
An Approach to Better System Resource Utilization for
Search Engine Clusters

Calvin Pedzai
University of Cape Town

Rondebosch
Cape Town, South Africa

cpedzai@cs.uct.ac.za

Ndapandula Nakashole
University of Cape Town

Rondebosch
Cape Town, South Africa
nnakasho@cs.uct.ac.za

Hussein Suleman
University of Cape Town

Rondebosch
Cape Town, South Africa

hussein@cs.uct.ac.za

ABSTRACT
Better system resource utilization for search engine clusters can
result in significant benefits. By allocating cluster machines to the
job that requires the most computational power, indexing and
querying both realize performance gains. In this paper we discuss
an approach to better system resource utilization which was tested
by implementing it in a cluster-based search engine. We test the
approach on 100 000 webpages from the uct.ac.za domain. Our
results show the benefits of enhanced system resource utilization
in a search engine cluster.

Categories and Subject Descriptors
C.4 [Performance of Systems]: H.3.4 [Information Storage
and Retrieval]: Systems and Software H.3.5 [Information
Storage and Retrieval]: On-line Information Services

General Terms
Algorithms, Design, Performance

Keywords
Indexing, querying, search engine cluster, index updating,
outdated results

1. INTRODUCTION
A search engine is a document retrieval system designed to
facilitate navigation of large information environments such as
the Web. A search engine is typically made up of three major
components: a crawler, an indexing module and a query module.
The crawler is responsible for downloading Webpages that are
stored in a local store. The role of the indexing module is to
record which words appear in each page to create an inverted
index. The query module accepts search queries from users and
performs searches on the indices.

Search engines need to index very large amounts of data while
maintaining fast response times to user queries. These
requirements necessitate high performance computing. This is
where parallel computing fits in; clusters in particular have the
desirable features of high performance, scalability and fault-
tolerance. For this reason, clusters are the architecture on which
the majority of existing search engines are based. Furthermore,
clusters have better price to performance ratios than alternative
high performance computers [3].

Although there are a number of successful search engines, there
exists problems that need to be addressed further. One such
problem is that of returning outdated results. Most search engines
update their indices on a discrete basis, with time intervals
spanning a few days or weeks. This is reasonable for an average
webpage as research has shown that once a page is created it
either goes through minor changes or no changes at all [1].
However, a search facility whose index is updated on a monthly
basis will not produce the most up-to-date results for websites that
change frequently, for example news websites.

In an attempt to minimize outdated results returned to users, some
large organizations came up with a solution that uses specialized
crawlers, whereby there are a number of nodes in the cluster
dedicated to crawling dynamic content as often as possible. This
is a viable solution as can be seen in the working example of the
Google search engine [2]. However, this solution is not flexible
as it cannot be effectively deployed on a small cluster consisting
of about 10 machines.

In this paper we present a flexible solution that is deployable on
both large and small clusters. The solution is based on dynamic
allocation of indexing and querying roles to cluster nodes in order
to optimize cluster utilization.

The rest of this paper is structured as follows: Section 2 details
the anatomy of our search engine; Section 3 describes the
experiments carried out on the search engine and the results that
that were obtained; Section 4 reviews related works on the topic
of search engine clusters; Section 5 has some concluding remarks.
Finally, possible future work is proposed in Section 6.

2. ANATOMY OF OUR SEARCH ENGINE
2.1 System Overview
The search engine that was developed to test the approach in
question was developed as two independent subsystems, namely
the Indexing subsystem and the Querying subsystem. The search
engine dynamically allocates cluster nodes to the roles of
indexing and querying based on the system load. The allocation
changes over time as the work load on the querying and indexing
machines change. Figure 1 shows the architecture of the
developed search engine. The highlighted parts of the diagram
collectively make up the Indexing subsystem; the non-highlighted
parts show the Querying subsystem. The highlighted worker
nodes show the nodes allocated to indexing at a particular time.

Figure 1: The architecture of the developed search engine

The interfaces through which the two subsystems are connected
are in the form of files and a Load Balancer which is
independently utilized by each subsystem. These interfaces are
described below.

The index

The Query subsystem relies heavily on the
index produced by the Indexing subsystem as the
former needs to access the index before it can respond
to queries. The index is made available by the Indexing
Dispatcher after which it can be accessed by the query
subsystem.

The id_urls.INFO file

The query module needs to
respond to user queries with URLs. This file contains
the ID-to-URL mappings of all the documents that have
been indexed by the system. Identifiers (IDs) are needed
by the indexing system as an efficient way to uniquely
identify each indexed page.

The Load Balancer

The role of the load balancer it to
monitor the load averages on the nodes allocated to
indexing and querying. Based on the observed load
averages the Load Balancer reallocates nodes to
indexing and querying. The Load Balancer writes the
number of machines allocated to indexing to a text file
and writes the number of machines allocated to
querying to another text file. The indexing and querying
dispatchers read these files to determine the worker
nodes that are allocated to indexing and querying
respectively.

2.2 The Indexing Subsystem
In order to make the system easy to debug and easily extensible,
the indexing subsystem was divided into six main components,
namely: the crawler, the parser, the stemmer, the actual indexer,
the updater and the dispatcher. These components interact with
one another to achieve the system functionality. The diagram in
Figure 2 shows the overall structure of the indexing subsystem.

To achieve parallel indexing, the components in Figure 2 are
distributed on a cluster. The Crawler and the Dispatcher
components are executed by the cluster machine with the smallest
rank which is rank 0. The Webpages are stored in the local disk of

the machine with rank 0. The Indexer and Updater are executed
by all the machines allocated to indexing at a particular time. All
machines that run the Indexer and Updater create indices on their
local disks which are merged by the Dispatcher to create the main
index

Figure 2: The core components of the Indexing subsystem

From the diagram in Figure 2, it can be seen that the Dispatcher is
the central component responsible for invoking the other
components of the system. The Indexer and Updater components
index the HTML documents that are made available by the
crawler. The system employs an existing crawler, GNU Wget.
GNU Wget is non-interactive command line tool for retrieving
files using HTTP, HTTPS and FTP [4].

The Indexer module creates an index from scratch whereas the
Updater module updates an existing index based on newly
available data after the last time indexing was performed. Both
the Updater and Indexer modules use the HTML parser to extract
HTML tags from documents before they are indexed. Extremely
common words (stop-words) are excluded from indexing and all
terms are case-folded to lower case. In addition, all terms are
converted to canonical forms using the Porter stemming algorithm
[5]. A C/C++ implementation of the stemming algorithm obtained
from the Website of the author of the algorithm was used for this
purpose.

2.3 The Querying Subsystem
The querying subsystem receives queries from users as a string of
keywords highlighting the key aspects of the information that a
user is looking for. These queries are fed through the users
interface to the dispatcher for processing. Once they reach the
dispatcher, the dispatcher has to decide which machine in the
cluster will handle the query. This is done by simply reading from
a file the number of machines in the cluster that have been
allocated to querying by the load balancer.

The load balancer continually runs in the background constantly
computing the load averages of the indexing and querying
subsystems and deciding which nodes do indexing and which
nodes do querying.

Once a cluster machine is chosen the query is sent off to the
machine and the necessary index files are copied over. Each
query is stemmed and stopped to improve on recall and precision.
Once the query is sent to the worker node term weights for each
document from the index files are used to compute the similarity
of the document to the request. Once the computation and results

are done, a ranked list of documents is sent back to the Dispatcher
to return to the user.

To generate a large number of queries for testing, an external
program was used which simulates real world queries based on
the Web pages which have been indexed. It randomizes the length
of the query and the keyword selected.

3. EXPERIMENTAL RESULTS
3.1 Equipment
We conducted experiments on a cluster of 13 Gentoo Linux PCs
interconnected by a Gigabit Ethernet network. Each PC is
equipped with a 3GHz Pentium 4 processor, 512 MB of RAM and
80 GB disk storage. We indexed a maximum of 100 000
documents from the uct.ac.za domain.

3.2 Indexing

3.2.1 Dynamic versus Static Allocation
The Indexing Dispatcher shown in Figure 1 takes a parameter that
indicates how often the dispatcher monitors the load on the
machines allocated to indexing and querying. The reallocation
interval has a significant impact on how well the dispatcher
attains a good split between the indexing and querying machines.
The is because the more the dispatcher checks the load averages
on the machines, the more it is likely to obtain a true picture of
the amount of work the machines are doing. Figure 4 shows
performance of static versus dynamic allocation. Dynamic
allocation was performed multiple times with different
reallocation intervals.

Performance of static and dynamic allocation with different
reallocation intervals

0
100
200
300
400
500
600
700
800
900

1000

0 50000 100000 150000

Data size (Number of files)

T
im

e
to

 i
n

d
ex

 (
se

co
n

d
s)

static

3 rellocs

6 rellocs

9 rellocs

Figure 3: Performance of static and dynamic allocation

The starting number of machines allocated to indexing used in all
dynamic allocation scenarios in Figure 4 is 3. Similarly, the
number of machines used for static allocation is 3. This is to
illustrate that if is it assumed that indexing does not happen as
often as querying, most of the machines will be allocated to
querying and the remaining few will be allocated to indexing.
Although indexing occurs less frequently than querying, there are
cases when large amounts of data need to be indexed and
indexing becomes more computationally intensive then querying.

From Figure 4, it can be seen that for small data sizes, the time
taken to index data for dynamic and static allocations is almost

the same. However, as the size of the data increases, the static
allocation line is significantly above the dynamic allocation lines.
Furthermore, the figure shows that with the right reallocation
interval dynamic allocation can realize much faster execution
speeds than static allocation.

3.2.2 Cluster Utilization
To illustrate that dynamic allocation achieves better resource
utilization than static allocation, the number of idle machines as a
function of indexing over querying load average ratio is shown in
Figure 5.

Number of idle machines versus Indexing/Querying load avarage
ratio

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10
Indexing/Querying load average ratio

N
um

be
r

of
 id

le
 m

ac
hi

ne
s

dynamic
alloc

static
alloc

Figure 4: Number of idle machines both with static and
dynamic allocation

It is evident from Figure 5 that as dynamic allocation progresses,
the number of idle machines in the cluster goes down. Whereas
with static allocation, the number of idle machines remains
constant and that can lead to cluster under-utilization.

3.3 Querying
To investigate how the cluster is utilized in relation to the
dynamic allocation of query jobs, the cluster s load average was
recorded against a varying number of queries. As can be seen
from Figure 5 the load there is better utilization of the cluster due
to the load balancing. As more queries come in the system looks
for available cluster machines that a query can be sent to,
resulting in an increasing number of machines doing querying.

Cluster Load average vs number of queries

0
0.05

0.1
0.15
0.2

0.25

0.3
0.35

585 1417 2206 3659 5660

Number of queries

L
o

ad
 a

ve
ra

g
e

Figure 5: Cluster load average versus number of queries

To investigate the effect of reallocation of cluster nodes 2894
queries were initially run on two machines. As reallocation

occurred, the number of machines doing querying increased and
the time to process 2894 queries became shorter. This shows that
dynamic allocation of nodes improves the performance of the
query processing.

Effect of Reallocation on the handling of 2824
queries

0

20

40

60

80

100

120

4 7 9 10

Number of worker nodes

S
ec

o
n

d
s

Figure 6: Effect of reallocation on time to respond to queries

4. RELATED WORK
Clusters of low cost workstations are exploited by many large-
scale Web search engines such as Google, Inktomi and FAST
[20]. The architectures of these search engines require high
performance, high scalability, high availability and fault
tolerance. It is a challenging task to develop a cluster that meets
these requirements. The difficulty is that most developments were
done in competitive companies that do not publish technical
details, thus very few papers discuss Web search engine
architecture.

4.1 The Google Cluster Architecture
The Google search engine architecture [2, 6 &7] combines more
than 15,000 commodity-class PCs with fault-tolerant software.
Each of the PCs has 256MB to 1GB of RAM, two 22GB or 40GB
disks and run the Linux operating system. The nodes (PCs) are
connected with 100Mbit Ethernet to a gigabit Ethernet backbone
[6]. The architecture permits different queries to run on different
processors. The index is partitioned into individual segments, thus
queries are routed to the appropriate server based on which
segment is likely to hold the answer.

4.2 Inktomi Architecture for Yahoo and MSN
The Inktomi search engine architecture serves many Web portals
such as Yahoo, HotBot, Microsoft and others. It is a cluster-
based architecture utilizing Redundant Array of Independent
Disks (RAID) arrays with special focus on high availability,
scalability and cost-effectiveness. The large database (index) is
distributed and queries are dynamically partitioned across
multiple clusters. Each segment of the database handles a certain
set of sub-queries. Queries arrive at the manager where they are
directed to selected workers. Each worker sends the queries to all
workers that are tightly coupled with it through Myrinet [7].

4.3 AltaVista, Lycos and Excite Architecture
AltaVista, Lycos and Excite make use of large Symmetric Multi-
Processor (SMP) supercomputers. The use of large SMP allows
fast access to a large memory space. The database is stored and

processed on one machine. Processors handle queries
independently on the shared database.

4.4 My Own Search Engine (MOSE)
Orlando, Perego and Silvestri [8] describe the design of their
cluster-based search engine called My Own Search Engine
(MOSE). Their aim is to increase query throughput by
implementing an efficient parallelization strategy. MOSE uses a
combination of a data and task parallel algorithm. The task
parallel part is responsible for load balancing. It does so by
scheduling the queries among a set of identical workers, each
implementing a sequential Web search engine. The data parallel
part partitions the database and allowing each query to be
processed in parallel by several data parallel tasks, each accessing
a distinct partition of the database. While the parallelization
strategy used by MOSE is powerful, and employed by successful
search engines such as Google [2], it does not mention anything
about keeping the indices fresh.

4.5 Yuntis
Lifantsev and Chiueh [9] describe Yuntis, a working search
engine prototype. One of the goals of Yuntis is to utilize clusters
of workstations to improve scalability. A Yuntis node runs one
database worker process that is responsible for data management
of all data assigned to that node. When needed, each node can
also perform crawler tasks. Yuntis differs from our system in that
the query nodes remain dedicated to responding to user queries.
There is no dynamic allocation of nodes to the roles of querying
and indexing. If the system is experiencing massive incoming
data that needs to be indexed and there are no incoming queries,
query nodes will be idle while the indexing nodes will be
overloaded. In this case, the cluster will be under-utilized.

Existing search engines [2, 8, 9 & 10] employ static allocation of
the query and index roles to nodes in a cluster. As pointed out
above, this arrangement can lead to cluster under-utilization under
certain system loads.

5. CONCLUSIONS AND FUTURE WORK
We have presented an approach to better system resource
utilization in search engine clusters and discussed how it was
implemented in our search engine. We reported the initial results
of experiments conducted on a 13 machine cluster. The results
highlighted better performance resulting from employing dynamic
allocation of querying and indexing to cluster nodes. In
particular, we found that for smaller data sizes, the time taken to
index data for dynamic and static allocations is almost the same.
However, as the size of the data increases, dynamic allocation
performs significantly better than static allocation.

There are a lot of important issues that can be further investigated
to improve on the solution presented in this paper and to
experiment with more varied and larger data sets. Possible future
work involves incorporating fault tolerance into the system.
Furthermore, to enable the results to be generalized to general
applications, the experiments need to be conducted with data from
different domains.

6. REFERENCES
[1] A. Ntoulas and J. Cho. What is New on the Web? The

Evolution of the Web from a Search Engine Perspective. In
Proceedings of the 13th International Conference on World
Wide Web, New York, NY, 17-22 May 2004, pp.1-12.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1-7):107-117, 1998.

[3] C. S. Yeo, R. Buyya, H. Pourreza, R. Eskicioglu, P. Graham,
and F. Sommers. Cluster Computing: High-Performance,
High-Availability, and High-Throughput Processing on a
Network of Computers. In A. Y. Zomaya, editor, Handbook
of Nature-Inspired and Innovative Computing: Integrating
Classical Models with Emerging Technologies, Chapter 16,
pp. 521-551, Springer, New York, NY, 2006.

[4] GNU Wget. Available from
http://www.gnu.org/software/wget/ ; accessed 15 July 2006.

[5] Porter Stemming Algorithm: Available from
http://www.tartarus.org/martin/PorterStemmer/; accessed 25
July 2006.

[6] L.A. Barroso, J. Dean, and U. Holzle. Web search for a
planet: The Google cluster architecture. Micro, IEEE,
23(2):22-28, 2003.

[7] B. Choi and R. Dhawan. Distributed Object Space Cluster
Architecture for Search Engines. In Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Beijing, China, 20-24 September 2004,
pp. 521-525.

[8] S. Orlando, R. Perego and F. Silvestri. Design of Parallel and
Distributed Web Search Engine. In Proceedings of the 2001
Parallel Computing Conference, Naples, Italy, 4-7
September 2001, pp.97-204.

[9] M. Lifantsev and T. Chiueh. Implementation of a Modern
Web Search Engine Cluster. In Proceedings of USENIX
Annual Technical Conference, San Antonio, Texas, 9-14
June 2003, pp. 1-14.

[10] K.M. Risvik and R. Michelsen. Search Engines and Web
Dynamics. Computer Networks, 9(3): 289-302, 2002.

http://www.gnu.org/software/wget/
http://www.tartarus.org/martin/PorterStemmer/;

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

