
Experiences in Implementing a Kernel-Level DRM
Controller

Alapan Arnab, Marlon Paulse, Duncan Bennett and Andrew Hutchison
Data Network Architectures Group, Department of Computer Science, University of Cape Town

Rondebosch, 7701, South Africa
{aarnab, mpaulse, dbennett, hutch}@cs.uct.ac.za

Abstract— The enforcement of DRM licenses is performed by
a DRM controller, and it can be implemented at the application
level, the operating system level and at a hardware level. In this
paper we discuss our experiences in implementing an operating
system level DRM controller based on the GNU-Linux kernel.
This paper investigates the feasibility of creating a transparent,
application independent DRM controller and the performance
implications thereof. Our investigation has revealed, that while
a number of access control rules can be enforced transparently
at the operating system level, there are also a number of rules
that require application level enforcement. Thus, we recommend
separation of rights to two levels of enforcement to take advantage
of transparent enforcement at the kernel level. Our performance
analysis shows promise with minimal user observable time impact
for small files less than 25 MB in size. However, there is still a
significant performance impact and a very noticeable user observ-
able time performance impact for larger files. Thus improvements
are necessary if DRM controllers are to be deployed in multi-user,
high-load environments like file servers.

I. INTRODUCTION

Digital Rights Management (DRM) has been attacked by
many for reducing consumer choices [2], for impeding rights
granted by copyright [14] and has been labelled by the
editor of a leading technology news website as “a load of
C.R.A.P” [7]. While DRM’s use as a mechanism to combat
media piracy is well known; use of DRM to provide “persistent
access control” [20] for any data type is often ignored. In
fact, DRM is often relabelled when deployed for use in
enterprises, even though they share many common features
and functionalities.

Many of the current problems with DRM systems stem
from the fact that access control is exercised by “DRM-
enabled” applications, while traditional access control is often
administered by the operating system. These problems include
vendor lock-in and limited application usability for consumers;
while rights holders have less control over how well the
protection is actually enforced. For this reason, the usefulness
of DRM as a general security solution will depend on the ease
of supporting and integrating with existing computer systems,
which in turn depends on the implementation of the system
that interprets and implements the DRM access control rules
– the DRM controller.

A. Differences with existing Access Control Models

In [17], Reid et al. argue that mainstream operating sys-
tems are inappropriate for use as DRM clients. Mainstream

operating systems use Discretionary Access Control (DAC)
security policies rather than Mandatory Access Control (MAC)
security policies. A DAC system allows ordinary users of a
system to define their own security. By granting ordinary users
this ability, a user could reconfigure the security policy of the
system to subvert the DRM protection. The authors also point
out the inability of mainstream operating systems to support
the principle of least privilege. Since system privileges are
based on the users’ identity, any program executing on behalf
of a user is granted the same access control privileges as the
user. There are no efficient mechanisms for restricting users’
access control rights.

In MAC based systems, and the associated Multi-Level
security (MLS) systems proposed by Bell and LaPadula [6],
[5], access control is assured through a central security admin-
istrator, and thus ordinary users of the system are prevented
from reconfiguring the computer’s security policy [18], an
almost impossible scenario for DRM systems. The third and
newest, popular access control model is Role-Based Access
Control (RBAC), first described by Ferraiolo and Kuhn in [10],
and subsequently detailed further by Ferraiolo et al. in [9],
as well as Sandhu et al. in [21]. Ferraiolo and Kuhn argued
that access to data should be determined by the function, and
these functions of the users, which are usually defined by roles
users play in an organisation [10]. However, as roles cannot
be defined in a globalspace, this approach on its own is also
unsuitable for DRM.

The main difference between DRM and traditional access
control is the boundary of control. Traditional access control
models operate on an object within a defined boundary: either
a system or organisation. DRM however aims to operate on
objects that do not have any defined boundaries, and thus
across different systems and organisations.

B. Our Contribution

In this paper, we explore the design and implementation of
a DRM controller in the kernel of an operating system; instead
of implementing it at the application layer. DRM controllers
at the operating system level, potentially provide some great
benefits. The main advantage is that it should be possible
for any application to access protected works, as the main
underlying protection is provided by the operating system and
not the individual applications. Furthermore, it also means that
DRM protection can be offered to any data types, not just

multimedia. This means that DRM could be used as a privacy
enhancing mechanism for ordinary users, who can determine
the exact access control rules for their own private data.

A different concern raised on the viability of operating
system level implementations regards to the overall perfor-
mance of the system. In [19], Rosenblatt argues that, since
an operating system level DRM controller must intercept
system call requests to enforce digital rights, it would need to
intercept all such requests. It does not discriminate between
system call requests that need protection and those that do not
need protection. This unnecessary interception of system call
requests can impose a large overhead on the system.

We believe that operating system and hardware level DRM
controllers share similar constraints and capabilities. We also
use our results to project the potential design considerations for
hardware level DRM controllers and potential pitfalls. This is
particularly important as new developments in processors have
seen the first potential building blocks for a DRM controller
at the hardware level [8].

II. RELATED WORK

The majority of current DRM systems are implemented at
the application level, and as discussed previously, only one
system – Microsoft’s Rights Management Services (RMS) –
features a DRM controller in the operating system kernel.

Microsoft’s RMS controller does not provide transpar-
ent DRM protection. Instead, it requires applications to be
“RMS enabled” before they may interact with DRM protected
files [13]. DRM Protected files in a non-RMS enabled kernel
are seen as encrypted files and no actions can be performed
on them. Applications which are not RMS-enabled cannot
perform simple functions such as opening a file, even if the
application is running in a RMS enabled kernel [13].

Because Microsoft RMS is a proprietary system, not much
has been disclosed about its design, how its DRM controller
interacts with the Windows NT kernel and the performance
impacts its DRM controller has in relation to a normal Win-
dows NT kernel. Since the enforcement of rights is through
the RMS enabled application, it is difficult to do comparative
analysis with our own operating system DRM model.

III. SYSTEM DESIGN

In this section, we detail an implementation agnostic design
for an operating system DRM controller, and the motivations
behind our design.

In [16], Park et al. categorised a variety of DRM systems.
These categories depended on two factors – (1) the type of
“control set” or use license used and (2) the distribution
mechanism. Since DRM is a form of persistent access control,
the distribution mechanism should not impact the security of
the data. Hence, we did not consider the distribution as a
factor. Park et al. discussed three types of control sets – the
fixed control set, where the DRM policies are set with the
DRM controller, the embedded control set, where the DRM
policies are combined with the protected data and the external

control set where the DRM policies are separate to the pro-
tected data providing maximum flexibility. These distinctions
are also present in the OMA DRM 1.0 specifications and
are called Forward Lock, Combined Delivery and Separate
Delivery respectively [15]. Although our design could make
use of embedded control sets, we only implemented and tested
protected data with external control sets.

A. Overview

One of the core ideas in our design is the separation of a
DRM controller into two distinct components: (1) a digital
rights enforcement engine, which is embedded within the
operating system kernel and is responsible for interpreting
and enforcing access controls; and (2) a management daemon,
which is responsible for the acquisition and management of all
the data required by the enforcement engine when enforcing
digital rights.

This approach was taken for three reasons. Firstly, by
separating the DRM controller into two components, the
responsibility for acquiring and managing DRM use licenses
is removed from the the enforcement engine. This results in
a reduced workload on the enforcement engine. Also, the
enforcement engine is not required to be connected to any
network (to acquire a license for example) or provide any
user interfaces for managing use licenses. This is not a security
risk, as the enforcement engine is still responsible for checking
validity and deciding on access requests.

Secondly, this approach allows for different implementation
mechanisms for managing use licenses etc. For example, it
would be easy to extend our design to incorporate a central
management service, that serves a number of DRM controllers
– a feature that would be very useful in home networks or
corporate environments.

Finally, separation of the interface and the enforcement
engine allows for easier portability. Many operating systems
can be modified to run on different platforms and devices;
all of which have different user interfaces. Very little changes
are required at the kernel level for the enforcement engine; but
the management daemon will need to take account of different
storage systems and user interfaces.

In the remainder of this section, we will outline the re-
sponsibilities of each component, the interaction between the
components and other related design issues such as file formats
and rights expression languages.

B. The Digital Rights Enforcement Engine

The enforcement engine is responsible for making decisions
on whether the user should be allowed a certain operation on
a protected file. Thus, the enforcement engine needs to first
identify the user requesting access to the protected file. It also
needs the user to have a valid use license (a license that is
not expired, and issued by a trusted authority) before it can
decide if the use license allows the user access to the requested
operation.

To make it’s decision, the enforcement engine requires two
pieces of information: a mechanism to verify the user’s identity

and the use licenses. The management daemon is responsible
for providing information to allow for the first, as well as
acquiring and managing such data.

C. The Management Daemon

1) User Management: Interoperable user identity manage-
ment systems is one of the major problems with current DRM
systems. User identity was also a major criticism levelled
by by Reid et al. [17] with regards to the principle of least
privilege. We use a Kerberos like, authentication ticket identity
system, discussed by Arnab et al. in [3]. In this system,
the user authenticates themselves to the authentication server,
which provides him/her with a signed ticket identifying the
user as authenticated for a specified amount of time on
a specific machine. The daemon then presents this ticket
(as long as it is still valid) to the DRM controller when
required. Limiting the validity period reduces the scope of
using replicated tickets as they last a short period of time and
are bound to a specific machine. This approach also removes
the need for user interaction (like passwords) at the time of
use. If the ticket is not present, or is expired, the user is denied
access.

Tickets are acquired and administered by the management
daemon but it is the enforcement engine that ascertains the
validity of the ticket, and thus a compromised ticket by the
user would require the user to get the ticket issuer’s private
key. Our system allows any user to use a DRM protected work,
as long as they have a valid license for that work, allowing
for a high degree of portability.

2) Acquisition and Management of Use Licenses: If a
license is not available in the license store, the management
daemon initiates a negotiation for a new license with a content
distributor’s license server. The daemon provides a user inter-
face to interact with the license server, and to communicate
the necessary details required for the issuing of a use license.
The management daemon should also be able to acquire use
licenses from other sources. The daemon is also responsible
for storing (if required) and indexing use licenses as well as
removing revoked and expired use licenses.

D. Enforcement Engine – Management Daemon Interaction

Figure 1 gives an overall view of the process involved in
accessing a DRM protected file in our system. The following
steps describe the interaction between the enforcement engine
and the management daemon.

Step A:The application receives as input a DRM protected
file.

Step B: The application requests access to the file. The
enforcement engine intercepts this request.

Step C: The enforcement engine sends a request for the
DRM use license details to the daemon.

Step D:The daemon checks the license store for a license.
If a license exists, the daemon proceeds to step G.
Otherwise, it proceeds to step E.

Step E: The daemon connects to a license server enabling
the negotiation of a license download.

Fig. 1. The DRM Controller Architecture and Communications

Step F: If a license is successfully negotiated, the daemon
proceeds to step G. Otherwise, a message is sent to
the enforcement engine to deny file access.

Step G: The validity of the license is checked against a
revocation list. If a license is invalid, the daemon
may return to step E to negotiate a new license.

Step H:The daemon sends the use license and the authenti-
cation ticket for the user, to the enforcement engine.

Step I: The enforcement engine performs a final check on
the access request. The end-user and the request
are referenced against the relevant fields in the use
license. If these details are valid, the application is
granted access to the requested file.

The daemon also manages the authentication tickets, and the
steps to acquire and manage authentication tickets is similar
to steps D to G described above.

E. DRM File Format

One of the most often mentioned problems with DRM
system interoperability is the file formats used. We make
use of a layered file format that can accommodate different
requirements, and any data type. Our approach is shown on
the left in figure 2. The layers represent data that is added
or a process that is applied to a previous layer. For example,
metadata is applied to the original data while compression
is performed to all the data combined in lower layers. The
layers can be used in either directions (i.e. to create or
to use the protected data). We have also catered for other
security mechanisms that can be applied to data, usually before
encryption, like watermarking.

IV. IMPLEMENTATION EXPERIENCE

A. Setup

The system implements a DRM controller responsible for
enforcing rights protection on an end user machine. The
controller represents part of the user component in the archi-
tecture discussed above. As discussed earlier the aim of the
implementation is to create a controller that supports multiple
file formats and is transparent to the applications that access
the files. Due to the wide availability of literature on Linux
kernels and its open source nature, we decided to implement
the system on a Linux-based operating system with a vanilla
2.6.15 version Linux kernel.

The controller consists of two core modules: an operating
system kernel module and a user-space daemon. The kernel
module is responsible for enforcing the access control rules
specified in DRM use licenses, while the daemon retrieves
these use licenses from the content publisher’s license servers
and manages them in its local license store. When an appli-
cation requests access to a DRM protected file, the daemon
retrieves the DRM use license and sends it to the kernel mod-
ule where the rights enforcement will occur. A more detailed
description of this communication is given in section III-D.

The communication between the kernel module and the
daemon is performed via a character device file in the /dev
directory. Ideally, this communication channel would need
to be secure, tamper-proof and only accessible to the kernel
module and the daemon. However, we were unaware of how
to implement secure userspace-to-kernel communication in
Linux. The management daemon does not modify any data it
manages, and thus all data is signed by the original services.
Thus, the confidentiality of the communication is not breached
by our approach.

B. File Format

Fig. 2. Layered approach to DRM file formats (left) and the implemented
file format (right)

The file format used by our DRM controller implementation
is presented on the right in figure 2. As shown, we closely
followed the layering architecture. The magic number gives
the file format an unique MIME type identifier allowing the
kernel module to quickly identify a DRM protected file and to
ignore non-DRM protected files, and as far as we are aware,
the number we have chosen is not being used by any other
MIME type.

At the moment we use a SHA-1 hash of the unencrypted
content as the identifier. We admit that this approach is not
ideal, as there is a chance that two different objects can
have the same message digest, and a more complete identifier

system, is necessary in a full implementation. This approach
however is better than a simple labelling scheme as it provides
a primitive identity verification service, that is not provided by
common identifier schemes. The protected file is encrypted
using AES (128bit).

C. Rights Expression Language (REL)

License ::= (Permission)+ End
Permission ::= PermissionStart Type

(Constraint)* End
Constraint ::= ConstraintStart Type

(Argument)*
(Constraint) * End

Argument ::= ArgumentStart Type
ArgumentValue End

ArgumentValue ::= (1-9a-zA-Z)+
Type ::= (1-9)+
End ::= ‘‘;’’
PermissionStart ::= ‘‘!‘‘
ConstraintStart ::= ’’&’’
ArgumentStart ::= ‘‘@‘‘

Fig. 3. The BNF grammer for the kernel license

We wanted to reduce the complexities involved in our test
implementation and thus used a flat file representation for
the use license instead of XML based license like ODRL or
XrML. The format we used is shown in figure 3, and our
format follows the core set of elements required for license
enforcement as discussed by Guth et al. in [11]. Each license
was signed and also contained the the user identifier.

D. Access Controls Implemented

Borrowing terminology from the Open Digital Rights Lan-
guage (ODRL) [12], access control rights are referred to as
permissions and limitations to these permissions are referred
to as constraints. Thus a permission like display can have
a constraint of count with a value of 5 to restrict the end
user to viewing a file for a maximum of 5 times. For the
implementation, we focused on the following permissions
which we extracted from the ODRL 1.1 core data dictionary,
and they represent a fair percentage of the total permissions
expressible in the standard ODRL data dictionary: DELETE,
DISPLAY, EXECUTE, MODIFY, SAVE, MOVE.

We also implemented the following two ODRL constraints:
COUNT and DATETIME.

E. The Enforcement Engine: The Operating System Kernel
Module

The kernel module consists of five components:
1) Enforcement Component (EC), which enforces the

rules specified in DRM use licenses
2) Decision Component (DC), which decides whether

an application may access a DRM protected file in a
certain manner, based on the permissions and constraints
specified in the DRM use license.

3) Access Control Rules Manager (ACRM), which parses
the kernel licenses (shown in figure 3) received from
the user-space daemon into an internal data structure
that allows for more efficient in-memory storage and
look-ups. The ACRM also serialises the use license data
structures back into the kernel license format so that
any modifications made to the license constraints by the
kernel can be sent back to the daemon for storage in its
license store.

4) Data Handling Component (DHC), which is used
to determine whether files being accessed are DRM
protected, perform digital signature verification and to
decrypt DRM files. This component is also responsible
for storing the state of all open DRM protected files in
the system.

5) Communications Interface (CI), which implements the
character device driver that provides the communication
mechanism between the kernel module and the daemon.

Fig. 4. The interaction of the various components withing the kernel module

These components are shown in figure 4. The kernel module
operates as follows:

Step A: The kernel module receives a file access request
from an end-user application.

Step B: The EC uses the DHC to determine whether the
file is DRM protected. If it is, the DCH verifies the
digital signature embedded in the DRM protected
file. If the digital signatures is successfully verified,
the DRM protected file is decrypted.

Step C:The EC checks with the DC whether the application
can access the file in the manner it requested.

Step D:The DC requests the DRM use license in the kernel
module’s in-memory license cache from the ACRM.

Step E:If the DRM use license is not available in the kernel
module’s in-memory license cache, the DC retrieves
the license using the CI

Step F: The CI communicates with the daemon to retrieve
the license from the daemon’s local license store.

Step G:The license from the daemon is sent to the ACRM
so that it can be parsed into a data structure that the
DC can use to efficiently look-up permissions and
constraints. The license is also saved in the kernel
module’s in-memory license cache, in case the end-
user application performs another file accesxs request
in future.

Step H:The DH checks if the application may be granted
access by looking-up the permissions in the license

data structure constructed by the ACRM and verifies
that all the license constraints are satisfied. The DH
notifies the EC whether access may be granted to the
application

Step I: Based on the response by the DH, the EC grants or
denies the application access to the file.

It should be noted that the digital signature verification
and file decryption processes only occur once: when the
application opens the file. Subsequent file access requests,
such as DISPLAY, do not incur this overhead. Also, for
simplicity, decrypted DRM protected files are stored in the
/tmp directory. Temporary files are required because all the
application’s file requests are redirected from the encrypted
file to the temporary, unencrypted file, and performing the
operation in memory proved to be too expensive. We recognise
the security risk introduced by this approach, and we discuss
this in more detail in section IV-G . To lower the security
risk, the temporary files were given random names, and the
redirection does not appear under normal process listing (such
as ps). Once the application closes the file, the these temporary
files are deleted.

In order to enforce the DRM use license permissions listed
in section IV-C, we define mappings between permission
names and system call routines. These mappings are defined
as follows: DELETE : unlink; DISPLAY : read; EXECUTE :
execve; MODIFY : write; SAVE : write and MOVE : rename.

Fig. 5. Intercepting system calls and redirecting file access requests in the
kernel

Therefore, whenever an application makes a request for a
permission, all the kernel module has to do when access is
granted is to execute the corresponding system call routine. If
permission is denied, the kernel module simply needs to return
from the system call routine with an error message. In order to
implement this procedure, the EC replaces the I/O system calls
in the Linux kernel with its own set of system calls. This means
that whenever an I/O request is made, the EC’s system calls are
called instead of the original Linux kernel system calls, thus
allowing the DRM kernel module to perform the DRM access
control verification as described above. This is accomplished
by replacing the addresses in the system call table that point
to the original I/O system call routines with the addresses
of the kernel modules I/O system calls. Figure 5 illustrates
this process. The dotted arrows show the normal flow of
control from an application request (invoking a system call) to
the original system call routines that service the request. By
changing the values in the system call table, control instead

passes to the kernel modules system call routines, as indicated
by the bold arrows. If an end-user application is denied access
to the DRM protected file, the EC simply exits its custom
system call routines, returning an error code (-EACCES) to
the end-user application. If access is granted, the EC calls
the original system calls from within its custom system call
routines, enabling the end-user application to carry out the
action associated with the access request.

F. The User-Space Daemon

The user-space daemon has several responsibilities which
are described in more detail below.

1) Management of a License Store: In order to retrieve
DRM use licenses for the kernel module, the daemon stores
licenses in a local license store. The daemon is responsible for
acquisition of license (over the Internet), storing and indexing
retrieved licenses and removing expired and revoked licenses.

2) Negotiate Licenses with a License Server: If a license
is not available in the license store, the daemon initiates
a negotiation for a new license with a content distributor’s
license server. The daemon activates a user interface, and a
child process is started to await a response from the user
interface. This frees the main daemon process to continue com-
municating with the kernel. Once the negotiation is complete,
a message is sent to the child process. If the message contains
a license, the license is added to the license store. The user
can then try to attempt to access the file once more.

3) Management of authentication tickets: As discussed in
section III-C.1, we make use of authentication tickets for
user authentication. The daemon is responsible for acquiring
authentication tickets (over the Internet) and the storing and
indexing of authentication tickets, removing expired authenti-
cation tickets.

4) Communications with the Kernel: When requested by
the kernel, the daemon finds the appropriate use license and
associated authentication ticket and then sends them to the
kernel.

G. Motivation for our approach

The use of a temporary decryption file is not ideal. Firstly,
it requires that the entire DRM protected file be decrypted
before the end-user application may access it, incurring a
big performance penalty on large files. A better approach
would be to implement on-the-fly decryption where the file
decryption and application access may occur simultaneously.
Also, using a temporary file complicated the updating of
DRM protected files when end-user application have MODIFY
permissions. With our approach, if an update should occur, the
kernel module would need to re-encrypt the temporary file and
move replace the original DRM protected file with the newly
encrypted file. Not only does this incur further performance
losses, but ensuring consistency between the original DRM
protected file and the newly created protected file in multi-
threaded or parallel processing environments would be very
difficult. Lastly, the there may also be not enough space on the
computer on which the DRM protected file is being accessed.

This is especially a problem when the DRM protected file is
large. However, despite these drawbacks, we still opted for
this approach, as it is simple to implement and will provide
a reasonable indication of the performance losses involved in
decrypting DRM protected files in the kernel. Furthermore,
using temporary files also gets around memory limitations that
are experienced if the unencrypted file is stored in memory.

V. ANALYSIS OF OUR APPROACH

Due to space constraints, we do not present a discussion
on the performance evaluation of the system. The reader is
directed to [4] for the full version of this paper. The current
system has been built in order to test the feasibility of an
operating system level DRM controller. We have tried to make
it as complete as possible, but our implementation is not a
complete solution for DRM. In this section, we discuss how
well our approach works in achieving its goals, as well as
detailing some issues that we feel need to be addressed for a
more complete system.

A. Application Level Transparency

Our design allows for any application to access any DRM
protected file, and application behaviour is not affected, other
than the ability to modify a file. We have tested on a wide
variety of GNU-Linux applications, including various PDF
readers (examples: Ghostview, xpdf, Gnome PDF Reader),
different media players (examples: mplayer, xmms, mpg123)
and text editors (examples: vim, gvim, kwrite).

B. Wide range of rights

We have implemented most of the rights that can be
enforced at an operating system level, and we feel that there
certain rights (like printing) that can only be enforced at the
application level. This is discussed in more detail in section V-
D.

C. Performance

As detailed in our full report [4], for files up to the size of
23.8 MB, the performance degradation was quite low, with
the largest file having a degradation of 1.1 seconds for a
DRM enabled file. However, for a large compressed data file
with a size over 102.4 MB, the performance degradation is
quite significant at 7.7 seconds for a DRM enabled file. The
performance degradation for non DRM enabled files remained
negligible. Thus, while our system is quite suitable for small
data files like music and PDF documents, it does not meet the
performance requirements for larger files, like movies.

D. Interpreting Rights Expressions

Some rights are harder to enforce since they cannot easily
be identified at the kernel level. For example, ODRL defines
limitations to be placed upon the number of pages that an
end user may print. Within the GNU-Linux kernel there is no
concept of a document page because they only exist within
applications such as word processors that need to support
such an entity. Similar problems will exist with hardware
implementations of DRM controllers.

Level 1 Rights Level 2 Rights

1) Usage Rules: Display, Execute, Play, Read
2) Reuse Rules: Aggregate, Edit, Embed, Excerpt, Extract, Mod-

ify, Write
3) User Management: Give, Lend, Lease, Load, Sell, Transfer
4) Asset Management: Backup, Copy, Delete, Install, Export,

Restore, Save, Uninstall, Verify

1) Usage Rules: Print
2) Reuse Rules: Aggregate, Annotate, Edit, Extract, Excerpt,

Embed, Modify, Write

TABLE I
CLASSIFICATION OF LEVEL 1 AND LEVEL 2 RIGHTS

Thus, we believe that there needs to be two levels of rights
in a DRM system if an operating system or hardware level
implementation is to be successful.

1) Level 1: These rights (or permissions in ODRL) are
common to all operating systems and devices. They
would include the permissions we have implemented in
our prototype, such as restrictions on reading a file, and
will in effect be persistent extensions of existing access
control rules. Thus these restrictions will be enforced at
the operating system or hardware level.

2) Level 2: These rights are only enforceable at the applica-
tion layer because only certain applications will be able
to make sense of the rights. Rights like the permission
to print a certain number of pages or the portions of a
document that can be excerpted only make sense to the
application handling the file.

With the above categorisation, it will no longer be neces-
sary to require application support if the DRM protection is
restricted to Level 1 rights. It should be possible to specify
in Level 1, the right to access a file only with a specific
application thus preventing bypassing of Level 2 restrictions.
Our approach of using a management daemon becomes partic-
ularly important, as this daemon can be used by DRM enabled
applications for the same functions. In table I, we categorise
all the rights and permissions defined in the core ODRL
1.1 [12] and XrML [1] (the base for MPEG-REL) RELs. Some
rights, such as Embed and Extract can be implemented at the
operating system layer, but would require application support
for maximum effect.

E. Modification of Protected Files

Allowing and disallowing read only functionalities is easily
accommodated, but the major problems occur when trying to
cater for modification of protected data. To cater for modifi-
cation of data, functionality to re-identify and repackage the
data needs to be provided at the kernel level. If modification
of the the protected file is frequent (capturing event data or
even traditional office file), these operations will severely slow
down saving of an application. In our solution, we did not pro-
vide these functionalities, and only provided for the outright
prevention of modification of data. In our opinion, some level

of application support is required before modification of data
is seamless.

F. Correct Identification of Accesses

More complex applications may break a single user level
access into several smaller accesses. For example, playing a
music file may require multiple read attempts although only
a single play permission is exercised. The DRM controller
must be able to correctly identify the purpose of these calls.
If it does not, a user’s access rights may expire prematurely,
Consider the example of a “play” permission limited by a
count constraint. The count must be decremented only when
the media starts to play and not for each read access.

G. Stream Encryption

Our solution currently does not handle stream encryption
even though, in theory, it would seem to be faster and more
secure solution. However, most applications tend to load files
in their entirety instead of a portion of a file due to a variety
of reasons including compression techniques and metadata
storage. For this reason, stream ciphers would be impractical
without application level support, and would make sense for
only certain file types.

H. Implications for hardware based DRM systems

We think that there would have been a better performance
from our system if the license and authentication tickets
were stored in hardware. However, such a store would have
restricted memory, and this could affect the overall system.
Memory is also the main factor to consider for hardware DRM
controllers. As we have discussed, stream based encryption
is unpractical for the general case, and this implies that the
hardware DRM controller will need to store the decrypted
DRM file somewhere while it is being used. Making use of
a dedicated memory store for the controller would be the
most secure approach, but this would limit the number and
size of secure data files that can be accessed simultaneously
to available memory. Modification of files would remain a
problem, although the process of repackaging should be faster.
However, application level support will still be necessary to
make the process seamless.

We think that hardware based DRM will ultimately offer the
advantages that is offered by kernel level DRM controllers, at

a better performance. Furthermore, there should be no reason
why open source software cannot make use of the hardware
based DRM to provide persistent access control, as long as
the relevant drivers are available.

VI. CONCLUSIONS

In this paper, we presented a prototype DRM controller,
which enforces rights to digital content at the operating
system level of a computer. It offers DRM protection for
any file format, transparently to any user-space application
trying to access the DRM protected content. We described
its implementation, and discussed an experiment which was
conducted to evaluate its performance. We also looked at how
effectively it is able to enforce digital rights and examined the
viability of the approach.

The existing prototype does not address all the problems
of implementing a DRM controller. Our system does have
a security flaw that the unencrypted data needs to be stored
because the use of stream ciphers is not possible in the general
case. However, if a secure temporary storage solution could be
implemented, the system does demonstrate that an operating
system level DRM implementation is possible, supporting
multiple file formats and remaining transparent to applications.

However, not all access control rules can be enforced at the
application layer and indeed any future hardware layer imple-
mentations. This leads to a separation of types of permissions
into two levels – permissions can be easily enforced by the
operating system (or future hardware DRM controllers) and
permissions that need to be enforced by applications. Thus,
there is a need to categorise permissions according to these
levels, and we have categorised existing rights as defined by
two popular RELs into these categories.

In addition, the performance overhead for unprotected data
should not increase in a fully implemented system, and while
operations on protected data should incur a performance
degradation, the degradation should be minimal. In the later
case, it is sufficient to ensure that the user remains unaware
of performance overhead, and 5.5 seconds was discussed as
the maximum user observable time degradation.

However, for large files, the degradation is more than the
threshold, at 7.7 seconds for a 102.4 MB data file for some
operations. However the user observable time performance
degradation is acceptable for files, with a 23.8 MB file
requiring only 1.1 seconds longer to read. Thus, for current
DRM requirements, such as protection of music, the perfor-
mance is acceptable. In computational time, the performance
degradation is very high for certain file operations and needs
to be improved before real world implementations can be
considered. However, for non protected data, the performance
degradation was well within the set boundaries.

VII. ACKNOWLEDGEMENTS

This work is partially supported through grants from the
University of Cape Town (UCT) Council and the National
Research Foundation (NRF) of South Africa. Any opinions,
findings, and conclusions or recommendations expressed in

this paper/report are those of the author(s) and do not neces-
sarily reflect the views of UCT, the NRF or the trustees of the
UCT Council.

REFERENCES

[1] eXtensible rights Markup Language (XrML) 2.0 Specification, 2001.
[2] “DRM From the Viewpoint of the Electronic Industry,” Slashdot, 2003,

URL: http://slashdot.org/article.pl?sid=03/11/25/1821218.
[3] A. Arnab and A. Hutchison, “Ticket based identity system for DRM,”

in Proceedings of Information Security South Africa (ISSA) Conference
2006, 2006.

[4] A. Arnab, M. Paulse, D. Bennett, and A. Hutchison, “Investigation of a
kernel level DRM implementation”, Tech. Rep. CS07-01-00, 2007,
URL: http://pubs.cs.uct.ac.za/archive/00000389/.

[5] D. E. Bell and L. J. LaPadula, “Secure computer system: Unified
exposition and multics interpretation,” The MITRE Corporation,” MTR-
2997 Rev. 1, online, last accessed: 2006-05-06.
URL: http://csrc.nist.gov/publications/history/bell76.pdf.

[6] ——, “Secure computer systems: A mathematical model,” Journal of
Computer Security, vol. 4, no. 2/3, pp. 229 – 263, 1996, reprint of 1973
technical report M74 244, MITRE Corp.

[7] D. Berlind, “A load of C.R.A.P,” ZDNet.com, 2005,
URL: http://news.zdnet.com/html/z/wb/6035707.html Last Accessed:
2007-01-06.

[8] J. Evers, “Ibm looks to hardwired DRM,” ZDNet-UK, online, last
accessed 2006-05-05
URL: http://news.zdnet.co.uk/business/legal/0,39020651,39262333,00.htm.

[9] D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn, “Role-based access con-
trol (RBAC): Features and motivations,” in Annual Computer Security
Applications Conference. IEEE Computer Society Press, 1995,
Available online: http://csrc.nist.gov/rbac/ferraiolo-cugini-kuhn-95.pdf.

[10] D. F. Ferraiolo and D. R. Kuhn, “Role-based access control,” in Pro-
ceedings of the 15th NIST-NSA National Computer Security Conference,
1992,
Available online: http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf.

[11] S. Guth, G. Neumann, and M. Strembeck, “Experiences with the
enforcement of access rights extracted from ODRL-based digital con-
tracts,” in Proceedings of the 2003 ACM workshop on Digital Rights
Management. ACM, 2003, pp. 90–102.

[12] R. Iannella, Ed., Open Digital Rights Language (ODRL) 1.1. IPR
Systems Pty Ltd., 2002,
URL: http://odrl.net/1.1/ODRL-11.pdf.

[13] Microsoft, “Technical overview of windows rights management services
for windows server 2003, White Paper,” 2003.

[14] D. Mulligan, J. Han, and A. Burstein, “How DRM Based Content De-
livery Systems Disrupt Expectations of “Personal Use”,” in Proceedings
of the 2003 ACM workshop on Digital Rights Management. ACM,
2003, pp. 77–89,
URL: http://doi.acm.org/10.1145/947380.947391.

[15] Open Mobile Alliance (OMA), “OMA digital rights management v1.0,
Approved Version,” 2004-06-25,
URL: http://www.openmobilealliance.org/release program/drm v1 0.html.

[16] J. Park, R. Sandhu, and J. Schifalacqua, “Security architectures for
controlled digital information dissemination,” in Proceedings of the 16th
Annual Computer Security Applications Conference, 2000.

[17] J. F. Reid and W. J. Caelli, “DRM, Trusted Computing and Operating
System Architecture,” in Conferences in Research and Practice in
Information Techology, vol. 44. Newcastle, Australia: Australian
Computer Society, Inc., 2005, pp. 127 – 136.

[18] T. Rhodes, “Chapter 15 – Mandatory Access Control,” FreeBSD.org,”
FreeBSD Handbook, online, last accessed: 2006-05-06.
URL: http://www.freebsd.org/doc/handbook/mac.html.

[19] B. Rosenblatt, “DRM for the Enterprise,” 2004, jupiter Media Webinar.
[20] B. Rosenblatt and G. Dykstra, “Integrating content management with

digital rights management - imperatives and opportunities for digital
content lifecycles,” Giantsteps Media Technology Strategies,” White
Paper, 2003,
URL: http://www.giantstepsmts.com/drm-cm white paper.htm.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38 –
47, 1996.

