Automatic Marking with Sakai

Hussein Suleman
University of Cape Town
18 University Avenue
Rondebosch
+27 21 650 5106

hussein@cs.uct.ac.za

ABSTRACT

Large student numbers often drive teaching staff to consider
greater degrees of automation of assessment activities. In
introductory Computer Science classes - where submitted
programs need to repeatedly be compiled, executed and tested -
automation is an obvious route to investigate. This paper reports
on an experimental automation system for assessing
programming assignments, and its integration with the open
source Sakai learning management system. While the system has
been an administrative success, feedback from students has
identified numerous areas for improvement at the interface of the
student and the automatic marker. Furthermore, the use of
automation has highlighted the need for teaching software
development methodology from an early stage.

Categories and Subject Descriptors

K.3.1 [Computers and Education]: Computer Uses in
Education — computer managed instruction; K.3.1 [Computers
and Education]: Computer and Information Science in
Education — computer science education, self-assessment.

General Terms
Economics, Human Factors, Standardization, Verification.

Keywords

Automation, interoperability, Sakai, assessment.

1.INTRODUCTION

Computer Science assignments often involve the creation of one
or more computer programs, and assessment of these
assignments can and has been automated to various degrees over
the last 40 years [1]. In the simplest of cases, the programs can
be compiled automatically but submissions may also be

executed, tested and scored without human intervention.
Experiences by users of automated systems have been largely
positive, with benefits to both students and staff involved with
courses [2].

Automation may be desirable for a number of reasons:

® There is no longer a need for human markers — this
reduces the assessment and management workload,
especially for large classes.

® There is greater consistency since all submissions are
marked in terms of exactly the same criteria, which are
applied evenly to all submissions.

® All assessment is explainable. Every mark awarded or
deducted can be explained fully and consistently.

® Feedback from assessment can be instantaneous. This
then raises the possibility of multiple submissions and
iterative learning.

® There is an electronic audit trail of all assessment
activities — both submission and marking.

A significant new factor motivating automation is the increasing
acknowledgment that students should be taught good software
engineering practices through the mechanism of early assessment
and throughout their training [3]. Automatic marking implies
automated testing techniques that are usually comprehensive and
mimic unit testing. Students thus indirectly learn to program in a
more professional manner, favouring robustness and precision
over quick-and-dirty solutions.

However, automation of assessment does have significant
disadvantages, including:

® Submissions that do not completely meet the criteria
for assessment cannot be assigned partial marks
without substantial effort or complexity in system
design.

® Assessment criteria must be simple so that
measurements can be made automatically. For
example, it is difficult to check for meaningful variable
names automatically.

® Students are required to meet more stringent
requirements than would be the case with traditional
human marking.

The aim of any automated marking system is therefore to
capitalize on the advantages of automation, while adequately
dealing with the disadvantages.

In the case of this project, automated marking was introduced in
a first year Computer Science course with an emphasis on Java
programming. The prime motivator was increasing use of the
Sakai Learning Management System (LMS) [4] to support
teaching in this course, and the recent development of APIs to
link external applications into Sakai. Thus, the aim of the project
was to provide students and staff with all the benefits of an
automated marking system along with seamless integration with
the Sakai LMS.

Given that the course in question was a first year course,
assessment was based largely on problem solving and
programming style. Performance and efficiency of solutions was
not tested for. The Automatic Marker assessed programs for
correctness of output, either from the program as a whole or from
individual classes/methods, although its design allowed
assessment by other criteria as well. Testing for structural
elements of programs was avoided because the varied
backgrounds of students meant that some students used advanced
solutions at an early stage. Output from programs was compared
to predefined output to determine marks for submissions.

This paper reports on the design of this Automatic Marker system
and evaluates it in terms of its expected benefits and the
experiences of students who used it.

The next section discusses LMSes and interoperability. This is
followed by the design of the Automatic Marker, how it
integrates with the LMS, and evaluation of the tool. Finally,
related work and concluding remarks are presented.

2.LEARNING MANAGEMENT SYSTEMS

Learning management systems (LMSes) are computer systems,
usually Web-based, that support teaching activities. These are
either distance/self-paced learning or blended learning, where
interaction with the LMS complements interaction in traditional
classroom and laboratory environments.

WebCT and Blackboard [6] are among the more popular
commercial LMSes. Each offers a suite of services to learners
and teachers. Each class could set up its own sub-environment
with a configurable set of tools and navigation. These tools
include resource/file managers, discussion fora, course outline
storage, assignment management and mark management.

As LMSes became more popular, users began to move courses
between systems and third parties began to produce content for
integration into LMSes. To facilitate both of these, the IMS
Global Learning Consortium [7] was created to develop
standards for educational technology. IMS has since defined
standards for learning object metadata, content packaging,
question and test interoperability, etc.

In addition to the commercial ventures, numerous Open Source
Software LMSes are now available and in use in institutions
around the world. Sakai [5] and Moodle [8] are among the most
popular.

Moodle [7] presents the now standard LMS tools in a manner
that supports constructivist learning. It is easy to install and has
minimal resource requirements, while still being able to scale up
to support a fairly large university if necessary. Moodle also is
popular because of its simple design and extensibility, using the
PHP language for all its back-end applications.

Sakai [5] is an alternative to Moodle, which has been produced as
a collaborative effort by a team of major universities. The
emphasis is on course-based portals rather than individual
learning experiences. Sakai also provides all the standard LMS
tools, with some degree of configurability of the end-user
experience.

Moodle supports many modern interoperability standards, such
as RSS feeds for new forum postings and SCORM content
rendering. Moodle has been able to export and import all course
data in internal XML formats from early incarnations of the
software.

Sakai is arguably not as interoperable as Moodle at the time of
this writing. However, Sakai provides a mechanism — the
linktool [8] — for connecting in externally-hosted tools. This tool
has a well-defined API for interoperability with a broad range of
tools, with very similar services and usage scenarios to Facebook
applications [9]. In addition, Sakai provides a set of Web
services to developers of external applications that need to
interoperate with Sakai.

While Sakai has some shortcomings (such as inadequate
standardisation of data formats), its interoperability interfaces are
ideally suited for rapid application development. As such, the
Automatic Marker was developed to integrate loosely with Sakai.
The sections that follow discuss the design of the Automatic
Marker in general, followed by how it integrates with Sakai.

3.SYSTEM DESIGN

3.1Submission and Marking Process

The Automatic Marker provides students with a Web-based
interface (see Figure 1) to submit assignments. As each
assignment is submitted, the Automatic Marker stores the
assignment internally and then initiates the marking process. The
Automatic Marker can use different scripts (called graders) for
different types of assignments — the following discussion is only
about a grader that compares output for correctness.

Each assignment is associated with an XML configuration file
that stores information on how to mark the assignment. Figure 2
shows a snippet from such a configuration file.

There is one question XML node per question in the assignment.
Each question defines commands to compile and run the
program. Then the question defines which files are to be
compared for correctness. A series of trials are defined, where
each trial specifies files to be created in the filesystem. For each
trial, the Automatic Marker first stores the specified files, then
executes the “run” command, and finally checks the specified
files for equality. Equality is defined as the number of lines in
each file being equal and the contents of each pair of
corresponding lines being identical after trailing whitespace is
deleted.

#) Automatic Marker

Satup

Assignment 1 2008-03-06T17:00:00

5/10

uestioni.zip [0]

usstionl.zip [100]

uestion1.zip [20]
Assignmentl.zip [100]
Assignment].zip [100]

Orientation 2008-03-:0T17:00:00

4/100

Orientation SLMHUS001.zip [100]
HelloWorld_2.zip [0]
HelloWorld.zip [100]
orientation.zip [100]

Assignment 2 2008-03-23T17:00:00

5/20

assignment 2.zip [30]
assignment 2.zip [70]
assignment 2.zip [100]
assignment_2.zip [100]
assignment 2.zip [100]

Assignment 3 2008-03-20T17:00:00

6/10

2ss3.2ip [70]
ass3.zip [70]

Figure 1: Screen snapshot of main submission interface

<markinge
<guestic

-Javac Questionl.java 28gt;&l</comp1le=

<run>java Questionl > testoutput.out < testinput.in 26gt;&l</run=

=check=>
<f1lel=testoutput.test</filel=
<f1le2>testoutput.out</file2>

</check

arks=20</marks=

<trial>
<f1le name="testinput.in"=

<ffile=
<f1le name="testoutput.test"s

Enter the height of the triangle:|
+

¥
e
Aok
Aok
</file>
</trial=
<trial>
<f1ile name="testinput.in'=
10
</file>

Figure 2. XML assignment configuration file snippet

Marks are specified in both the question and trial nodes. The
mark in the question node indicates the relative contribution of
the question to the total. The mark in the trial node indicates the
relative contribution of the trial to the mark of the containing
question. Marks are allocated for correct output only. Typically,
numerous trials are defined for each question to allow for
partially-correct solutions.

Assignments that are submitted late are automatically subject to a
late penalty as defined in a system-wide configuration file.

The output of this marking process is streamed to the browser, as
shown in Figure 3.

3.2Security measures

Security is a prime concern, especially given that Computer
Science students are likely to find and exploit any security holes
in a system that runs arbitrary code submitted by students.

Particular features of the BSD/Linux operating systems were
exploited to secure the Automatic Marker application. Firstly,
when a submission is received, it is decompressed/copied into a
randomly-named temporary storage location, thus preventing
guessing of directories. Then, any external applications (such as
the compiler and JVM) are run via a small mediator application
to change the effective user. In a manner similar to Apache's
suEXEC [10], the mediator is owned by and always executes as
the root user. Since it executes as root, it may switch to another
user without performing any additional form of authentication.
In this case, the mediator switches to the “nobody” user and then
executes the target application e.g., compiler, JVM.

Thus, the user's application executes in a random location on the
disk and with minimal privileges. Further, system limits are set
to kill the application after a few minutes.

#) Automatic Marker

satup

Submit | Manage Users | Switch User | Marking | Review Marking

Marking assignment ...

Automarking ...

Unzipping file
Archive: /home/autonark/subnissions/0L375526/Assignnent 1/10/Assignnentl,zip

Conpiling Question 1

error; cannot read: Questionl.java
1 error
Trial 1:

Conparing output
Qutput not correct

The expected output vas:
1:2:40

Your progran produced:
Exception in thread "main" java.lang.NoClassDefFoundError: Questionl

Differences in the files are as follows:
Icl
<1:2:40

> Exception in thread "nain® java.lang.NoClassDefFoundError: Questionl
score for question: 0

Conpiling Question 2

Figure 3: Output from marking of a submission

After each trial of a question in an assignment, the Automatic
Marker checks the directory for output and performs output
checks. After marking of an assignment is complete, the
Automatic Marker deletes the temporary directory.

Figure 4 depicts this sandboxing relative to the other system
layers.

3.3Learning Support

The Automatic Marker is designed to support 2 aspects of
learning that are typically poorly supported with human-marked
assignments.

The first aspect is iterative learning. Every assignment defines
how many submissions a student may make. The Automatic
Marker uses the highest mark of the set of submissions as the
final mark for the assignment. Giving students instant feedback
means they have the opportunity to learn from their mistakes and
correct them before submitting again. Thus the assignments
serve more in the role of formative than summative assessment.

The second aspect is feedback and error reporting. If a solution
is not correct, the student is immediately given a listing of the
output produced by his or her program as well as the expected
output and the differences between the two. This can be
scrutinized to help in determining where the errors lie. The
Automatic Marker therefore provides the facilities to help
students locate their errors as part of the instant feedback they are
given.

Assignment
Submission

Submission Grader

A
X

Automatic Marker

Figure 4: Sandboxing for
execution of user code

3.4Management Facilities

Currently, the emphasis of the Automatic Marker has been on
correctness and the interface with students, so little effort has
gone into administrative tools. However, some tools were
necessary for teaching assistants and tutors (support staff).

A useful feature of Moodle, which has not appeared in many
other LMSes, is the ability to assume the identity of a student —
see what the student sees and be able to act as the student. This
functionality was built into the Automatic Marker to help when
resolving queries from students.

In addressing some queries from students, it is necessary to also
handle special requests and extensions. Invariably, some
students begin the course late and need extensions on the first
assignments. Then, there are students who fall ill during the
semester and need to negotiate multiple deadlines that are
different from the rest of the class. There are also those students,
especially early in the semester, who exhaust their submission
quotas before realising the limits that are in place. In all these
cases, and others, the support staff need to make adjustments on a
per-student basis. Whenever one of the support staff logs in, they
are therefore presented with the option to either extend individual
assignments or increase the number of handins allowed for
individual assignments. Figure 5 illustrates this interface.

3.5Manual Marking

While most assignments can be marked automatically,
correctness was not the only criteria used for assessment. To test
for programming style, assignments were marked manually, but
using as much automation as possible.

Automatic Marker
Setup
Submit | Manage Users | Switch User | Marking | Review Marking 01375526 logged in as 01375526
Managing User: abbsab001
Attempts
Assignment 0 2008-02-28T17:00:00 || 3/50 AssignmentO_ABBSABOO1.zi
X assignment0.zip [50]
Extra days: Extra tries: assignment0.zip [100]
o J| e
Update Update
Assignment 1 2008-03-06T17:00:00 2/10 Assignment! ABBSABQQ1.zip
X Assignment1 ABBSABQO1.zip
Extra days: Extra tries:
l J [J
Update Update
Orientation 2008-03-10T17:00:00 1/100 Orientation ABBSABOO1.zip [
Extra days: Extra tries:
o | [e J
Update Update
Assianment 2 2008-03-13T17:00:00 2120 Assianment2ARRSAROOT .70

Figure 5: Management of student submissions and extensions

Automatic Marker

Setup

Submit | Manage Users | Switch User | Marking | Review Marking

Reviewing Marking: khmwal002

Explode and view test.zip [automark:25]

25

20

40

Basic structure
Input
Computation
Qutput 10 -

Extra input statement. Variables do not

General Comments| match and algorithm not complete, but a
good idea nevertheless!

Figure 6: Screen snapshot of manual marking template

Support staff can choose the “Marking” option, whereupon they
are presented with a list of assignments that may be marked. On
selecting one of these, the Automatic Marker randomly chooses
an unmarked assignment and presents it to the marker within a
marking template for that assignment (see Figure 6). Files
related to the submission are available to be opened in a separate
window, which uses AJAX techniques to dynamically update the
display of a file without reloading the entire window. Thus, the
marker can scan through a submission with a minimum amount
of clicking and scrolling.

4.INTEROPERABILITYWITH SAKAI

Interoperability with Sakai is a key issue for the Automatic
Marker and occurs at various levels of human and machine
interfaces.

In the user interface, a menu item was inserted into the main user
menu for the Automatic Marker. This is a special linktool menu
item that invokes the linktool Sakai Tool when a user selects the
option. Unlike a regular URL linked into the menu, linktool
passes various parameters to the application to link it to the
course environment, logged-in user and other forms of context.

The Automatic Marker is then loaded into an iframe in the main
content area, an HTML page that exists within another HTML

page. This is not ideal but it is how Sakai currently integrates all
of its tools.

As the application loads, the parameters passed to it by the
linktool indicate the context (course), role and user ID of the
user, as well as appropriate encrypted checksums. The
application then uses a Web service to re-authenticate itself with
the Sakai server using these encrypted details. This prevents
third-party spoofing of credentials. Once authenticated, the
application proceeds with its regular operation until it needs to
communicate with Sakai.

The following Web services are used as an interface between the
Automatic Marker and Sakai at various points in its operation:

® Get list of assignments.
® Set mark and feedback comment.
® et list of students.

The list of accessible assignments, and all dates associated with
each assignment, is obtained each time from Sakai. This is done
because the list differs from student to student. Additional
configuration information about each assignment is stored by the
Automatic Marker and these 2 pieces of information are
reconciled before presenting the user with a list of assignments.

An additional encrypted token is used when the Automatic
Marker needs system-wide information (such as the list of
students). This removes the need to store a plaintext password to
authenticate as a different user.

S.EVALUATION

The Automatic Marker was used for an introductory Java one-
semester (12 week) first year course with approximately 300
students and 20 support staff (tutors and teaching assistants). All
9 assignments done by students, as well as the orientation
exercise, practice exercises and practical test were channeled
through the automatic marker. Additional manual marking of 2
assignments for stylistic criteria was conducted also using
facilities provided within the Automatic Marker.

Some staff perspectives emerged and student opinions were
gathered at the end of the course.

5.1Staff Analysis

As expected, the following advantages of automatic marking
were apparent:

® There were fewer queries from students about marking
or mark transcription in official marksheets.

® There was no need to track down tutors and check on
timing and quality of marking.

® Marking was consistent in all assignments.

® Tutors were happier — they did less marking overall and
spent more effort on the manual marking.

® Students learnt to build robust code.

A number of issues were highlighted by and noted from
interaction with both students and staff during the semester.
These include:

® Students and staff found the errors from the Automatic
Marker difficult to understand. This was to be
expected from first-year students but staff had great
difficulty in helping to track down simple errors such
as those related to formatting. This highlighted the fact
that most support staff were themselves students in the
early stages of their studies.

® Many students believed that they could solve the
problems but that “satisfying the Automatic Marker”
was different from solving the problem — this was
raised repeatedly on the discussion forum. The issue of
what constitutes a correct solution is not clear — some
students were frustrated by spacing of output while
others felt that precision of floating point output should
not be checked for.

® Many students blamed the Automatic Marker as a first
resort and complained to the department when their
programs did not work. The Automatic Marker was
never the problem although each such complaint was
investigated. This raises the issue that students trust
human markers but do not trust a machine to assess
their work.

After all assignments were complete for the semester, student
performance was compared with the previous year. In 2007 the
average assignment mark was 79.43% and in 2008 it was 82.91%
- thus it can be argued that student performance is at least
comparable with the Automatic Marker.

5.2Student Feedback

At the end of the semester, students were asked to complete a
survey as part of their evaluation of the course. Questions
specific to the Automatic Marker were posed in a manner similar
to what would have been asked of human markers, for a degree
of comparability. The results from this survey are presented in
Table 1, where N="No answer”, 1="Poor”, 2="Below average”,
3="Average”, 4="Good” and 5="Excellent”.

Table 1: Results from student survey

Question N (1 |2 |3 |4 |5

—
w

How well did this support 6 |22 |23 |16
the notion of iterative

learning?

How fair and even was|0 |8 15 |18 |22 |8
the marking?

Rate the speed of|l 1 |2 |3 13 |51
obtaining a response from
the automatic marker.

Rate the feedback |2 |7 |10 |17 |21 |14
provided.

Rate your overall|0 |6 |7 |23 |25 |10
experience.

The majority of students believed that the system supported
iterative learning. A substantial number of students felt the
support for iterative learning was poor or below average. This
may mean students did not understand the concept of iterative
learning, as presented in the question. All students were allowed
at least 10 submissions for all assignments, and in some cases
more, and almost without exception students used this facility
often.

While most students felt that the marking was fair and even, 22
students rated the system as poor or below average. This implies
that students feel they are being treated differently by the
Automatic Marker, which does not make sense. From personal
interaction with students, it is likely they simply do not
understand the meaning of “fair”.

The vast majority felt that the system response time was
excellent. A small number did not agree. This could be because
students interpreted this as the speed of a response from the Web
server in general — this is dictated by various factors including
the speed of computers (or lack thereof) in the student
laboratories. In terms of the Automatic Marker itself, marking of
submissions rarely took more than 10 seconds, even close to the
submission deadlines. The response to this question stresses the
importance of the performance of multiple components in a
seamless solution — if end-users are not able to detect the
boundaries among components, they cannot attribute failures
correctly.

17 of the respondents felt that the feedback was average while
another 17 felt it was below average or poor. There are many
reasons that contribute to this. Firstly, the output produced by
the Automatic Marker is terse — it was expected that students
would correctly interpret numbers such as character positions of
errors but few students ever looked at those. Then, during the
marking phase students were given only the output but not the
input to prevent solutions that were not generalisable —
unfortunately this often led to confusion over the cause of errors.
Feedback from the Automatic Marker has been confirmed by
students as an area where much improvement is needed.

Finally, in the overall ratings the majority of students rated their
experience with the Automatic Marker as either average or good.
Comparatively fewer students indicated the experience as being
poor or below average, which seems reasonable in light of
responses to prior questions.

At the end of the survey students were asked for general
comments on the course and a number of students provided input
on the Automatic Marker. Some comments confirmed the
mismatch between what students thought of as correct and what
the Automatic Marker used as its internal notion of correct:

® “The automatic marker is always faulty and even
though my program works at home, the A.M doesn't
compile and run properly on [Sakai].”

® “Sometimes it is right to you but wrong to the
automark.”

Some comments from students point to future improvements that
can be made so assessment is not purely based on output:

® “The auto-marker is really bad because [it] prevents
[you] from learning from your mistakes. It's over-
sensitive.”

® “The idea of the automatic marker is good and would
be excellent if there can be a way of improving its
capabilities such as the general marking techniques,
that is not to only be based on program output but the
general code structure.”

A few students wanted more exercises for those who are having
difficulty and those who are ahead of the class. Both of these are
immediately possible with the automatic marker.

® “[wish there were more practice assignments instead of
just assignments.”

® “Something [that] would be nice would be some
optional assignments, as a challenge to those who
completed their assignments early.”

5.3Feedback from Tutors

Tutors were asked for feedback as well but there were only 5
responses. For the most part, the responses from tutors
confirmed the comments made by students. In their comments,
tutors highlighted the issue of better feedback for students and
the increased possibility of plagiarism in the absence of human
marking. Plagiarism detection was not integrated for logistic
reasons but this is planned for the future.

5.4Sakai Integration

As indicated in the student feedback, students were often not able
to separate the Automatic Marker from Sakai — thus, a reasonable
level of integration was achieved.

When Sakai was offline the portal was not accessible but when
the Automatic Marker was offline independently of Sakai
students would be able to use Sakai but not the Automatic
Marker. Thus, while distributed applications have advantages,
they can result in less cohesive systems.

Corruption of marks occurred only once (and was fixed by re-
sending marks to Sakai) — because of a local Sakai software
upgrade rather than an inherent problem with the interoperability
interfaces. Thus, the interoperability interfaces were reasonably
stable and robust.

There were no known security breaches at the interface between
the 2 systems.

5.5Summary of Results

In general, most students were satisfied with the Automatic
Marker but some students were unable to relate to this change in
assessment methodology. The feedback from students
highlighted many areas of possible improvement.

From an administrative perspective, the Automatic Marker has
been very successful.

From an interoperability perspective, the Automatic Marker
successfully integrated with Sakai, providing a nearly seamless
experience to end users.

6.RELATED WORK

Numerous attempts have been made to construct similar
automatic marking systems, both for computer programs and
other forms of assignments.

Marking of free-form text by matching phrases has been
suggested as an effective technique for courses with text-
intensive tests and examinations [11]. Thomas [12] and Waugh
[13] extended this idea to mark ER diagrams automatically by
extracting the equivalent of key phrases from these diagrams.

Early efforts at automation demonstrated the feasibility of the
general approach for various programming languages, while
investigating different techniques for assessment. The early
Ceilidh system marked student assignments in languages that
included Standard ML [14], in a manner similar to this work, but
without the high level and seamless integration with a modern
LMS. Foubister [14] confirmed that there was no change in
student performance with automated testing, as is borne out by
this study. Jackson and Usher [15] used a wide range of
assessment criteria applied to offline marking of Ada programs in
their ASSYST system. Saikkonen et al [16] used a fully
automated assessment tool for Scheme submissions which
avoided the output matching problem by testing the return values
instead.

More recent work has been focused on the specifics of Java
assessment and interactive learning. Truong et al [17] attempted
to semi-automatically assess Java programs using static analysis,
that is without compiling and executing the programs. Tremblay
et al [18] assessed Java programs using a command-line tool
available to students using a Unix-based system — and mentioned
the possibility of a future Web-based application. Blumenstein et
al [19] developed the generic GAME system that is a framework
for automated grading of assignments in programming languages
that include Java.

Many of these systems were similar, but with varying goals that
were relevant to local contexts and current technology. None
emphasized the integration with a modern LMS as was done in
this project.

7.CONCLUSIONS

This project has discussed a proof-of-concept application to
demonstrate the feasibility of integrating advanced computer-
assisted instruction/assessment tools into a modern LMS.
Feedback indicates that such an application can meet its
pedagogical objectives while providing a seamless user
experience.

The evaluation suggests that some students failed to fully
appreciate the different assessment model of the Automatic
Marker, with its stronger focus on software testing and
robustness. Thus, human factors play a greater role in migrating
a user community to new forms of educational technology, and
users will need more up-front information in future.

This work also provides further evidence in support of the
effectiveness of component-based development based on service
oriented architectures. If more educational technology was made
available as services, learning environments could be
transformed into a rich blend of configurable tools.

8.FUTURE WORK

An administrative configuration interface will be added to the
Automatic Marker's user interface to eliminate the need for
editing of XML configuration files.

Further generalisation of the marking criteria will enable less
strict marking in future. Possibilities under consideration are
regular expressions and canonicalisation of text by removing
whitespace and punctuation.

More feedback will be provided to students through an interface
that is more informative. Students will also be provided with
input where it is necessary to help understand how and where
their programs have failed.

A plagiarism detector may be integrated into the system in future.

Finally, from a pedagogic perspective, some work is needed to
investigate if there are significant learning differences as a result
of automatic marking, as opposed to human marking.
Specifically, a potential advantage of automated marking is
rigorous and iterative feedback and the effect of this on the
learning process could be measured.

9.ACKNOWLEDGMENTS

Thanks go to the students in CSC1015F who are regularly subject
to experimental teaching and assessment techniques.

10.REFERENCES

[1] Douce, C., Livingstone, D., and Orwell, J. 2005. Automatic
test-based assessment of programming: A review. J. Educ.
Resour. Comput. 5, 3 (Sep. 2005), 4. DOI=
http://doi.acm.org/10.1145/1163405.1163409

[2] Malmi, L., Korhonen, A., and Saikkonen, R. 2002.
Experiences in automatic assessment on mass courses and
issues for designing virtual courses. SIGCSE Bull. 34, 3
(Sep. 2002), 55-59. DOI=
http://doi.acm.org/10.1145/637610.544433

[3] Edwards, S. H. 2003. Rethinking computer science
education from a test-first perspective. In Companion of the
18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (Anaheim, CA, USA, October 26 - 30, 2003).
OOPSLA '03. ACM, New York, NY, 148-155. DOI= http://
doi.acm.org/10.1145/949344.949390

[4] Sakai Project. 2008. http://www.sakaiproject.org/

[5] Blackboard. 2008. http://www.blackboard.com/

[6] IMS Global Learning Consortium. 2008.
http://www.imsglobal.org/

[7]1 Dougiamas, M. and Taylor, P.C. 2003. Moodle: Using
Learning Communities to Create an Open Source Course
Management System. In Proceedings of the EDMEDIA
2003 Conference, Honolulu, Hawaii.

[8] Sakai. 2008. Linktool.
https://source.sakaiproject.org/svn/linktool/trunk/linktool.txt

[9] Facebook. 2008. Developers Documentation.
http://developers.tacebook.com/documentation.php

[10] Apache HTTP Server Documentation Project. 2008. Apache
suEXEC Support.
http://httpd.apache.org/docs/1.3/suexec.html

[11] Parkinson, J. 2005. Essays marked by computer program.
BBC News. http://news.bbc.co.uk/2/hi/uk_news/education/
4425423 stm

[12] Thomas, P., Waugh, K., and Smith, N. 2005. Experiments in
the automatic marking of ER-diagrams. SIGCSE Bull. 37, 3
(Sep. 2005), 158-162. DOI=
http://doi.acm.org/10.1145/1151954.1067490

[13] Waugh, K., Thomas, P. and Smith, N. 2007. In Proceedings
of the 24th British National Conference on Databases.
BNCOD'07. IEEE Computer Society.

[14] Foubister, F.P., Michaelson, G. J., and Tomes, N. 1997.
Automatic assessment of elementary Standard ML programs
using Ceilidh. J. Computer Assisted Learning 13 (2).
doi:10.1046/j.1365-2729.1997.00012.x

[15] Jackson, D. and Usher, M. 1997. Grading student programs
using ASSYST. In Proceedings of the Twenty-Eighth
SIGCSE Technical Symposium on Computer Science
Education (San Jose, California, United States, February 27
- March 01, 1997). J. E. Miller, Ed. SIGCSE '97. ACM,
New York, NY, 335-339. DOI=
http://doi.acm.org/10.1145/268084.268210

[16] Truong, N., Roe, P., and Bancroft, P. 2004. Static analysis
of students' Java programs. In Proceedings of the Sixth
Conference on Australasian Computing Education - Volume
30 (Dunedin, New Zealand). R. Lister and A. Young, Eds.
ACM International Conference Proceeding Series, vol. 57.
Australian Computer Society, Darlinghurst, Australia,
317-325.

[17] Saikkonen, R., Malmi, L., and Korhonen, A. 2001. Fully
automatic assessment of programming exercises. SIGCSE
Bull. 33, 3 (Sep. 2001), 133-136. DOI=
http://doi.acm.org/10.1145/507758.377666

[18] Tremblay, G., Guérin, F., Pons, A., and Salah, A. 2008. Oto,
a generic and extensible tool for marking programming
assignments. Software: Practice and Experience, 28 (3),
John Wiley & Sons. doi:10.1002/spe.839

[19] Blumenstein, M. M., Green, S., Nguyen, A. T., and
Muthukkumarasamy, V. 2004. GAME: A Generic
Automated Marking Environment for Programming
Assessment. In Proceedings ITCC 2004 International
Conference on Information Technology: Coding and
Computing. http://hdl.handle.net/10072/2110

	1.INTRODUCTION
	2.LEARNING MANAGEMENT SYSTEMS
	3.SYSTEM DESIGN
	3.1Submission and Marking Process
	3.2Security measures
	3.3Learning Support
	3.4Management Facilities
	3.5Manual Marking

	4.INTEROPERABILITYWITH SAKAI
	5.EVALUATION
	5.1Staff Analysis
	5.2Student Feedback
	5.3Feedback from Tutors
	5.4Sakai Integration
	5.5Summary of Results

	6.RELATED WORK
	7.CONCLUSIONS
	8.FUTURE WORK
	9.ACKNOWLEDGMENTS
	10.REFERENCES

