
1 of 6

Temporal XML: Version Management and Query
Processing

Project Members
Zimasa Ndamase

Computer Science Department
University of Cape Town

Private Bag
Rondebosch 7701, RSA
zndamase@cs.uct.ac.za

Mat eliso Thabane
Computer Science Department

University of Cape Town
Private Bag

Rondebosch 7701, RSA
mthabane@cs.uct.ac.za

Project Supervisor
Associate Professor Sonia Berman

Computer Science Department
University of Cape Town

Private Bag
Rondebosch 7701, RSA

sonia@cs.uct.ac.za

ABSTRACT
The changes that can be made to a document
throughout its lifetime are limitless.
Temporal management of documents with
multiple versions is a complex area of
research that has risen from the need to
preserve information. Today s technology-
driven society is rapidly moving towards
web environments and using XML as the
format of choice of information
representation and exchange. The proposed
solutions is an implementation of a temporal
XML version management system that
stores and reconstructs multiple versions of
XML documents, as well as provide
temporal query capabilities that show how
the document has changed over time.

KEYWORDS
XML, temporal XML, temporal query,
temporal databases, document retrieval,
version management, multiple versions.

INTRODUCTION
As users migrate to web-based environments
for information exchange and the use of

XML format documents increases, the need
to be able to store and manage XML content
becomes apparent. XML documents are
seldom static as old documents get deleted,
new ones created and older versions
updated. This report looks at the
complexities of the implementation of a
temporal XML version management system
that has two modules, (a) a storage and
reconstruction component for storing and
retrieving versions of XML documents, and
(b) a temporal query processing component.
Finding an efficient storage and
reconstruction mechanism that allows
efficient temporal query processing was
important. The biggest storage challenge
was storing the elements such that each one
had an element identifier and its position in
the XML file. This facilitated the
reconstruction of document versions. The
temporal query processor performs temporal
queries on multiple versions of documents to
reveal the content of a document on specific
dates and the history of the document and
how it has evolved over time. The greatest
query challenge was specifying temporal
queries as a combination of SQL and
XQuery statements. The SQL statement gets
sent to the database which returns document
versions that XQuery statements extract data

2 of 6

from. An additional area of concern was
developing an intuitive user interface where
users can specify temporal queries.

One of the greatest advantages of using
XML is that XML documents have a
structure that can be associated with a
schema [1], thereby making mapping to
relations for database storage simpler.
Additionally, XML has the flexibility to
represent very different kinds of data from
different sources. This structured nature also
enables the performance of more precise
queries. A temporal middle-layer approach
has been used where the temporal query
processor, with a front-end user interface, is
built on top of a database management
system. This is referred to as using the
stratum approach. The temporal query
component translates temporal query user
input into two portions, (a) conventional
SQL statements that retrieve the relevant
document version(s), and (b) one or more
XQuery statements that extract the relevant
data from one or more document versions.

There are countless areas of application for
temporal version management systems for
information preservation; these include data
warehouses, digital archives, XML
repositories, project management,
inter/intra-company warehouses, software
configuration management and the
maintenance of personnel records. Content-
seekers are users that may want to
download, retrieve or keep track of
documents and perform queries on the
document s versions. Content-authors may
want to maintain documents that are
constantly changing with as much efficiency
and flexibility as possible, as opposed to
simply maintaining the latest version of the
document. These and other areas of
application would benefit from the use of a
standardized solution for the management of
temporal data.

THEORY AND BACKGROUND
The integrated approach [10] represents a
long-term solution that involves building an

underlying DBMS that has built-in temporal
operators, temporal functions, and a
temporal query language. An integrated
approach supports the storage, retrieval and
querying of time-varying data more
efficiently and eliminates the disadvantages
of the stratum approach. Therefore,
programmer productivity and code
maintainability improves as the bulk of the
temporal processing gets moved from the
application to the database end

One solution that is feasible in the short-
term is often referred to as the stratum
approach [8]. This constitutes a middle-layer
query processor between the application
interface and the DBMS. The middle-layer
converts temporal query statements into
conventional SQL statements, using a
database management system that is not
specialized to processing temporal
information or storing temporal data. The
shortcomings to this approach can be
attributed to the processing overhead
associated with evaluating a temporal query
and representing it as SQL statement(s), this
means that only a limited set of operations
can be supported.

Document Types
A document can be characterized as being
either document-centric or data-centric [1];
however, documents can be mixture or the
two as well. Data-centric documents are not
meant to be processed by machines and are
often merely a collection of data values and
are simply used to transport data. Examples
of these are train schedules or share prices.
Document-centric documents are meant to
be human-readable and have a less regular
structure than that of data-centric
documents. Examples of these include books
and journals.

OVERVIEW

DATABASE STORAGE
The storage alternatives that have been
considered are; native XML databases,
XML-enabled databases, or a new

3 of 6

implementation of a temporal DBMS.
Native XML databases are young and not
very widely used yet, therefore, there is
limited support and documentation that is
available. Developing and implementing a
new DBMS that has temporal functionality
is a far more complex task that requires a
great deal of time and resources. This would
serve as a suitable long-term solution. The
XML-enabled databases map XML to a
traditional database [11]. Oracle 9i is the
XML-enabled database that has been used
for document storage .

When a user wants to store an XML
document version into the database, they
specify the file to store and the system will
send the file to a database (see figure 1). The
system implements two storage approaches.
The first approach uses built-in data types of
Oracle which support XML manipulation.
The second approach represents the
document as a tree structure and stores each
node together with timestamp information as
a tuple.

Figure 1. The storage process.

Reconstruction
The user wants to retrieve an XML
document from the database. There are three
types of files that can be reconstructed.
(i) Version files: a version of the

document that is current at a

particular point in time, these are
called Vi .[8]

(ii) Edit files: these files show the
content and position of changes that
have been made using <OLD> and
<NEW> tags, these are called Ei (se
figure 2).

(iii) History files: a single XML file that
encodes within it the full history of
all changes made to that document
up to some point in time - these are
called Hi (see figure 3).

Version files are normal XML files that
show content that is current at a certain
point in time. Edit files are version files that
show the content and position of changes to
a version using <OLD> and <NEW> tags.
History files are XML files that have
author, start and end date attributes for
every element in the file. A history file
shows the evolution of each element in a
document.

 Figure 2. Edit file - Ei

 Figure 3. History file - Hi

4 of 6

QUERY PROCESSOR
The initial implementation of the query
processor involved making a number of
design decisions. The first consideration was
deciding on whether to use or extend XPath
or XQuery. These are query languages that
query from XML documents. The second
consideration was whether to develop a new
temporal query language instead of using
existing query languages. The decision to
use XQuery for XML document querying
was based on the following reasoning:

Although XPath is a powerful W3C
specification used to query from XML
documents, it does not allow typical
query constraints such as WHERE
and ORDER-BY operators.

The algorithms used for the evaluation
of temporal queries made it possible
to use XQuery statements to extract
the nodes of an XML document;
therefore it was not necessary to
design a new temporal query language
or to extend XPath or XQuery.

In order to use XQuery, an implementation
of the XQuery API was required. The
XQEngine [2] is the XQuery API that has
been used to query from XML documents.
The chosen XQuery API implementation is
open-source, well-documented and has been
tested on and passed the prescribed W3C
XQuery Test Suite (XQTS) [3]. Some of
the alternatives to XQEngine were
provided for trial-period use as
evaluation versions that would have
expired before the end of this project.
Other alternatives were not open-source.

TEMPORAL QUERIES
The user enters temporal query parameters
on the graphical user interface of the
Temporal Query Application. The GUI
constitutes the front-end of the query
processor. It has been used for the purpose
of abstracting the query language details
from users. This removes the requirement
for users to have query language knowledge,

making it possible for more people to easily
learn how to use the system.

The query processor requests version files or
history files from the database depending on
the type of query being performed. History
files are used for author and change queries,
and version files are used for snapshot and
history queries.

User-centered design techniques were used
to develop the GUI and test it for usability.
To obtain user experiences and feedback,
the following techniques were used:
An initial discussion where participants
were shown preliminary GUI designs, the
feedback obtained was used to evolve the
GUI prototype.
The evolved prototype was later tested on
participants using a questionnaire and
evaluation sheet.
This testing session was followed by a
focus-group style discussion of general
feedback and other comments.

Using a GUI provides limited functionality
as only the specified types of queries can be
performed. This is sufficient for users that
do not require extensive query functionality;
this also provides an easy to use solution for
the average user who may not have query
language knowledge.

RESULTS
These are the results of using an XML-
enabled database:
(i) Using the XML Type to store the

original document and subsequent
changes as CLOBs does not
maintain the structure of a
document when it gets
reconstructed.

(ii) The greater number of changes in
an edit file, the longer the database
takes to store document versions.

The Temporal Query Application is a
query processing tool that can perform a
number of simple and complex temporal
queries. The biggest challenge was deciding

5 of 6

which types of queries to support. The GUI
approach that has been taken limits the kinds
of queries that can be specified. This means
that users can only perform a finite number
of queries as opposed to the possibilities that
one has when using a query language.

The testing and evaluation participants were
generally satisfied with the GUI. 66.67% of
the GUI evaluation participants indicated
that the interface encompasses the following
usability properties: learnability,
memorability, efficiency and effectiveness.

CONCLUSION AND FUTURE WORK
Temporal querying and version management
are complex research areas that pose a range
of problems. One of these problems is that
there are many ways that time can be
captured and represented; selecting the most
fitting way to do this may vary for different
applications. A greater concern is that
temporal queries are essentially translating
queries that are best expressed as sentences
into temporal query languages.

An effective and flexible approach that is
general enough to be used in any context
requires a temporal DBMS. This DBMS
would be optimized to store, retrieve and
query from temporal data.

The use of a GUI limits the types of queries
that can be performed; however, the queries
that have been implemented provide non-
XML accustomed users and XML proficient
users with a way to query multi-versioned
XML documents in a meaningful way.

6 of 6

REFERENCES

[1] Nørvåg K. Temporal Query

Operators in XML Databases.

Department of Computer Science,

Norwegian University of Science

and Technology, Norway.

Proceedings of 2002 ACM

symposium on Applied computing.

[2] XQEngine. XQuery API
implementation. Available:
http://www.fatdog.com/. Date
Accessed : 9 October, 2006.

[3] XML Query Test Suite. World Wide
Web Consortium. Available:
http://www.w3.org/XML/Query/test
-suite/. Date Accessed: 15 October,
2006.

[4] S.-Y. Chien, V. J. Tsotras, C.
Zaniolo, Efficient schemes for
managing multiversion XML
documents , The VLDB Journal

The International Journal on Very
Large Data Bases, Volume 11 Issue
4, pg 332 353, December 2002.

[5] Raymond K. Wong, Nicole Lam,
Managing and Querying Multi-

Version XML Data with Update
Logging , Proceedings of the 2002
ACM symposium on Document
engineering
Publisher: ACM Press, New York
,USA, pg 74-81 ,November 2002.

[6] Shu Yao Chien, Vassilis J. Tsotras,
Carlo Zaniolo, Version
Management of XML Document ,
ACM SIGMOD Record, Volume
30 Issue 3 , pg 184-200, September
2001.

[7] Shu Yao Chien, Vassilis J. Tsotras,
Carlo Zaniolo , A comparative
Study of Version Management
Schemes for XML Documents , A
TimeCenter Technical Report,
University of California, 5
September 2000.

[8] Chien S. et al, Storing and
Querying Multiversion XML
Documents using Durable Node
Numbers , Proc. of the second
International Conference on Web
Information Systems Engineering
(WISE I),Washngton
DC,USA,Volume 1,pg 232, 2001 .

[9] Al-Ekram R., Adma A., Baysal O,
diffX: An Algorithm to detect

Changes in Multi Verios XML
Documents , Proceedings of the
2005 conference of the Centre for
Advanced Studies on Collaborative
research CASCON '05, Toranto
Ontario, Canada, pg 1-11, October
2005.

[10] Slivinskas G. et al. Adabptable
Query Optimization and
Evaluation in Temporal
Middleware. Department of
Computer Science, Alborg
University, Denmark.
Department of Computer
Science, University of Arizona,
USA.

[11] Nørvåg K., Limstrand M. and
Myklebust L. TeXOR: Temporal
XML Database on an Object-
Relational Database System.
Lecture Notes in Computer
Science, Perspectives of System
Informatics, Volume 2890/2003,
2003. Department of Computer
Science, Norwegian University
of Science and Technology,
Norway

http://www.fatdog.com/
http://www.w3.org/XML/Query/test

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

