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ABSTRACT 
The Plankton Prediction System (PPS) is a joint project 
between the Computer Science and Zoology departments 
of the University of Cape Town. Its purpose is to research 
and develop machine-learning software capable of 
predicting the level and distribution of subsurface oceanic 
chlorophyll, given related data. In so doing the PPS 
provides marine biologists with valuable information that 
would otherwise be both time-consuming and expensive to 
retrieve.  

The work outlined in this paper furthers earlier research [9] 
by Fenn, Curtis and Oberholzer and, as well as addressing 
a few shortcomings, expands upon a number of topics that 
demanded closer investigation. The following five items 
were chosen by the 2006 project team as core research 
areas: 

1. The production of a more structured and coherent 
set of data from which to perform predictions. 

2. The effect of various clustering algorithms on 
depth profile data. 

3. The use of a dynamic Bayesian network to 
incorporate the effect of time on chlorophyll 
predictions. 

4. The use of topic maps as a means to dynamically 
display the relationship between data. 

5. A greater degree of accompanying documentation 
and modular design.  

It is best to think of the work outlined in this paper as three 
stages in a pipeline. The first stage, preprocessing, is 
responsible for the integration of all the raw data from a 
number of different sources. After integration, the data is 
further discretized through a clustering process, which 

reduces its complexity. The second stage, prediction, is 
responsible for training a Dynamic Bayesian Network 
(DBN) with the clustered data produced in the 
preprocessing stage. Once training is complete, absent sub-
surface chlorophyll data is inferred from the resultant 
network. The final stage in the PPS pipeline concerns itself 
with the visualization of the results obtained from both the 
preprocessing and prediction stages. Technologies, such as 
Topic Maps and hypergraphs are implemented to create a 
dynamic view of the relationship between data. Moreover, 
inference results are rendered as colour rasters for viewing 
within the web-based PPS interface. 
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1. INTRODUCTION 
Plankton levels are currently estimated using the amount of 
chlorophyll in the ocean. Plankton is composed of organic 
material, of which chlorophyll is roughly twenty percent. 
Chlorophyll can be measured by satellites and the most 
recent satellite to do so is SeaWifs. Plankton levels can 
indicate the likeliness of finding fish in the area and even 
particular fish species. 
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Since plankton levels can be inferred from chlorophyll, it 
was proposed by the marine biology department and in 
particular Professor John Field to develop a system to 
predict the amount of chlorophyll present around the 
Southern Africa coast on a weekly basis. To do so, new 
technology in the form of a Dynamic Bayesian Network 
(DBN) was introduced as well as the necessity to represent 
this structure intuitively. The introduction also necessitated 
the need for new chlorophyll profiles to use within the 
DBN. The Plankton Prediction System (PPS) was divided 
between the three team members; pre-processing, 
prediction and visualization.  

2. BACKGROUND  

2.1 Depth Profiles 
A chlorophyll depth profile is constructed from a set of 
evently-spaced readings taken from below the surface of 
the ocean. The readings are usually spaced at meter 
intervals and begin one meter below the surface of the 
ocean. The readings continue to a depth of 100 meters. 
Each point represents the quantity (in mg.m-3) of 
chlorophyll at that depth. Figure 1 shows an interpolated 
depth profile, with the lighter region indicating the curve s 
integrated chlorophyll value. These readings are recorded 
by ships at number of stations around the Southern African 
coastline. 

 

Figure 1: A sample chlorophyll depth profile  

2.2 Interpolation 
In order to resample the depth profile data, which is 
currently in point readings, a curve will first need to be 

fitted to each depth profile. There are a number of different 
interpolation techniques available. Common examples are 
linear interpolation, polynomial interpolation, cubic spline 
interpolation and Akima interpolation [3].  

Unlike its counterparts, Akima interpolation provides a 
curve with an unusually natural fit which, through 
experimentation [3], has been the most akin to that 
preferred by the human eye. In Akima s paper more 
information is provided on the derivation of the algorithm 
and its performance relative to alternate interpolation 
techniques.  

2.3 Clustering Techniques 
Although there exist many different methods in which to 
cluster data, only some are relevant to the requirements of 
the Plankton Prediction System. All of the applicable 
techniques can be broadly categorized within one of the 
following categories: hierarchical, partition relocation and 
machine learning [4,5]. All three categories have the same 
two core requirements. Firstly, data must be presented as a 
set of real vectors of arbitrary, but uniform, dimension. 
Secondly, there must exist a metric that quantifies the 
distance between any two vectors within the dataset. 
Although metrics such as the correlation and city block 
distance do exist, usually the standard Euclidean distance 
metric is used.  

Hierarchical Clustering 

In this method of clustering, dendrograms (cluster trees) 
[10] are constructed bottom-up or top-down through the 
successive agglomeration or division of data. Nodes 
(collections of data points) are split or merged according to 
their linkage type and proximity. The resulting cluster tree 
may be traversed and split from the top down until the 
desired number of clusters is achieved.  

Hierarchical clustering algorithms have the primary 
advantage of speed over their counterparts. Unfortunately, 
however, once a node split or merge has been performed 
the nodes in mention are never revisited. Although the best 
option at the time, the split or merge may, from a 
macroscopic viewpoint, have been the wrong choice to 
have made.  

Partition Relocation Clustering 

In this form of clustering an initial cluster layout is either 
provided at random or derived from the results of a 
hierarchical clustering algorithm. Data points are iteratively 
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swapped between clusters a fixed number of times or until 
the system converges to an acceptable error. 

The Expectation Maximization (EM) algorithm is a concept 
used by a large number of probabilistic clustering 
techniques that fall under the category of partition 
relocation. The k-means, k-medians and k-medoids 
algorithms [2] are trivial examples of the EM algorithm. 
More complex examples involve the iterative refinement of 
a set of Gaussian probability distributions that define each 
cluster centroid.  

Since partition relocation algorithms that are initialized 
randomly suffer the problem of converging at local 
minima, it is a common practice to rerun the algorithm 
more than once - taking the best clustering result as the 
final solution. Owing to the favourable compromise 
between result quality and execution speed partition 
relocation clustering is the most widely adopted clustering 
technique.   

Machine-Learning Clustering 

There are a large number of clustering algorithms that fall 
within this category. Although genetic algorithms and 
many other techniques are available, the most commonly 
applied machine-learning clustering technique to 
chlorophyll depth profiles is the Self Organizing Maps 
(SOMS) algorithm [8]. The SOMS algorithm reduces the 
dimensionality of all input vectors by replacing the actual 
vector with a set of parameters that describe a 
representative curve (usually a Gaussian). The data is 
structured on a SOMS grid based on its low-dimensional 
representative form. Learning rate and neighbourhood 
variables influence how drastically each element, and its 
nearest neighbours, change in value respectively after each 
iteration of the algorithm. These two variables are slowly 
decreased over time, so that the algorithm converges to a 
stable solution. After the algorithm halts, each element of 
the final SOMS grid and its affiliated data points, are 
treated as the cluster centroid and points respectively.  

2.3.1 Previous Research 
Two previous attempts have been made on clustering depth 
profile data. The first method approximates each depth 
profile with a four-parameter Gaussian function. The four 
parameters are used as the representative vectors in an 
implementation of the Self Organizing Maps (SOMS) 
clustering algorithm. The second approach, once again, 
fitted a Gaussian curve to each profile. However, in this 
approach the Expectation Maximization (EM) algorithm 
was used to cluster the data.  

2.4 Dynamic Bayesian Networks (DBN) 
Dynamic Bayesian Networks are an extension of Bayesian 
networks to handle temporal changes.  They are directed 
acyclic graphs, with each node representing a 
discrete/continuous variable, and the edges connecting the 
nodes indicating causal relationships. [17], [18]  

Each node has an associated conditional probability table, 
which gives the probability distribution of the possible 
values of the node, given the values of its parent nodes.  A 
Bayesian network therefore consists of two parts: the 
values in each nodes CPT, which are known as parameters, 
and the structure, which are the actual nodes and arcs.  In 
the case of a dynamic Bayesian network, the structure does 
not change over time.  The system being modelled is 
dynamic, hence the name given to it. [17], [18]  

A dynamic Bayesian network is defined to be a pair of 
Bayes nets, (B1, B ), where the first member of the pair 
defines the prior P(Z1), and the second member is a two 
slice temporal Bayes net which defines P(Zt|Zt-1) by means 
of a DAG as follows: 
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To determine changing probabilities over time, the 
resulting DBN can be unrolled until we have the desired 
number of time slices, T.  The resulting joint probability 
distribution is then given by: 
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2.5 Learning in DBN s  

2.5.1 Maximum Likelihood Estimation 
Maximum likelihood estimation is used if the data being 
used for learning is complete, i.e. all the nodes in the 
network are observed, and none are hidden.  This is not the 
case for our project, as we are attempting to infer 
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chlorophyll profiles from satellite data.  The data we have 
on profiles is fairly sparse, especially when linked with the 
satellite data.  However, a form of MLE is used in the EM 
algorithm, so a brief explanation will be given here. 

The goal of learning in this case is to maximize the 
likelihood estimates of the parameters of each nodes 
conditional probability distribution, i.e. the parameters of 
the CPT's which maximize the likelihood of the training 
data.  For a detailed explanation, see Murphy [17], [18].  

2.5.2 Expectation Maximization 
The EM algorithm is used when the data is not complete, 
i.e. some of the nodes in the network are hidden. There 
are three steps involved in this algorithm: an E step, an M 
step, and calculation of the log-likelihood of the current 
step, to compare it with the previous step. [10], [11], [17], 
[18], [21]  

The E (expectation) step is where the EM algorithm differs 
from the MLE algorithm.  In this step, the expectation of 
the likelihood is calculated by including the hidden 
variables as if they were observed.  An inference algorithm 
is used here to compute the unknown values from the 
observed values. [10], [11], [17], [18], [21]  

For the M (maximization) step, the maximum likelihood 
estimates of the parameters are computed by attempting to 
maximize the expected likelihood found on the E step. 
[10], [11], [17], [18], [21]  

The log-likelihood of the current parameter set is then 
compared with the log-likelihood of the previous parameter 
set, and if the change is beneath the specified threshold, the 
EM algorithm steps.  Otherwise, the result of the M step is 
used in the next iteration of the algorithm to start the E 
step. [10], [11], [17], [18], [21]  

The EM algorithm is thus merely an extension of the MLE 
algorithm, as the EM algorithm makes use of maximum 
likelihood estimates.  

2.6 Inference in DBN s  

2.6.1 Boyen-Koller 
The idea behind the Boyen-Koller algorithm works as 
follows: if the interface cliques are too large, approximate 
the joint probability distributions on the interface as the 
product of marginals of smaller clusters c which partition 
the interface.  The junction tree for a 1½ slice DBN is then 

created.  This is a DBN which only maintains the nodes for 
the current time slice, and the nodes from the previous slice 
which had links to nodes in the current time slice.  One step 
of exact Bayesian updating is then performed.  The belief 
state is then approximated by a product of marginals, 

C

c t
c
ttt yIPyIP

1 :1:1 || , where t
c
t yIP :1| is 

the distribution on nodes in cluster c.  For a more detailed 
description of the algorithm, see Murphy [17].   

Figure 3: Hypergraph with uniform distribution and a 
distortion to the right  

2.7 Knowledge Representation 
Knowledge representation is a key issue within 
visualization. Topic Maps are a useful standard to describe 
knowledge structures and relate them to the underlying 
information resources. Topic Maps [20] conforms to the 
XML 1.0 standard and provides an inter-operable 
technology with existing tools. Topic Maps consist of three 
components, namely topics, associations and occurrences. 
Topics are subjects and are the nodes of a map. 
Associations show the relationships between topics, while 
occurrences are links to relevant information about each 
topic.   

Hypergraphs [13] are graphs whose edges connect two or 
more nodes. Topic Maps are natural extensions of 
Hypergraphs and hence the mathematical theory underlying 

Figure 2: Topic Map highlighting the three 
components and its relation to the underlying 

structure. 
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Hypergraphs, hyperbolic theory, can be applied to 
visualizing Topic Maps. When viewing graphs, the 
common problem of focus and context [15] must be taken 
into account. Known solutions are elision, in which 
unnecessary nodes are hidden, rapid zooming to view a 
small portion of the information, and distortion, in which 
the current point of focus is spatially expanded at the 
expense of the remaining nodes.  

Temporal information models supply the viewer with a 
historical view of the developing information space. 
Currently a handful of research systems attempt to 
visualize this temporal view, and make use of anchors, 
colours and height proportional to the importance over 
time. These create a more liquid view than the common 
static view of information spaces.   

DBNs can be represented by Topic Maps but equating 
network nodes to topics and edges to associations. DBNs 
are by nature temporal given the temporal relationships in 
the network, and hence these need to be considered when 
visualized. Currently no visualizing tool exists to 
dynamically view DBNs, however static views such as 
BayesiaLab [1] exist. The Hypergraph geometry allows for 
both elision and distortion and provides a dynamic viewing 
environment in which to study the DBN. The temporal 
relationships involved could be visualized using one or a 
combination of the techniques   

Colour scales for displaying chlorophyll and sea surface 
temperature are almost universally drawn using 255 
colours flowing from violet through blue into green and 
then to red.  

Figure 4: The preprocessing pipeline  

3. DATA PREPROCESSING 
For the purposes of modularity, the preprocessing stage is 
broken down into three phases of operation. The first 
phase, retrieval, downloads and prepares unprocessed data 
for use by the synthesis phase. The synthesis phase 
integrates data into a large database, discarding 
unnecessary information and quantizing values where 
necessary. Finally, the clustering stage discretizes all data, 
so that it may be efficiently processed by the Bayesian 
prediction engine. All three phases were implemented 
separately in C++, a language chosen for its flexibility and 
speed.   

3.1 Retrieval  

3.1.1 Target Data 
Raw data originates from one of four collections. The first 
collection contains historic sea surface temperature, sea 
surface chlorophyll and wind data dating from the late 
1986 to 2002. The second data collection comprises of all 
subsurface chlorophyll and temperature depth profiles, 
dating from 1988 to 2002. Both collections were sourced 
from the Zoology department. The third collection of data, 
sourced from [16], contains global bathymetric and 
topographic readings. The fourth and final data collection 
is a web repository that contains more recent sea surface 
temperature and chlorophyll readings. The goal of the 
retrieval process is traverse, decompress, add any missing 
metadata, and restructure all data by date.   

3.1.2 Implementation 
The retrieval program was written in C++ using the cURL 
libraries to provide support for downloading files from 
HTTP and FTP sources. A simple implementation of string 
pattern matching was implemented to extract date 
information from file names. Although an important stage 
in the preprocessing pipeline, not much time was allocated 
towards the retrieval phase, as its complexity was 
somewhat overshadowed by the synthesis and clustering 
phases.  

3.1.3 Outcome and Validation 
The result of the retrieval phase is a structured directory of 
outstanding data, ready for traversal by the synthesis phase. 
Where needed, the data is ordered by date and has all of its 
metadata intact. The successful execution of the next phase 
in the preprocessing pipeline, synthesis, validated the 
outcome of the retrieval phase.  
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3.2 Synthesis  

3.2.1 Target Data 
The synthesis phase operates on the data files created by 
the retrieval phase of the preprocessing pipeline. All time-
dependant unprocessed data is stored in the ~/bin/DATA 
directory, while the relatively temporally static data, such 
as bathymetric and depth profile data is stored in the 
~/bin/INC directory. Sea Surface Temperature and 
Chlorophyll satellite images are stored in the ESRI Band 
Interleaved by Line (BIL) file format, while wind data is 
presented in the Unidata Net Common Data Format. The 
bathymetric data is written in floating point (FLT) file 
format and both the subsurface chlorophyll and 
temperature profiles are presented in Microsoft Excel file 
format. Each format has a unique metadata structure 
associated with it.  

 

Figure 5: The synthesis pipeline  

3.2.2 Implementation 
The majority of the synthesis phase s implementation is 
devoted to accessing data from the plethora of different 
various file formats. The C++ Image class used in the 
management of satellite images was a rewrite of the 
original class used in [9]. The Network Common Data 
Format libraries [22] and CSV Parser [6] classes were used 
extensively in interpreting the contents of the wind data 
files  

All content in the file was reduced to the system s spatial 
and temporal granularity. For example, all dates were 
converted to a weekly representation, whilst location was 
converted to an offset from the top left pixel of a 650x650 
raster of the geographical region 5S 5E to 40S 40E. Any 
data that was not considered valid (land, coast, 
indeterminate or outside the geographical region of 
interest) was discarded.  

A large challenge of implementation was the efficient 
insertion of hundreds of millions of data points into the 
project database. Using C++ file I/O, temporary tables and 
the MySQL LOAD DATA INFILE command, insertion time 
was reduced by a factor of ten.  

3.2.3 Outcome and Validation 
The result of the synthesis phase is the population of a 
panoply of tables in the project database. Each table is 
carefully named, indexed and optimized for speed. The 
actual data contained within the tables is validated for 
accuracy using the visualization software described later in 
this paper.  

3.3 Clustering  

3.3.1 Target Data 
In order to reduce the time and spatial requirement of the 
Dynamic Bayesian Network, the sea surface temperature 
(SST), sea surface chlorophyll (CHL), wind direction and 
speed (WND), bathymetric (DEP) and subsurface 
chlorophyll data (SND) is clustered. For the first four data 
types mentioned the clustering process identifies a set of 
contiguous intervals on the range 0 to 255, such that each 
individual data reading falls into a unique interval.  

The extra dimension of information makes SND data 
slightly more complex to cluster, as the depth profiles are 
first resampled before being clustered. However, in order 
to resample the SND data, one first needs to interpolate a 
best-fit curve for the depth profile readings. Akima spline 
interpolation is used to approximate the depth profile 
curves to 100 meters below the ocean surface for all 2412 
depth profiles. The curves are now resampled at a lower 
rate and the resultant vectors of lower dimensionality are 
passed to the clustering engine. 

 

Figure 6: The clustering pipeline 
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3.3.2 Implementation 
The limited success of previous depth profile clustering 
approaches prompted the need to explore alternate 
clustering techniques in this project. Therefore, the 
clustering application implemented in this project provides 
a means to partition data using one of the k-means, k-
medians and k-medoids techniques. In addition, 
Hierarchical, SOMS and hybrid1 clustering were 
implemented. A substantial portion of the code used to 
implement these algorithms was taken from the open-
source Cluster 3.0 program [7]. Figure 6 shows the flow of 
the clustering application.   

3.3.3 Outcome and Validation 
Generally, clustering introduces a degree of error to a given 
data set. The r2 goodness-of-fit statistic is a suitable metric 
that describes how much error in a model is explained by 
natural variance between data. Thus, for each cluster, the 
closer the r2 value is to one, the better the fit of the cluster 
to the data. An average r2 value, weighted on the number of 
points contained in each cluster, may be used to quantify 
the goodness-of-fit of an entire clustering model  

Through experimentation in conjunction with the Weka 
data mining package it was found that the k-medians 
clustering algorithm yielded the highest weighted r2 value 
of 0.81. More importantly, it was interesting to observe 
how poorly the hierarchical and SOMS clustering 
performed in comparison to all the other algorithms tested. 
Unfortunately, it proved difficult to compare the results 
gleaned from the experiments with previous research, as 
the formulation of the r2 statistic differed. However, a 
favourable reaction was received from the project 
supervisor and marine biologist, Prof. Field, on inspection 
of the final clustering results.  

A final observation was made about the hierarchical 
clustering algorithm, which had an effect also on the hybrid 
clustering. It was noted that, due to statistical outliers, there 
were many leaf nodes at the top of the cluster tree. It turns 
out that this resulted in many singleton clusters being 
formed in the final cluster set. It was suggested that future 
work be conducted within the field of managing these 
statistical anomalies.  

                                                          

 

1 Hybrid clustering is, essentially, a k-means, k-medians or k-
medoids algorithm initialized with the results of a hierachical 
clustering in place of the usual random initialization. 

4. DYNAMIC BAYESIAN PREDICTION 
The language of choice for the implementation of this 
section was C++, partially due to the speed offered by it, 
and also because the library being used to create the 
network, perform learning, and perform inference, the Intel 
Probabilistic Network Library [14], was only available in 
C++.  The OS being developed for was FreeBSD, which 
meant that no windows specific libraries could be used.  
This does have the benefit that the programs will work on 
both Windows and Unix platforms.  

4.1 Model Structure 
The dynamic Bayesian network had to incorporate the 
following variables: surface chlorophyll (Chl); sea surface 
temperature (SST); wind direction; wind speed; depth; 
region; and season.  The links between nodes in time step t 
and time step t+1 also had to be specified.  A basic 
example of this can be seen in figure 1, which illustrates 
which nodes in t link up with nodes in t+1, but with only 
Chl, SST, and Depth as variables. 

 

Figure 7: A basic example of a DBN  

4.2 Learning 
For learning to occur, data needs to be extracted from the 
database per location.  It also has to be in discrete intervals.  
This is done by executing a complex query which selects 
the satellite data, joins it to interval tables for the relevant 
variables so that only an interval value is returned, and then 
returns all of these to the learning program.  This allows 
the learning program to learn on all data for a particular 
location, for an entire year, or however long has been 
specified when executing.  The learning program will do 
this for each point, or at least for each point which is not a 
land mass or covered by cloud.  The learning algorithm 
used by the PNL [14] in this case is the Expectation 
Maximization algorithm, explained earlier.  

Once all the data for the specified time period has been 
learned from, the learning program will write the learned 
conditional probability tables to the database for later use 
by the inference program.   
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Figure 8: An example Hypergraph tree  

4.3 Inference 
Inference is done based on satellite data, which is stored in 
the database.  Prior to performing inference on this data, 
the stored conditional probability tables must be retrieved.  
If they are not retrieved from the database, inference can 
still occur, however it will be less accurate, as it will 
essentially be learning the conditional probability tables for 
each node as it goes.  

Once the tables have been retrieved, the inference program 
will extract an entire years worth of data for one location to 
perform inference on.  The inference algorithm used by the 
PNL [14] is the Boyen-Koller inference algorithm, 
explained earlier.  The data needs to be extracted for only 
one location at a time, as inference in a dynamic Bayesian 
network can only occur on a temporal sequence of data.  
Once the data for a location is retrieved, it is entered into 
the network as evidence.  

The final step is to perform inference on the data entered as 
evidence, and to store the result of the inference back in the 
database. This is done for each week of data that was 
entered for a location.  

5. VISUALISATION  

5.1 Topic Maps 
Topic Maps were written in XML and parsed using Java 
with the combination of Hypergraph libraries available 
from Sourceforge. The Topic Map structure was 
determined based on the structure of the DBN. Each 
temporal variable, such as season, wind and sub surface 

chlorophyll were identified and extra associations added to 
past and future nodes of the same type. These resembled 
prongs attached to each variable that users could zoom on 
to view the current variable within context.   

User testing was conducted post implementation to test 
whether the Hypergraph s dynamic view is better than the 
BayesiaLab s static view. Participants were asked 
conceptual questions about DBNs and then asked to 
complete a series of tasks using each interface. To 
counteract the effects of learning, participants were split 
into groups and started the tests on opposing interfaces. 
Initial results of testing show no performance benefits to 
use a dynamic view; however participants chose the 
dynamic view in preference over the static view.   

 

Figure 9: Screenshot of the PPS system  

5.2 User Interface 
Developing the user interface to the PPS was done by 
applying a user-centred design approach. User-centred 
design approaches and in particular the Star Model task-
based and places evaluation as a key component. The Star 
Model involves the users and is applicable to rapid 
prototyping to create a flexible interface. Throughout the 
design phase numerous prototypes where developed to 
refine the functionality and usability of an interface.   

The interface was developed in PHP, with GD and PHPlot, 
to create a platform independent, flexible interface. The 
web-based environment meant users did not have to install 
extra software on their computers before use and the users 
did not learn a new method to navigate through the 
functionality. User testing revealed that while marine 
biology students understood the results, general users need 
extra information to correctly interpret the results.  
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6. RESULTS  

6.1 Dynamic Bayesian Prediction 
Both learning and inference were found to be slowed down 
by having to retrieve data from the database for learning 
and prediction.  This made testing for accuracy of 
predictions difficult, and suggests that to make the system 
more useable, data retrieval should be made more efficient.  

7. CONCLUSION 
Clustering of depth profiles using various algorithms 
provided a thorough exploration of the data and the 
resulting r2 goodness-of-fit testing showed that k-medians 
provides the least error between the actual data and the 
representative clusters. At the time of writing, inference 
was completed for a region of the map and showed 
promising results. The visualisation of both the DBN and 
the interface provided a means to view inference results 
and the structure of the DBN. The user interface developed 
through sound software engineering principles was both 
functional and intuitive to use.   

8. FUTURE WORK  

8.1 Arbitrary Sizes of Satellite Images 
At present the Dynamic Bayesian Network is only set up to 
take as input satellite images which are 650x650.  These 
are stored in the database, with their pixel indices 
converted to a location representation, to reduce the 
amount of data stored in the database.  A possible solution 
to this is to simply have a table which stores the 
dimensions of the satellite images. This would work 
because the calculation of the location of a pixel is entirely 
dependent on the dimensions of the satellite image, thus 
storing these values in the database would allow one to 
simply retrieve these dimensions from the database before 
calculating locations.  This way, code would never have to 
be changed if the image size changed.  The values in the 
table are the only things which would have to be changed.  

8.2 Arbitrary Regions for Prediction 
At present the regions which a pixel location can fall into 
are hard-coded.  This prevents one from easily changing 
the regions, as the source code would need to be changed, 
and the binary recompiled.  The regions are at the moment 
defined as square areas on the satellite images, except for 
one region which covers everything which is not the West 
Coast, West Agulhas Bank, or East Agulhas Bank.  
Because of this, one could simply store the region 
information in a table in the database, as two pairs of x, y 

values for each region.  The source code would also have 
to be changed to take this into account.  This is, however, a 
trivial matter, as it simply involves a query to the databases 
for the region information.  

8.3 Arbitrary Seasons for Prediction 
As the season is a variable used in prediction, it is 
necessary to know what season each week falls into.  This 
is because the database holds satellite images stored by 
week.  These images are then used as input in both the 
learning and the inference stages.  So for each image, it is 
necessary to know what season it is associated with.  

At present, the seasons are hard-coded.  While this is fine 
for use in South Africa, and for places in the world which 
have the same seasonal patterns, this would be a problem if 
the system is used in other parts of the world with a 
different seasonal pattern.  For instance, North America 
experiences winter from December to February, whereas 
Southern Africa s winter period is in the middle of the 
year.  Putting the seasonal information into the database 
would allow the system to be easily migrated to regions 
with different seasonal patterns.  This is because we can 
simply define a season by the weeks into which it falls in 
the year.  These ranges of weeks for each season can be 
stored in the database as a start week and an end week, 
which can be retrieved before attempting to determine what 
season a week falls into.  

8.4 Primary Production 
Primary production can be estimated from surface 
chlorophyll and the solar irradiance. Solar irradiance is 
calculated through the use of photosynthesis models of 
various complexities. Some models include the vertical 
distribution of phytoplankton, in our case, the clustered 
profiles. These profiles are important for time series 
estimation. A number of profiles from the preprocessing 
phase have subsurface peaks. These subsurface peaks are 
dependent on time and are an important indicator of the 
ecosystem. The primary production is also dependent on a 
light source, namely the sun. Primary production is 
measured in the same way as chlorophyll and can easily be 
added to the predictions with the implementation of a light 
approximating algorithm. Once implemented, summaries of 
these predictions could be generated, similar to the existing 
surface chlorophyll and integrated chlorophyll summaries 
and displayed in the statistics section.  
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