

CipherCode: A Visual Tagging SDK with Encryption and
Parameterisation

Ramone Karodia, Steven Lee, Ashish Mehta, Audrey Mbogho
Department of Computer Science

University of Cape Town
South Africa

{rkarodia, slee, amehta, ambogho}@cs.uct.ac.za

Abstract
Cell phones now pack as much computing power as

the high-end desktop of a decade ago. This makes non-
trivial mobile applications possible. Interacting with
them is, however, a significant challenge due to the
small size and limitations of the keypad. Because many
new phone models are equipped with an integrated
camera, there is growing interest in the use of visual
tags to more easily provide inputs to mobile
applications. A number of tag designs have been
proposed, but more needs to be done in this yet nascent
technology. We present CipherCode, a visual tagging
system designed for speed, accuracy and compactness.
CipherCode includes encryption and parameterisation,
features not found in most other visual tagging schemes.
We have made CipherCode freely available on the Web
as an open-source SDK in order to ignite broader
interest and participation in creating highly usable
visual tags.

1. Introduction
Mobile phones have truly revolutionized the way we

communicate and have proved to be an invaluable tool in
today’s hi-tech world. The mobile phone possesses
qualities which make it a popular tool in many facets of
life including business, fashion and entertainment.
Processor speeds higher than 200 MHz are now common
in high-end cell phones. This makes non-trivial mobile
applications possible. However, due to the small and
compact design of these devices, the degree of usability
remains low and input via small keypads remains a
major problem. Innovations such as predictive text and
voice commands have improved this but the situation is
still far from ideal. Specifically, a user risks discomfort
and even injury. The end result is that much mobile
potential lies dormant as applications go uninstalled or
unused.

This has sparked interest in visual tags as a means of
alleviating some of these usability issues affecting
mobile phones.

Visual tags are small 2D labels placed on objects and
captured by a camera that is attached to a computer (or
phone). A tag can be a physical paper label or it can be
electronically generated and displayed on an object. The
labels encode information in a manner similar to
barcodes, but at greater capacity. Indeed, sometimes
visual tags are referred to as barcodes but it seems this is
a misnomer, since squares, dots and other shapes are
typically used rather than bars. Therefore any use of the
term barcode in this paper is reserved for visual tags that
use bars (elongated rectangles) to encode information.
Otherwise, the focus is 2D visual tags.

Once an image is captured the computer performs
image analysis in order to locate and decode the tag. The
decoded information can be a URL [10]; credentials for
connections to P2P networks [12]; a summary of the
contents of a box for purposes of inventory. In other
cases the decoded information can be used to manipulate
a user interface [7].

A number of factors taken together create an
environment that is highly conducive to the use of visual
tags:

• There is increased availability of camera phones
at reasonable cost. For many users, the cameras
integrated into cell-phones may be just a toy
accessory that is seldom used, as they will
usually already own a separate “real” camera.

• Reasonably fast processors in small devices
allow for resource hungry image processing
tasks.

• The difficulty of providing keyed-in input to
small devices has motivated exploration of
alternative modalities.

• Wireless access protocol (WAP) enables
information download from the Internet via
small devices.

For interactive, real-time applications, there are three
main requirements:

• Visual tags must seek to minimise space and at
the same time maximise the amount of
information they can carry. Multiple tags
degrade performance which adversely affects
usability in [12].

• Visual tags must maximise the proportion of
time that they are read correctly.

• Visual tags must minimise the time between
image capture and completion of tag decoding.

Both our tag design and decoding algorithm choices
were made with the above goals in mind.

In the remainder of this paper, we first describe
related work. The next section gives a summary of the
key contributions of our work. We then describe the
implementation details and experimental results. We also
touch on our investigation of the role of image
enhancement. Finally we conclude with a few remarks,
including future work.
2. Related Work

The idea of using markers to aid in vision tasks is not
new. Barcodes on commercial products are nothing new.
Neither are fiducials (markers), which are an established
part of virtual and augmented reality research for some
time. What is new is the resurgence of interest (for
example, [8, 10, 11, 13,]) in these markers, or visual
tags, or visual codes, owing to the emergence of camera
phones that are also computers. These small computers
are quite powerful for their size and can manage
demanding vision tasks involving small images. This
capability can be exploited to address the difficulty of
providing input to small devices. Instead of awkward
and sometimes injurious keying in of information on the
keypad, the small device rather “sees” its input. A
number of interesting tags and applications have been
reported. A few of these are reviewed next.

Semacode [10] is perhaps the most publicised
application of visual tags. It uses an the existing standard
symbology known as Data Matrix, which is a matrix
made up of small black and white squares, or modules. A
black module represents a binary one and a white
module represents a binary zero. Creation of a Semacode
tag involves embedding a URL into the tag. Decoding
results in recovery of the URL so that the web page it
represents can be loaded.

CyberCode [6] and the Rhos tag [8] are not based on
any standard, but are similar to Semacode in that they are
made up of a rectangular array of black and white
modules.

The TRIP [2], SpotCode [9] and ShotCode[11] tags
are circular tags made up of black and white segments.
TRIP tags were used with PCs and webcams in sentient
computing applications. SpotCodes were used in
Bluetooth device discovery.

A coloured tag with triangular modules was proposed
by Dell’Acqua et al. [3] and used in virtual reality.

While each tag is usually associated with a different
set of applications, there is nothing to prevent its use in
the applications reported for other tags. The underlying
scheme is the same for all tags, which is the graphic
representation of the digital encoding of information.
Therefore, the important thing is not so much how a tag
is used, but rather how it affects an application’s
performance.
3. Key Contributions

Our work adds to the research in the following ways:
1. We present a new compact tag design that

allows for fast and accurate decoding.
2. We describe a new combination of image

processing procedures for tag isolation and
decoding. A variety of such procedures have
been proposed. Each combination carries a
different set of implications for the speed and
accuracy of the overall system. It is worthwhile
to explore new combinations and evaluate them
against each other in order to find one that
optimises performance. We take a first step in
this direction.

3. We present the tagging system in the form of a
freely available open-source SDK in order to
encourage others to take part in this research
[1].

4. Our SDK includes encryption and
parameterisation in order to provide flexibility
in the type of information that a tag can store.

5. Preliminary experimental results show that
CipherCode outperforms Semacode [10] in
speed, accuracy and compactness.

4. Implementation
In order to make our SDK as flexible as possible the

system was broken down into a number of modules, each
of which can be customized or replaced. The core
modules are:

• Tag generator module: This essentially creates
tags which encodes information which a user
provides.

• Image enhancement module: This enhances
images of tags that are taken with a camera in
poor illumination, so as to improve the
performance of the tag decoder in terms of
accuracy without negatively affecting speed.

• Tag decoder module: This module decodes the
information stored within a tag.

Together these modules provide the main
functionality needed to successfully create and decode
tags. Additional optional modules are also included
which enhance the capabilities of the system. These
include the Encryption/Decryption Module, the Error
Correction/Detection Module, the Camera Interface
Module and the ASCII/Binary Converter.
4.1. Tag Design

The Tag Creator module is responsible for creating
the CipherCode tag. The only input to this module is an
array of bits that need to be embedded into the tag. Each
bit is represented by a square; black squares representing
the value ‘1’ and white squares representing the value
‘0’.

Figure 1. CipherCode Tag Design

Our tag (which is inspired by the Rhos tag [8], but
differs considerably from it) consists of two guide bars
and three cornerstones. The top guide bar is always four
blocks shorter than the length of the entire tag. If the tag
dimensions were 10 x 10, the top guide bar would be
made up of 6 blocks. The bottom guide bar is always
half the length of the top guide bar. It is oriented in such
way that the centre of the bottom guide bar is inline with
the centre of the top guide bar. The three cornerstones
are situated in the top left, top right, and bottom left
corners of the tag. The black square at the bottom right
corner of the tag in Figure 1 signifies the data bits are
encrypted. If there is no black square in that corner then
this signifies the data bits do not require decryption. The
geometry of the tag requires the tag decoder to find two
parallel bars, one bar half the length of the other, with
cornerstones situated collinearly with respect to the
guide bars at specific relative positions. For decoding
simplicity, the guide bars and cornerstones are separated
by white space with respect to each other and the data
area of the tag. The area in-between the row of white
space adjacent to the top and bottom guide bars and
cornerstones is reserved for data. For a tag of dimensions
m x n (row by column), the data area of the tag will
always be (m-4) x n. The ‘4’ in the formula represents
the four rows reserved for the guide bars, cornerstones,
and white space.

In order to make the tag more versatile and robust the
following optional modules are used by the Tag
Generator:

The Character Encoding module is responsible for
converting characters into ASCII binary bits and vice-
versa. Each character within the input data is represented
as a 7-bit ASCII character. In the interests of
compactness, we chose not to use Unicode.

The Error Detection and Correction module is
responsible for implementing the Hamming Code
algorithm. This algorithm provides 1-bit error correction
and 2-bit error detection within each block of data.
Typically a block of data will be seven or eight bits.

The Encryption module is responsible for
encrypting data before it is embedded within a tag, and
decrypting data read from a CipherCode tag. This
module implements the Advanced Encryption Standard
[14] (AES) algorithm for encrypting and decrypting data.
A 128-bit secret key is generated from a user-defined
passphrase every time data is encrypted and decrypted.

The Parameterisation module can be used when
multiple data items are required to be embedded within a
visual tag. An example of this would be in creating an ID
card. The tag could encode the owner’s name, home
address, and telephone number. Each data item would be
separated by a splitter and would be decoded separately
by the tag decoder. It is up to the tag developer to decide
what splitter to use.
4.2. Tag Decoding

Background research revealed that many tag
decoders have common designs and share numerous
components. Based on these commonalities, 7 key stages
were identified and integrated into the decoder design.
• Grayscale Conversion: The system begins the

decoding process by first converting the colour
image (obtained from the Camera Interface Module)
to a grayscale image. This conversion uses the ITU
standard formula: G = (222 * Red + 707 * Green +
71 * Blue)/1000

• Image Enhancement : The decoder then optionally
uses the external Image Enhancement (discussed in
a later section) Module to improve the quality,
contrast and clarity of the grayscale image as well as
to enhance the edges of the tag in dim light.

• Binarization: The next step is binarization which
thresholds the grayscale pixel values to either 0 or 1
for black and white respectively. Two thresholding
algorithms, namely global thresholding and quick
adaptive thresholding (presented in [16]), were
implemented and tested. Experimentation revealed
that quick adaptive thresholding yielded superior
results for the majority of test cases. This algorithm
calculates a moving average and sets a pixel to black
only if it is significantly darker than this average.
Otherwise the pixel is set to white.

• Region Detection: Binarization is followed by a two
pass region detection algorithm which identifies

large regions of connected black pixels. The first
pass labels all black pixels according to the labels of
its neighbours:
o If all the neighbours have 0 labels (i.e. are all

white) then the pixel is labelled with a new
unique non-zero label.

o If there is exactly one neighbouring pixel with a
non-zero label then the pixel is assigned the
same non-zero label

o If there is more than one neighbouring pixel
with a non-zero label then the pixel is assigned
the smallest label and the conflict is recorded in
a special equivalence data structure.

Label conflicts are resolved during the second pass
which re-labels pixels according to the equivalence data
structure. This data structure is a table which stores pairs
of adjacent (or conflicting) labels
• Guide Bar Identification: For each region identified

in the previous step, the second-order moments [8,
15] are calculated. From these moments the
eccentricity (measure of how long a region is) and
orientation are calculated. Pairs of parallel and
elongated regions (eccentricity greater than 6) where
one bar is twice the length of the other are identified
as candidate guide bar pairs

• Cornerstone Detection: The orientation and size of
these guide bars pairs are then used to estimate the
position of the three cornerstones. Since second-
order moments provide the major and minor axis,
the lengths of the bars as well as the lengths of a
single cell are known. These lengths are then used to
estimate the position of the cornerstones relative to
the centres of the two guide bars.

• Projective Matrix Transformation: The positions of
the second shorter guide bar together with the
positions of the 3 cornerstones are then used in a
texture mapping technique described in [4] to
calculate the transformation matrix. Once this
matrix is known, tag coordinates can be converted
into image coordinates. The image coordinates
estimates the centres of the corresponding block.

• Decoding: The final step in the decoding process is
simply checking whether or not the pixel values at
the calculated positions are black or white. An array
is then built up and passed onto other modules for
further processing.

• Other Modules: The decoder uses additional
modules to convert the binary information into
human readable text.

o Error Detection/Correction: used to

compensate for any decoding errors.
o Encryption/Decryption module: If the

encryption check cornerstone is filled then

this module is used to acquire a key from
the user and decrypt the text.

o ASCII/Binary Converter: converts the
decoded and possibly decrypted bits into
ASCII characters

4.3. Experiments
Rotation Tests: these were conducted using a sample

set of specially chosen images. The sample set consisted
of 8 instances of the same image, each one differing by a
rotation of 45°.

Tilting Tests: Tilting tests were conducted in order to
determine the tilting angles at which decoding would
fail. During implementation, testing revealed that
perspective distortion prevented accurate calculation of
tag dimensions when tilting angles were large. However,
if the tag dimensions are fixed the decoder works at
larger tilt angles. The decoder was, therefore, modified
to be able to decode both fixed and dynamic tag sizes.

Below are shown the experimental results for
decoding efficiency (Table 1) and robustness to tilting
(Table 2). Compactness results for CipherCode vs.
Semacode are also given in Table 3.

Type of Image CipherCode Semacode
Close-up of tag 4.5 seconds 6.5 seconds
No tag with few
regions

5.1 seconds 10.3 seconds

No tag with
many regions
(complex scene)

14.3 seconds 22.1 seconds

Table 1. Decoding Speed

Tag Dimensions Maximum Tilting Angle
Fixed 45°
Dynamic 20°

Table 2. Tilting

Chars Semacode CipherCode
23 Tag size: 20 by 20

Data area: 324 sq
Tag size: 20 by 20
Data area: 320 sq

28 Tag size: 22 by 22
Data area: 400 sq

Tag size: 21 by 21
Data area: 357 sq

37 Tag size: 24 by 24
Data area: 484 sq

Tag size: 24 by 24
Data area: 480 sq

40 Tag size: 26 by 26
Data area: 576 sq

Tag size: 26 by 26
Data area: 572 sq

77 Tag size: 36 by 36
Data area: 1024 sq

Tag size: 32 by 32
Data area: 896 sq

Table 3. Compactness

The results in Table 3 show that the dimensions of
both tags are almost identical until a certain number of
data bits are encountered. The test results for encoding
strings of length 23, 37 and 40 are almost identical. The
only difference is in the data area; the CipherCode tag
has a slightly more compact data area. The test results
for 28 characters show one of the strengths of the
CipherCode tag. Semacode tags are required to have an
even number of rows and columns. There is no such
requirement for CipherCode tags. This enabled the
CipherCode tag to embed the same website URL in a
smaller odd-numbered dimension. The test results for the
last case, 77 characters, are the most interesting (Figure
2). It was discovered that Semacode tags are broken up
into quadrants once the data bits cannot fit into a tag of
dimensions 26 x 26. This impacts the compactness of the
Semacode tag. The CipherCode tag was found to be
11.11% smaller with respect to the dimensions of the
tags. This equates to a reduction in the number of rows
and columns by four. The data area of the CipherCode
tag is also significantly smaller than the Semacode tag,
sitting at 12.5%.

Figure 2: Encoding 77 characters , namely,
“http://www.google.co.za/search?hl=en&q
=visual+tag&btnG=Google+Search&meta=
”

4.4. Image Enhancement
In order to increase usability in adverse conditions,

we evaluated three image enhancement techniques for
images captured in poor illumination. These techniques
were HE (histogram equalisation), AHE (adaptive
histogram equalisation), and CLAHE (contrast limited
adaptive histogram equalisation). Ten pictures were
taken at 4 different levels of indoor lighting, giving a
sample size of 40. The results given below (Table 4) are
for the results considered most significant, which were
those for mid-level lighting (10 pictures). They clearly
show that CLAHE is superior. We also found, however,
that on cell phones, with their limited processing power,
enhancing tags before decoding them slowed the
application down considerably. Thus we only
recommend this intermediate step for PCs and not for

cell phones or other small hand-held devices until the
technology improves. We also note that enhancement
only makes a difference in mid-level illumination. In
very bad lighting, tag decoding fails whether or not
enhancement is used. Similarly, in good to excellent
lighting, the decoding is highly successful without
enhancement, and is not improved when enhancement is
used.

Enhancement
Technique

Avg.
processing
time (secs)

Accuracy
(%)

Efficiency
(rank)

HE 1.44 60 2
AHE 1.44 30 3
CLAHE 1.46 70 1

Table 4. Decoding Accuracy in Poor Light

5. Conclusions and Future Work

We hypothesise that the imaging procedures that are
chosen and how they are combined affects the speed and
accuracy of a visual tag-based interaction. Each tag that
is devised comes with its own unique decoding
algorithm, although the building blocks of each such
algorithm tend to take the form of well-known image
processing routines. The difference lies in which
building blocks are chosen, the tasks for which they are
chosen and perhaps also the order in which they are
linked together.

A major contribution of our work is that we have
tried out a new set of image processing procedures. From
the preliminary experiments, we have obtained positive
results for speed and accuracy, as well as compactness.
In all three aspects, our SDK outperforms Semacode,
perhaps the best known commercial system, and the only
other one that, to our knowledge, is packaged as an
SDK.

It is desirable to offer one approach that developers
of tag-based applications can easily adapt. An early
attempt to produce a general tag reading approach was
presented by Ottaviani et al. [5]. It would be beneficial,
however, to produce such an approach on the basis of an
evaluation of all existing approaches, many of which
have only recently been proposed. In further work, we
shall continue to try out different methods with the
ultimate goal of achieving high accuracy at real-time,
interactive speeds, and we shall aim to be able to decode
smaller tags.
6. Acknowledgements

This work is supported in part by the University
Research Committee (URC), University of Cape Town.
References
[1] CipherCode: http://shenzi.cs.uct.ac.za/~honsproj/2006
[2] D. L. de Ipina, P. Mendonça, and A. Hopper. TRIP: A

Low-Cost Vision-Based Location System for Ubiquitous

Computing. Personal and Ubiquitous Computing Journal,
6(3), Springer, 2002, pp 206 – 219.

[3] A. Dell’Acqua, M. Ferrari, M. Marcon, A. Sarti and S.
Tubaro. Colored Visual Tags: A Robust Approach for
Augmented Reality. Proc. IEEE Int. Conference on
Advanced Video and Signal-Based Surveillance
(AVSS2005), Como, Italy, September 2005, pp: 423 – 427.

[4] P. S. Heckbert. Fundamentals of Texture Mapping and
Image Warping. Master’s Thesis, Dept. of Electrical
Engineering and Computer Science, University of
California, Berkeley, 1989.

[5] E. Ottaviani, A. Pavan, M. Bottazzi, E. Brunnelli, F.
Caselli and M. Guerrero. A Common Image Processing
Framework for 2D Barcode Reading. Proc. IEE
International Conference Image Processing and its
Applications, Manchester, 1999, Publication Number 465,
pp 652 – 655.

[6] J. Rekimoto and Y. Ayatsuka, CyberCode: Designing
Augmented Reality Environments with Visual Tags. Proc.
ACM Conf. on Designing Augmented Reality
Environments, Elsinore, Denmark, 2000, pp 1 – 10.

[7] M. Rohs. Visual Code Widgets for Marker Based
Interaction. Proc. 25th IEEE international Conference On
Distributed Computer Systems Workshops (ICDCSW’05),
2005

[8] M. Rohs. Real World Interaction with Camera Phones.
Proc. 2nd International Symposium on Ubiquitous
Computing Systems (UCS 2004), Tokyo, Japan,
November 2004, pp 39 – 48.

[9] D. Scott, R. Sharp, A. Madhavapeddy and E. Upton.
Using Visual Tags to Bypass Bluetooth Device Discovery.
Mobile Computing and Communications Review, 9(1),
ACM Press, 2005, pp 41 – 53.

[10] Semacode: http://semacode.org/
[11] Shotcode: http://www.shotcode.com
[12] F. Siegemund, M. Haroon and G. Brasche. Towards

Pervasive Connectivity in Mobile Computing Settings.
Proc. of MPAC '06, ACM Press.

[13] S. Siltanen and J. Hyvaka. Implementing a Natural User
Interface for Camera Phones Using Visual Tags. Proc. 7th
Australian User Interface Conference (AUIC2006).

[14] W. Stallings. Network Security Essentials – Applications
and Standards, 2nd Edition, Prentice Hall, 2003.

[15] R. C. Veltkamp and M. Hagedoorn. State of the Art in
Shape Matching. M. Lew (Ed.), Principles of Visual
Information Retrieval, pp. 87-119, Springer.

[16] P. Wellner. Interacting with Paper on the DigitalDesk.
Communications of the ACM, 36(7), 1993, pp 87 – 96.

