, of # End user requirements M System requirements A Use-Cases
the original matrix4,, ., where the number of terms have now Msequencediagrams 1 Souree code stote diogroms
been reduced t& < n. Fig. 4. Artifact space after clustering through LSA
excm = Ukt Zixt Vi 3)

An obvious benefit ofd; . is that it reduces the complexity

of the vector space, hence decreasing both size of the corpusV. IMPROVING LATENT SEMANTIC ANALYSIS (LSA)
and the time for real time query analysis and data retrieval [9]. the gpen literature contains several references to various

) / . e
_ Choosing th; numbﬁ_: of d|g1en_5|oﬂ; for Ay, is anh techniques to improve the performance of LSA. We discuss our
interesting problem. While a reduction incan remove much ;e hretation and use of these in the following sections.

of the noise, keeping too few dimensions may lose important

information. As discussed Deerwestet al [4] using a test )
database of medical abstracts, LSA performance can imprdye Stémming
considerably after 10 or 20 dimensions, peaks between 70 an&temming [5], or conflation, attempts to reduce all morpho-
100 dimensions, and then begins to diminish slowly. logical variants of word to its stem or root form. Thus the terms
In Section VIII we describe the results of a case study. Tl a query or document are represented by stems rather than
results prove that reducing the dimensionality of matfix.,, by the original words. Natural language text artifacts, such as
by 90%, that is,k = 0.1 not only reduces the storage andequirements or architectural specification, are a major part of
retrieval complexity, but improves the accuracy of a searthe software development life-cycle corpus, stemming is useful
significantly. This has to do with that fact that LSA spatiallyo improve the traceability results as we shall see in Sec. IX.
separates relevant from irrelevant documents. LSA is a globaWe applied stemming by employing a lookup table which
clustering technique that exploit inter-term relationships or thle®ntains relations between root forms and inflected forms. To
co-occurrence of terms, among all documents in the corpusstem a word, the table is queried to find a matching inflection.
cluster similar documents in rank reduced space. In the casdfod matching inflection is found, the associated root form is
software traceability, this means that software artifacts withraturned.



B. Term Weighting C. Query Weightings

Before we describe the various weighting schemes found inApart from weighting of terms in the document collection,
the literature [11], [4] we first definef;;, the frequency of the We also need to consider an appropriate weighting scheme of
terms, in the artifactj; af; the artifact frequency or the numberthe terms in the user query. Every term in the query vector

of artifacts of the totalV in which termi occurs and finallyg f; 7= (q1,---,qx) for k the threshold value discussed in Sec. I,
the absolute frequency with which terimoccurs in the entire is weighted byw; where
corpus. B f; N
A norrEaIized term-frequencyyf; ; of termi in document; w; = <0-5 +0.5x —— fi) x log (n*i) ©))
is given
9 Y o tfi where f; is the frequency of termi in ¢ and max f; the
tfi; = 2 (4) highest frequency of a term in the query vector. Apart from

max; {tfi;} the term frequency, this weighting scheme also involves a global
where clearly the maximum term-frequency is computed over @leighting which, as already seen in Eqg. 5, considers the entropy
terms in document j. In the event that there are large differencfsterm in the global context.
in the term frequencieﬂog(ﬁij + 1) takes the log of the raw
term frequency, thus dampening effects of large differences Relevance Feedback (RF)
frequencies.

In order to improve the performance of LSA, a teintan
be given aglobal weightg; to stress its information content
across the document corpus, ankbeal weight /;; to stress the

Another way of improving the results of LSA is to use a local
clustering technique or relevance feedback. Relevance feedback
guides searches toward relevant documents by giving the system

C , feedback as to which documents returned by a previous search
content of the term in document;.

Global iahti t to diminish the infl age relevant to the initial query. The system can then use the
obal Weightings are meant 1o diminis € INNUeNnce Qhagpack to perform a subsequent search that will result in a

words that occur frequently or in many of the documents. Trﬁgt of documents with a higher precision and recall.

weightw;; for a termi in document; is defined to be In Dumais, et. al [5], Salton [16] and Lee [2], usage of

) relevance feeQback was found to greatly _improve overall sear_ch
performance in text documents. They discovered that queries

As opposed to local weighting schemes, global weightirfd’mposed from the highest ranked relevant document returned
schemes take the distribution of terms in the whole documé¥ the initial query gave an average overall improvement of
corpus into account in order to weight terms within a documeRg? and queries composed of the three highest ranked relevant
appropriately. The inverse document frequencylddifactor is docu_ments gave an average overall_ |mpr(_)vem<_ant of 67%. Their
a well known global weighting scheme [5] which is based offudies also found that the user typically just view only a small
the premise that terms which occur in many documents 4yember of the documents returned by the initial search in order
not very useful in distinguishing a relevant document frofff locate a few relevant documents. On the average, the most
non-relevant ones. Terms that occur in many documents diglévant document was the top ranked document and the three

therefore, assigned a smaller weight. The Idf-factor of tefsa MOSt relevant documents were within the top seven ranked
given by documents. In their definitiony; represents theé-th query, the

N document vectors are designa@7 j=1,...,m as before.
afl) +1 (6) The constantsy, 3,y < 1 are multipliers.

The best known weighting scheme for natural language text B a.; a.j
documents is described by Saltenal.[15] and balances local- ~ 4i+1 = i +8 Z laj| v Z (10)

wij = lij X gi

idf; = log (

|a. a.|
and global-weights and is known as tiéldf scheme defined relevant non-relevani
as follows: In contrast to the work of the authors mentioned above, the
o software development life-cycle document corpus does not
tfidfij = tf; ;- udfi contain only text documents. Nevertheless we show, in Sec. IX,
fij where we usex = 1,5 = v = 0.5 [14], that feedback can
Hlog () @ tai hes b h as 20 ¢
max;{ f,; af; improve certain query searches by as much as 20 percent.

Another global weighting scheme, or entropy scheme, first \/| M EASURING LSA TRACEABILITY PERFORMANCE
proposed by Dumais [5] normalizes the term frequetiGy; by

dividing by af; as follows The two most popular metrics for evaluating IR performance

are Recall and Precisioff12]. Let C; be the set of relevant

7  tfi artifacts for a user queryand R; the set of all retrieved artifacts.
W af; Recalland Precisionis then defined as follows:
N
1 - |Ci N RZ“
S _ . 7 Recall;, = ——— (12)
tfi; L= 10N Z;t fig x logtf”, ; ®) ]
=
L . _|Gin Ry
The term ;1 Z;.V:l tij x logtf’,; is called theentropy Precision; = R;] (12)



In order to assess the overall performance on the entire systeatied attribute weightsas they weight the importance of terms

the summation over all queries is performed. l.e., extracted from the artifact attributes.
_ LGN R Text = w; - Name+ w, - Description (16)
Recall = (13)
il Cil
o ¥;|Cs N Ry B. UML diagrams
Precision = ———— (14) . ) .
3| R;| The UML notation comprises a large number of different

In general, retrieving a lower number of artifacts for each quef{jagram types. We concentrate on the representation of a subset
would result in higher precision, while a higher number o?f the most important diagrams, namely use-case, sequence
retrieved artifacts would increase the recall. Both values deped®i Well as state diagrams. A use-case vector, see Eq. 17, is
on the threshold used to cut the ranked list: in general, the higi§@mposed of the user-case name, the name of the associated
the threshold the lower the recall and the higher the precisicitbject or system and involved actors. Additionally, we also
and vice versa. incorporate the comments that are either associated with the
Another measure that is often used incorporates recall afiPiect or the user-case itself. Use-cases can haveualeand

precision into one single value. The most popular single valggtendselationship to other use-cases. In order to preserve these
measure is the F-measure or balanced E-score as it Comp[@@ionships we also incorporate the names of related use-cases
the harmonic mean of precision and recall. It is also known H¥0 the use-case vector.

the F'(1) measure and given by:

P LSt R 1l Usecase = w; - SubjectNamet w; - UsecaseName

[CCLSNOn, - ecats Actor Comment

Fla), = (1+a)- 15 | g ‘ . -
(@)i=(1+a) a - Precision; + Recall; (15) + > <w3 . ActorName) + > <w4 . Commen,[)
The influence of recall or precision in the single value fof |A;:S;ciated ssecases i=1

can be changed by changing thevalue. The two commonly " S (w5 . lmné -
used F measures aé(2) which weights the recall twice as =1

much as precision an#(0.5) which is the other way around. The representation of a UML sequence and state diagrams is
In our experiments we decided to uBg2) as the metric since slightly more complex than for a use-case. A sequence diagram
we believe that recall is more important than precision farector, see Eq. 18, is composed of the interaction or diagram
the software engineer. Failing to find important artifacts in theame, the names of all classes involved (lifelines), the labels
traceability link recovery process has serious implications fof all messages exchanged among the classes as well as the
the correctness and costs of introducing a requirement changiagram comments.

hence completeness is preferred to precision.

Lifelines|
VII. BUILDING THE ARTIFACT CORPUS SequenceDiagram = w1 "“te’adm‘*‘ Z:l ‘(w”m‘%
In section | we introduced the vector space model to present |Messagefs
all software development life-cycle artifacts as n-dimensional + X_: ws - MessageNarg
vectors. However, this representation raises several questions. ‘Coln:;ent$
Which attributes of the software artifacts have to be incorporated + 3 (w3 . c;om—mer’u) (18)
in the vectors, i.e., are method names and comments required in i=1

the vector representation to reflect the meaning of a source co@ike representation of a UML state diagram is very similar to

artifact? Which terms have to be extracted from these artifabe sequence diagram. A state diagram vector, see Eq. 19, is

attributes? Do only nouns and identifiers have to be consideredimposed of the state machine name, all diagram comments,

And finally, how must these terms be weighted to reflect theifl state names as well as the state actions (entry, exit and

importance? do). Additionally, also the labels of the state transition are
In the case study presented in Section VIII, we try to preserircorporated in the diagram representation.

existing dependency information inherent in software artifacts,

such as use-case associations, by emphasizing the importance _ |Commentp
of terms that occur in these associations. We call this techniqué@ePiagram = w, - StateMachineName- 3 | (s - Comment)

attribute weighting States i=1

. .
+ Z wo - StateNamet wy - (StateEntry—i— StateEXxi
=1

A. Natural language text artifacts (Transitions

Natural language text artifacts, such as requirements or archi- + ws-StateDot Y wg - TransitionLinkName (19)
tectural specification, are a fundamental part of every software =t
development life-cycle. We present an text artifa_ct}vector as
the weighted sum of the twattribute vectorsName and
— —_—
Content, see Eg. 16. Th€ontent vector contains terms thalC- Source code
were extracted from the_de)scription of an text artifact, i.e. from Changes to user or system requirements invariably result in
a user requirement. THéame contains the terms extracted fronrmodifications to the source code and vice versa. These kind of
the name of the text artifact. The variables and w, are changes are costly as source code artifacts are complex. Since



source code artifacts describe a software system on the lowestTerm extraction
abstraction level, the number of artifacts the human eNgINe€lafter we identified the artifact attributes to incorporate in

has to examine for Fhe purpose of vahdatmg and maintaininge \ector representation of the various software artifacts, we
traceability links is higher than for othgr artifacts types.. next extract terms from these attributes. In the first step of the
In order to represent source code artifacts adequately in VeGQiQfaction process every term is separated from the initial string
space, we propose the model shown in Egs. 20 - 25. In thiSq saved in a hash table. Every hash table entry consists of a
model, the smallest traceable source code artifact is a classke%, represented by the term itself and the weight of the term,

class vector is composed of package, class, field and metiofla iy set to zero and increased by one every time the term is
declarations, which contain associated comments and 'dem'gﬁbsequently found.

names. Additionally, we also incorporate comments and stringAS an example, the tree in Figure VII-D illustrates the

literals terms found in the body of methods. term extraction process for the label of a lifeline message

of an UML sequence diagram which consists of a condition

e R |Subpackaggs R — and method call. In the extraction process we separate the
PackageDeclaration = w1 - Commentt ; (ws - SubpackageNamy original string shown in the root node into its constituent terms.
+  ws - Name o) Compound terms such asmReceiveData and SIPMsg are

further divided and added among the compound term to the
hash table. The rationale behind this is that compound terms
often represent identifiers, i.e., classes or names. Assuming that

ClassDeclaraion —  w, - Comments ws - Name most sqftwa_rg developgrs follow best programming practises by
|Super classés giving identifiers meaningful names, constituent terms can be
+ > ws-SuperClassName  (21) useful in determining the importance of the artifact itself.

i=1

After all attribute terms have been extracted, terms are
stemmed to their morphological root (see Sec. V-A). Although
LSA itself provides a mean to overcorsgnonymywe found in

FieldDeclaration = w, - Comment+ w, - Type+ w3 - Name ~ (22) our case study (see Sec.VIll) that additional stemming of terms
improves search results.
In the final step we traverse the hash table and remove what
are known asstop words Stop words are auxiliary words like
MethodDeclaration =  w; - Comment+ ws - RetumnTypet ws - Name conjunctions and prepositions that do not contribute directly to
|Parametets the semantics. As shown in Figure VII-D, the weight of term
+ Z (W4'PafamTyP?+w5'Nam%) (23 on was identified as a stop word and set(t® and is thus
= no longer part of the vector representation of the attribute. In
order to recognize stop words we used a slightly modified list
of terms created at the University of Tennessee [13]. We mainly

e |Comment — |String literals — enhanced this list with keywords usually used in programming
ethodBody = 2 (w1 - Commen) + ; (ws - Cieral languages, such ast , boolean or object
|Remaining identifiers
+ Z ws - ident; (24)
i=1 [call initiated] onReceiveData(SIPMsg msg)
. (w=1.0)
|Package declaratiops
Class = Z (Declaratior,]) + ClassDeclaration call SIPMsg
=1 ) (w = 1.0) (w = 1.0)
|Method declaratiorjs / N
+ 3 + (Declaratioq + MethodBod;) initiated sip msg
i=1 (w = 1.0) (w = 1.0) (w=1.0)
|Field declarations
+ > +Declaration (25) onReceiveData
izl (w0 = 1.0)
In order to recognize and weight the various class attributes, we on ~ l.eclh,e ™~ data
implemented a source code parser. Rather than simply extracting (w = 0.0) (w=1.0) (w =1.0)

terms by applying regular expressions like Marcus and Malectic

[12], we produced an abstract syntax tree (AST) of every soureig. 5. Example expanded term tree
code artifact. This allowed us to weight attributes according to
the number of times they occur in the hierarchy. Implementing
a fully featured parser for a modern programming language is
cumbersome and complex task so we support only a subset of
the grammar that is required to extract the earlier describedAs most authors will know, one of the hard parts about
artifact attributes and skipped the rest. studying traceability in the software development life-cycle is to

VIIl. CASE STUDY



find properly maintained, relevant artifacts for a working sof\e also asked another experienced software developer to check
ware system. Confidential requirements mostly require softwdahee manually found traceability links, discussed changes and

companies not to make artifacts such as required, availaldeded or removed traceability links where necessary. In the end

Open software systems are largely bereft of documentation other determined 593 links from 16 end-user requirements to the

than the source code. Hence like other studies, for instance thdifact types mentioned above.

by Marcus [12], we had to resort to an internal software project.

The most suitable project was the implementation of a voice IX. EXPERIMENTS AND RESULTS

over IP (MoIP) system, based on the Session Initiation ProtocolIn all experiments, the original matrixl was transformed

(SIP)_, and_ which was proscribed to.follow bgst programmiqgsing to the applicable weighting schemes, its SVD computed
prac'tlses n descn'blng the software n a detfsuled and co'mpl(agg? the resultant matrid’ used for the analyses. We applied
fashion using requirements analysis, design, implementation El‘ﬂéj most common term weights found in the literature [16] to

testing phase. our corpus of software artifacts and queries. A configuration

Several case studies can also be found in the literatuge. o \yeights that consists of a local and global weight is
Marcus and Maletic [12] as well as Antoniol et al. [1] use tw enoted in our case study &5 and defined as follows:
identical software projects in their respective case studies. The

library of efficient data types and algorithms (LEDA) which Sn. = (Lcorpus, Gcorpus: Louerys GQuery) Where
has been developed at the Max Planck Institut lhformatik, Lcorpus € {Log, MazT f,Tf} A
S_aarbucken, Germany, and the Albergate project which was a Geonpus € {Entrophy, Idf, None} A
final year student project for a hotel management system at the
University of Verona, Italy. Lquery € {AugT' f, Log, MaxTf,Tf} A

Hayes et al. [6], [7] follow a similar path by conducting GQuery € {Entrophy, Idf, None} (26)

case studies on very technical artifact sets. In these studies thxlehe choice of parameters for anv one experiment is huge
requirements specification of the NASA Moderate ReSOIUti%nowever' one canpapply stemming O{ not thepnumber of COI’?‘I-
Ilnéar%mr? zfrﬁ);(g(r)olr:v(\jllferceer i;(hgi?eﬂiagas usedto trace betwek%ﬂations of global, local and query weightings (see amount to
Lorgmans and van Deursqen [10] aﬁd De Lucia et al. [ 08 for our choice of weights in Sec. V-B); the matrix reduction
. . . oo an range from 0 to 95% and the choice of threshold value can
conducted their studies on less technical software projects Wkljte anywhere between 0 and 1. Consequently, only a fraction of
a broader set of artifact types. all results can be reported here.
In our report, because of the relevance feedback process,

A. Tracing Links manually we placed more emphasis on recall than precision in our

In order to assess the performance of the automatic tra€P€riments and therefore uséd2), which weights the recall
ability link recovery method, one obviously needs to manualR¥ic€ s much_as precision. In all experiments we traced from
identify the best set of traceability links among the chosdRe user requwement_s to each of the other artifact plasses.
software artifacts. Finding the best such set of traceability linRd0reover, we can obviously only report on results for which we
is clearly subjective, since the decision whether or not softwdf@d manually traced the links (see Sec. VIII-A) for comparison.
artifacts are dependent upon one another is to a certain degree!q SUmmary, the statistics of our artifact corpus is given in
matter of interpretation. This is particularly true for artifacts likdable IX.
requirements, that are usually described in natural language text
on an abstract level. On the other hand, deciding whether t4o Results

source code artifacts, like classes, are dependent is much easigfhe fundamental question, naturally, is how well does LSA
A simple rule could be: Class A is considered to be dependgfirk when tracing amongst software artifacts? Before deciding
upon class B if class A accesses fields, methods of class B4t question, we investigated the best combination of corpus
is derived from it. and query weighting to use. It turned out that there was no
The LSATrace tool removes the individual human interpr%-ing|e answer to this question. Figure 6 plots the F(2) value
tation which is inevitably present in any manual traceabilitynen tracing from End-user requirements to Use cases for
technique. However, in order to say something about the pgrthreshold of 0.1 and various matrit’ reductions and all
formance of our proposals, we needed the manually discovefgeksible combinations of the weightings described in Sec. V-B.
links, however biased. Not only does the best combination depend on the percentage
In the case study we recovered traceability links as best @Sthe matrix reduction, but it also depends on what is being
possible and put a great deal of effort in validating them. Wesced to and the threshold value.
had to become acquainted with the project and examined therhe results of all these experiments are simply to numerous
provided source code and documentation in detail. We algp display and the reader is referred to [8] for all the data.
compiled and ran the source code to get a better understandjia determined that the weighting scheme which gave the best
of the dependencies between the artifacts. In the end Wgerall results uses the corpus weighting Tf-1df and Tf-Entrophy
recovered traceability links from each user requirement to  for the query weighting. We therefore used this weighting
— other user and system requirements, including scheme in all the results to follow.
— UML use cases, collaboration and state diagrams and  For the results in Fig. 7 we plotted the F(2) value while
— C# Classes tracing from End-user requirements to all remaining artifacts



Number of vectors | Mean vector length | Mean frequency of | % of terms in vectors
(Number of terms) terms in vectors with frequency 1
End-user requirements 16 22.5 1.48 7%
System requirements 22 26.5 1.66 1%
Architectural features 27 67 1.7 71%
Use-Cases 44 3.8 1.01 99%
Sequence diagrams 14 65.6 1.7 66%
State diagrams 12 27.5 1.59 70%
Classes 230 85.8 1.49 82%
TABLE |

CORPUS ARTIFACT STATISTICS

F(2) tracing from User requirements to Use cases for all weightings and various matnc reductions
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Fig. 6. Tracing from End-user requirements to Use cases for a threshold of 0.1 and variousAha&tuctions and all weighting combinations.
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Fig. 7. Tracing from End-user requirements to remaining artifacts for threshold value 0.1 and variousAha&ductions with stemming.

for a threshold value 0.1 and various matdkreductions using these results are considerably better than those found by Settini
stemming. The F(2) values range from a low 51% for tracing &t al [18]. We subsequently repeated this experiment by tracing
Use cases to a high of 75% for architectural features. Althouflom End-user requirements to remaining artifacts averaged over
an exact comparison is not possible since the experiments difedl, matrix reductions for various threshold values. Threshold
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Tracng fom Uzer requirerrents to certan other artifi cts with and withowt stermrming
0.7

0.6 o * =

. I
04 4 /
0 ra

02 ‘/_’,:/
a1

F2yvalue

— - —— —
D L] L] L] L] L] T L] T T T T T T
00045 25.00%% S000%% 75.00%% 20.004 95.00%% 97500
Percentage reduction ofratmss A'
—4— ML State diazrans - stenmumgz —8— TTM LS tate diagrams Classes - stenmmng Clesses —#—TUML Use caxes - sterming —— UTMLUse cases

Fig. 9. F(2) value tracing from End-user requirements to remaining artifacts for threshold value 0.1 and variougl hmattixctions with and without stemming.

values of less than 0.3 are clearly so low that all significanceascollection than the unmodified original version. The query can

lost. Even for a threshold value of 0.1 the F(2) value, averagbd modified by either adjusting the term weights, i.e., increasing

over matrix reductions from 0% to 97.5%, is a low 30%. It i®r decreasing the weight of a term, by adding new terms or by

obvious from these last two set of results that a matrix reductiosing the combination of these two approaches. The process
of 97.5% and a threshold value of 0.1 give the best results for thiejudging and performing searches can be repeated until the
value F(2) indicating that there must be a great deal of sematiesired quality of traceability links is reached.

noise in our artifact corpus. Since a large matrix reduction | dback h imolies. d q
also improves the efficiency of the technique, this result is Relevance feedback, as the name implies, dependents upon

particularly significant. Next we wanted to know the effectSer input to determine relevant documents. Alternatively one

of stemming on the efficiency of LSA and our methodology@" SIMPly assume that only the top ranked documents are
Figure 9 is therefore a plot of the F(2) value tracing from Endélévant without any user intervention. In our experiments we
user requirements to remaining artifacts for threshold value ¢'§€d neither of these techniques. As explained in Sec. VIII-A,
and various matrixd’ reductions with and without stemming.We traced the links between some artifacts manually in order to
Although the improvement in the results is marginal, stemmirﬁfg)rnpare our automated technique with what may be considered

has clearly improves the F(2) value at all matrix reduction a e correct results. In our query refinement we simulate the user
in almost all cases feedback by finding the top ranked artifact in our manually

traced matrix. If the artifact can be found in the traceability

matrix we mark it as being relevant, otherwise it is marked as ir-

B. Relevance Feedback relevant. Afterwards the artifact will be incorporated into a new,
In the final experiment we used relevance feedback to fietentially improved search query and another search operation
eratively refine a search query. As described by Lundegtist performed. We arbitrarily performed these query improvements
al. [11], relevance feedback is a process through which a quémne times computing the F(2) value at all threshold levels at
is selectively modified to retrieve more relevant documents froevery query iteration. In order not to distort the performance
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Fig. 10. F(2) percentage performance increase at every query refinement iteration averaged over all threshold levels and 95 percent matrix reduction.

results we do not consider artifacts previously considered in theightings we used generally the best, but not the best for all

result set. Each time we only considered the residual collectiartifacts? No doubt the length of the various artifacts have an

in which all previously used artifacts have been removed. impact on this. The one conclusion that is evident is that a
Table 10 shows the F(2) values averaged over all threshdfaeshold value of 0.1 and a matrix reduction of 95% deliver

levels for each query refinement iteration. Iteration 1 denottee best F(2) result. It is important to emphasize again that our

the original performance without applying relevance feedbaaksults in all cases reflect both the validity and the precision in

The first query refinement in which only a single artifact wathe F(2) value.

rated improved the results for almost all artifacts types. Results

improved in average over all threshold levels by 9% for system

requirements, 12% for architectural features, 2% for use-cases, REFERENCES
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