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ABSTRACT
A widely used method for character animation involves em-
bedding a simple skeleton with a character model and then
animating the character by moving the underlying skeleton.
The character’s skin is required to move and deform along
with the skeleton. Research into this problem has resulted
in a number of different skinning frameworks. There has,
however, been no objective attempt to compare these meth-
ods. We compare three of the skinning frameworks that are
computationally efficient enough to be used for real-time an-
imation. These frameworks are: Skeletal Subspace Deforma-
tion, Multi-Weight Enveloping and Animation Space. The
performance of the three frameworks is tested by generating
the skins for a number of poses for which the ideal skin is
known. These generated skin meshes are then compared to
the ideal skins using various mesh comparison techniques as
well as user comparisons.

Categories and Subject Descriptors
I.m [Computing Methodologies]: Miscellaneous; I.3.5
[Computing Methodologies]: Computational Geometry
and Object Modeling

Keywords
Skeletal Subspace Deformation, Animation Space, mesh com-
parison, Multi-Weight Enveloping

1. INTRODUCTION
Traditional hand drawn animation requires that each frame
of an animation sequence be created explicitly. Computers
may be used to reduce the work required to create an ani-
mated sequence by providing a degree of automation to the
animation process. Animating characters, such as people or
animals, is a particularly demanding area of animation as
the animated character must move and deform in a man-
ner that is plausible to the viewer. The requirements for
creating an animated character is the specification of the
static model, a definition of how this model deforms and

a specification of its movement [8]. Animating a character
model described as a polygon mesh by moving each vertex
in the mesh is impractical. It is more convenient to spec-
ify the motion of characters through the movement of an
internal articulated skeleton from which the movement of
the surrounding polygon mesh may then be deduced. How-
ever, the model must deform in a manner that the viewer
would expect, consistent with underlying muscle and tissue;
such as in the case of a bulging bicep or creasing elbow. We
look in particular at methods for specifying skin deforma-
tion based on the movement of an underlying articulated
skeleton, referred to as skinning frameworks.

When a high degree of accuracy and realism is required,
the physical structure of the muscle, fat and skin layers may
be simulated in order to determine the character’s polygon
model. Such techniques are widely used in motion pictures
where the polygon mesh for each pose may be pre-rendered
and so a degree of speed may be sacrificed for realism. In
interactive applications, such as virtual environments and
video games, computational efficiency is vital and so less
computationally demanding techniques are used to provide
approximations to the physical system.

In this paper we compare three of the more space and time
efficient skinning framworks, suitable for real-time applica-
tions. These three skinning frameworks are:

1. Skeletal-Subspace Deformation (SSD) [13, 21, 22, 12,
18, 17]

2. Multi-Weight Enveloping (MWE)[22]

3. Animation Space [15]

In the following sections there is a review of skinning tech-
niques, including a description of the three frameworks we
compare, as well as our motivation for conducting such a
comparison. We then discuss the manner in which this com-
parison will be objectively carried out. Lastly we present our
findings and draw conclusions.

2. RELATED WORK
2.1 Skin deformation in articulated models
2.1.1 Physical Simulation
Early attempts to produce plausible deformations involved
simulating the movement and deformation of the muscles



and fatty tissue and skin layers using physical laws such
as Newtons Laws of Motion and Hook’s law of springs [4,
19, 23]. These physical simulations are highly realistic, and
often used in visual effects applications, but they are not
feasible for real-time applications due to their computational
expense. We may, however, use the the meshes generated as
example meshes used to solve for the weights in each of the
tested frameworks.

2.1.2 Skeletal Subspace Deformation
The simplest and most widely used method of calculat-
ing skin deformations in real time is known under various
names: Linear blend skinning, enveloping, vertex blending
and Skeletal Subspace Deformation (SSD). It was not orig-
inally published but is described in papers that look to ex-
tend and improve it [15, 13, 21, 22, 12, 18, 17]. At a high
level the method combines the positions of vertices in rela-
tion to the different influencing bones with the influence of
each bone having a certain weight.

There are a number of options for the representation of the
bones of the skeleton. A bone may be represented as two
points or a line segment for the purposes of visualisation.
However for the purpose of determining the movement of an
associated vertex, the important information is the position
of the vertex relative to a particular bone. Bones are there-
fore considered as local coordinate systems. A bone defines
a local coordinate system with one end being the origin and
the bone lying along one of the axes. A bone is represented
by a transformation matrix that takes a point from bone-
coordinates to model-coordinates.

SSD stores the character in a reference or rest pose, consist-
ing of the position of each vertex, v̂, and the transformation
associated with each bone, T̂i. In order to find the position
of a vertex, v, in a new skeletal configuration, the weighted
sum of the vertex’s positions transformed according to each
influencing bone’s movement is taken as follows.

For each influencing bone, the position of the vertex in the
rest pose is first tranformed from model coordinates to bone
coordinates by applying the inverse rest pose bone transfor-
mation.

v̂i = T̂−1
i v̂

The vertex in bone coordinates, v̂i, is then transformed back
into model coordinates by applying the bone transformation
of the bone in the new skeletal configuration.

vi = Tiv̂i = TiT̂
−1
i v̂

A weight, wi, is given to each influencing bone based on how
much the bone influences the particular vertex’s movement.
The weighted sum of the vertex transformed by the different
bones gives its position in the new pose.

v =

bX

i=1

wiTiT̂
−1
i v̂ (1)

For bones which have no influence on the movement of a
vertex, the associated weight would be 0. The weights are
set such that

bX

i=1

wi = 1

Figure 1: Meshes generated using SSD show loss
of volume when joints are rotated to extreme an-
gles. Examples include the elbow joint collapsing
(left) and the “candy-wrapper” effect as the wrist is
rotated (right).

SSD has a number of well-known short-comings. One of the
largest is that SSD generated models exhibit volume loss as
joints are rotated to extreme angles. This is seen in joint
collapses and the “candy-wrapper” effect (Figure 1). These
undesirable results occur because, in finding the position
of a vertex in a new pose, the transformation matrices of
the influencing bones are interpolated in a linear manner.
Despite these shortcomings, SSD remains popular because
of its simplicity and computational efficiency.

2.1.3 Improvements to SSD
There has been a large amount of research done on improv-
ing the SSD algorithm. One approach is to combine data
interpolation techniques widely used in facial animation to
correct the error in the vertex positions generated by SSD
[13, 21, 12]. The error for each vertex is calculated for a
number of example meshes and then interpolated to give
the error correction for a particular SSD generated mesh.
The drawback to this method is that increasing the number
of example meshes, while giving greater accuracy, increases
the storage and computation expense. Another approach
is to remove the linearity in the combinations of the bone
transformations used by SSD. [16] introduce extra bones at
the joints which are rotated halfway between the two con-
necting bones while [14] and [11] change the way that bone
transformations are combined. [14] use a matrix blending
operator developed by [1] while [11] use quaternions as rota-
tions may be linearly interpolated by the linear interpolating
of the quaternions. Both of these methods are less compu-
tationally efficient than SSD.

Another extension of SSD is to increase the number of weights
per bone influence for each vertex. Multi-Weight Enveloping
[22] changes the single weight for the transformation matrix
of each influencing bone to a weight matrix that gives, for
each vertex, twelve weights to each influencing bone. The
SSD equation (eqn. 1) may be rewritten with the substitu-

tion Mi = TiT̂
−1
i as follows

v =

bX

i=1

wiMiv̂

The weight factor, wi, may then be combined with the trans-
formation matrix

v =
bX

i=1

0
BB@

wi,11mi,11 wi,12mi,12 wi,13mi,13 wi,14mi,14
wi,21mi,21 wi,22mi,22 wi,23mi,23 wi,24mi,24
wi,31mi,31 wi,32mi,32 wi,33mi,33 wi,34mi,34

0 0 0 1

1
CCA v̂ (2)



This gives each influencing bone twelve weights which allows
each component of v to move independently of one another
according to a bone’s movement. This additional freedom
reduces the artifacts reduced by SSD.

Animation Space [15] changes the number of weights per
bone influence by combining the weight factor with the ver-
tex position in the reference pose. The original SSD equa-
tion (eqn. 1) is rewritten in another way by making the

substitution pi = wiT̂
−1
i v̂ as follows:

v =

bX

i=1

Tipi

This increases the number of weights per bone influence to
four, allowing for non-linear effects which reduce the defects
inherent in the SSD framework.

For a particular pose, each skinning framework produces
an approximation to the ideal character skin. It is claimed
that the various extensions to SSD reduce the characteris-
tic defects produced by the original framework. However,
there has been no attempt to objectively compare the qual-
ity of the approximations generated. For example, the added
complexity of additional weights may produce other defects
that are not present in the SSD framework and the num-
ber of additional weights required is unclear. We provide an
objective comparison between SSD and the two frameworks
that extend it by increasing the number of weights per bone
influence, Animation Space and Multi-Weight Enveloping.

A set of example polygon meshes, with their underlying
skeletons, is required in order to carry out a comparison
between these three skinning frameworks. Often the poly-
gon mesh representations of a character’s skin are specified
without a skeletal structure or the skeletal structure is lost
at some point. An example of this is when a 3D object is
captured with a scanner, which only captures the surface
points of the object and no internal structure. Our system
for comparing the three skinning frameworks requires these
polygon meshes along with their underlying skeleton, thus,
the first step in our comparison is to recover the skeletal
structure of a character from a set of example meshes.

2.2 Recovering the skeleton
There has not been much direct research related to the re-
covery of skeletal structure from mesh sequences. The re-
lated areas of research are computer vision and clustering.
Computer vision tracks the movement of objects across a
sequence of images, we wish to track the movement of indi-
vidual character parts, such as a forearm and hand. Cluster-
ing is used to divide the character mesh into sections which
move in a similar way.

A method for extracting the moving sections of video data
is presented by [3]. They divide each of the images up into
sections they call layers, which describe a set of pixels in a
image. The movement of the layers is then analysed from
frame to frame based on the transformation of each layer
from frame to frame. They find a set of possible layers and a
set of corresponding transformations between frames. They
use the EM (Expectation-Maximisation) algorithm to find
an optimal choice for layers and transformations.

The general approach to recover a skeleton of a character
used by [2], [10] and [6] is to first estimate which parts of
the input mesh sequence belong to a specific rigid sections
and the transformations of the rigid section, then later re-
cover the skeletal structure. The method proposed by [6]
recovers the articulated model of a 3D object from 2D im-
ages. The images of are used to extract the CSP (Colour
Surface Points) which represent a 3D point on the surface of
the object and the colour of the point. The CSPs are sub-
divided into parts that move in a similar way from image
to image. Initial estimates for the division of the CSPs are
obtained by clustering the 6 DOF of the CSPs. Then the
EM algorithm is used to refine the results. In the E-step the
sub-division of the CSPs are estimated based on how closely
the CSP are aligned. The M-step estimates the motion of
each RS using a modification of the Levenberg-Marquardt
(LM) algorithm. There methods are prone to local maxima
problems due to its relation to the Iterative Closest Point
(ICP) Algorithm [2].

James et al. [10] suggest that triangles with similar rotation
sequences belong to the same rigid section. They advocate
using Polar Decomposition to extract a triangle’s rotation
sequence from a rest pose to each subsequent pose. Then
using the Mean Shift clustering algorithm [5, 9] triangles are
divided up into sets which have similar rotation sequences.
Each set then indicates a RS of the mesh. They do not re-
cover the skeletal structure of the character, but use the RSs
to estimate the movement of the bones.

A automated solution is presented by [2] which obtains an
initial estimate for the RS division of the mesh and the RS
transformations. Then the EM-aglorithm is used to refine
the estimate. The E-step optimises the assignment of mesh
vertices to RSs based on the RS transformations and the
connectivity of a mesh. Their method favours RSs that are
connected. The M-step then uses the ICP algorithm to find
new RS transformations.

2.3 Mesh comparison
The methods that are used to generate deformed polygon
meshes only produce approximate meshes. In order to de-
cide whether we have arrived at a good approximation we
need some way of measuring the error introduced. This may
be done by generating meshes for poses for which the ideal
reference mesh is known and then comparing the approxi-
mation with the reference mesh. [7] say there are no formal
methods for measuring the introduced error for mesh ap-
proximations. They provide a tool, Metro, that numerically
compares two meshes and evaluates the difference between
them by using an approximate distance metric. [20] provide
an another tool, Polymeco, that measures normal deviation
and geometric deviation.

3. METHOD
The performance of the three skinning frameworks may be
compared by the quality of the approximate meshes gener-
ated for a character. We use a number of data sets, each
consisting of a sequence of polygon meshes that represent
a character in the poses of an animation. For each of the
skinning frameworks, a model is trained using a subset of
the known poses and then is used to generate the meshes



for the full data set. By comparing the approximate meshes
with the originals, the error introduced by each framework
may be calculated and then compared.

3.1 Mesh Generation
Figure 2 gives an overview of the mesh generation system
created. The subset of the know poses of a character, the
training set, is used to recover its skeleton in one of the
poses, know as the rest pose. Once the skeleton is recov-
ered, the bone transformations required to align the skeletal
bones with each of the poses in the set are found. These
bone transformations are what is required by the skinning
techniques.

Each of the three skinning frameworks being compared as-
sign a number of weights to each vertex per bone that affect
its position. Following the work of follow [21], [22] and [15],
we implement modified least squares solvers to assign these
weights. Since each vertex’s position is approximated for
particular pose individually, we solve for the weights of a
particular model on a vertex by vertex basis. By equating
the position of each approximated vertex with the position
of the vertex in the known reference mesh, we set up an
over-constrained linear system that may be solved in a least
squares sense. The weights found thus minimise the geo-
metric difference between the approximate and ideal vertex
position.

3.2 Approximation Evaluation
The quality of a mesh approximation is not easily defined
and we make use of two methods to measure this. We gen-
erate the approximate meshes for four different animations:
a galloping horse, a bending arm, a galloping camel and
a twisting arm. Each of the generated meshes is compared
with its corresponding reference mesh and, in addition, tem-
poral artifacts and the perceived quality of the approxima-
tions is measured through user experiments.

3.2.1 Mesh Comparison
The mesh approximations generated by the skinning frame-
works are evaluated using two of the Figures of Merit (FOM)
described by [20]. These are Geometric Deviation, a mea-
sure of the geometric distance between each vertex of the ap-
proximate mesh to the closest point on the reference mesh,
and Normal Deviation, the difference between the normals
of corresponding vertices in the approximate and reference
meshes. The geometric deviation gives an indication of how
close the shape of the approximation comes to the original.
The normal deviation is an important measure as normals
are used in lighting calculations and so a large deviation in
the approximate mesh may produce visual artifacts when
the mesh is rendered.

3.2.2 User Experiments
The skinning frameworks will ultimately be used to create
animations for a user, so user experiments are conducted
to find which of the skinning frameworks produce the best
quality animations as seen by users. A skinning framework
may produce meshes with low geometric error, but still cre-
ate artifacts that are visually disturbing to the user. Users
are shown an example animation and a generated animation
side by side and asked how similar the two images are. They

are asked to decide how similar the images are on a scale of
0-10. The users are not be told how to evaluate these im-
ages or what similarity scale to use as we are interested what
a users subjective opinion of the animations generated are
rather than a defined metric.

4. RESULTS
We compare the three skinning frameworks, Skeletal Sub-
space Deformation (SSD), Animation Space and Multi-Weight
Enveloping (MWE), based on the quality of the mesh ap-
proximations to character skins that they produce. The
three frameworks are tested on four data sets, each a se-
quence of polygon meshes making up an animation. In each
case the same training set and skeleton were used in order
to train the respective skinning models.

We successfully created a system to recover the skeletons
from a set of pose meshes. The skeleton was recovered
from a set of example poses of a character as seen for the
horse model in figure 4. Once a skeleton was recovered its
bone transformations for each frame of given animation were
found. The skinning frameworks were able to use the skele-
tons and transformations to generate new meshes well. For
a given of the mesh comparisons the same recovered skele-
ton was used in each of the frameworks.

Each weight fitting procedure requires a number of user-
defined parameters which were set by comparing the mean
geometric deviation across a range of possible values, and
then selecting the one with least deviation. An example
of selecting the regularisation parameter for the animation
space model is shown in figure 3.

4.1 Mesh Comparisons
The mesh comparison tool, Polymeco [20], is used to mea-
sure the geometric and normal deviation between each of the
meshes generated. Polymeco visualises the error by mapping
the deviation to a colour scale ranging from blue, no error,
to red, maximum error. The scale is kept constant across the
comparisons for the different frameworks and so the quality
of the meshes generated by each of the frameworks may be
visually compared. We present a representative selection of
the results for the horse data set. A training set of 10 poses
is used to train the respective model with the poses being
chosen to reasonable represent the range of motion of the
horse character.

For each of the data sets, two different subsets of the gener-
ated meshes are of interest. The performance of a skinning
framework on the poses used to train the skinning model
gives an indication of the best case performance of the frame-
work. The approximations of poses that are not in this
training set show how well a framework generalises.

The fitting to the training poses (figure 5) shows that, in
terms of geometric deviation, Animation Space and Skeletal
Subspace Deformation (SSD) behaving similarly with Multi-
Weight Enveloping (MWE) achieving the closest fit. This
was common across all 10 of the training poses. The er-
ror for the training poses was, however, extremely small for
all three frameworks with the maximum deviation across all
poses being less that one percent of the length of the horse.
The situation is somewhat different for the new poses given



Figure 2: System overview. Given a set of example meshes for a character our system first recovers the
skeleton for each pose. The skeletons and the meshes are then used to compute the weights for the model
according to the skinning framework (e.g. SSD). The model is then used to generate new meshes from
specified skeletal configurations. These may come from the original meshes or be skeletons in new poses.

in figure 6. The colour maps show some large deviations by
the MWE model in the second and third pose shown. These
small patches of relatively high deviation are likely to be vis-
ible. The SSD model performs poorly in the first pose with
large patches of moderate deviation. However, because the
patches are large and the deviation not extreme, they may
not be noticeable. Animation Space shows good generali-
sation with low error across all the generated poses. These
results represent the general theme of the full set of gener-
ated meshes with MWE fitting the examples poses closely
but generalising less well than the other two frameworks.
SSD and Animation Space perform similarly when fitting to
training examples with Animation Space generalising better
to the new poses.

Geometric deviation is an indication of how closely a gener-
ated mesh fits an example. As suggest above, this measure
does not necessarily directly translate to visible defects. The
other measure which may be used in order to determine the
errors in an approximate mesh is to compare the normals of
the generated mesh with the original.

Figure 7 shows the normal deviation for each of the frame-
works when compared to the same three poses that are part
of the training set and figure 8 the normal deviation when
meshes are generated for poses not in the training set.

The figures above show MWE once more fitting the example
poses more tightly than Animation Space or SSD which be-
have similarly on the training poses. It is interesting to note
the high deviation on the upper thigh. This is most likely
due to some degree of self-intersection as the leg moves close
the body and these vertices may not be visible when ren-
dered. All three frameworks match the training set closely
which the mean error far below that of the poses which are
not given as examples. For these unseen poses, Animation
Space performs the best with little deviation across the dif-

ferent poses. SSD also performs well in comparison to MWE
which has fairly large area of deviation for some poses (such
as the third pose shown in fig 8).
The results for the horse data set show that MWE is able
to fit the training examples well, but generalises poorly in
some cases. This is due to overfitting – a problem that
MWE is more prone to than the other two frameworks due
to the higher number of weights utilised. Animation Space
performs better than SSD in all of the horse poses when
considering both mean and maximum geometric deviation
as well as normal deviation.

4.2 User experiments
19 users were tested and the following results were obtained.
The users were random students who volunteered to com-
pare the 24 animations. The animations were made from
4 different models, animated using 3 skinning frameworks
from 2 viewing angles. Each pair of animations that the
user is asked to compare provides a sample of how similar
the user finds the animations. There are 456 samples in to-
tal with 152 for each of the skinning frameworks.

The mean similarity rating for SSD is 7.88 ± 2.09 with a
95% confidence interval of [7.54;8.21], AS is 8.88 ± 1.31 with
a 95% confidence interval of [8.67;9.09] and MWE is 6.28 ±
2.63 with a 95% confidence interval of [5.87;6.71]. Table 1
gives the t-test that shows there is a statistical difference
between the population means for all populations as each of
the p values for the tests are very small. The box and wisker
plot, figure 9, gives a visual comparison of the populations.
AS produces the meshes users found to be most similar to
the ideal, followed by SSD and then MWE.

The user experiments showed that users found Animation
Space to produce approximation with the highest similarity
to the example animations, giving a mean similarity rat-
ing of 8.88 out of a maximum of 10. Indeed, the mean is



Variable Group 1 Group 2 t-value df p Valid N Valid N Std.Dev. Std.Dev. F-ratio p
Group 1 vs Group 2 Mean Mean Group 1 Group 2 Group 1 Group 2 Variances Variances
SSD vs AS 7.875000 8.881579 -5.03176 302 0.000001 152 152 2.091650 1.306804 2.561869 0.000000
MWE vs SSD 6.289474 7.875000 -5.8124 302 0.000000 152 152 2.633537 2.091650 1.585261 0.004895
MWE vs AS 6.289474 8.881579 -10.8702 302 0.000000 152 152 2.633537 1.306804 4.061231 0.000000

Table 1: t-test for comparison of each of the skinning framework means against each other. Each of the tests
show that there is a statistical difference between each of the means.

statistically higher than the means of the other frameworks
and Animation Space also shows the smallest spread of val-
ues (see box and wisker plot figure 9). This indicates that
users consistently found that Animation Space produced ac-
curate approximations. Users found the SSD approxima-
tions fairly accurate with a mean similarity value of 7.88.
SSD thus produced meshes that were not as accurate as
those generated by Animation Space. The visible errors in
the meshes approximated by SSD are mostly due to the
well documented shortcomings of the framework, such as
the “candy-wrapper” effect for the twisting arm animation.
MWE performed badly, with a mean of 6.29, due to prob-
lems with overfitting which produces highly visible defects.

5. CONCLUSIONS
The performance of Animation Space was superior to that
of Skeletal Subspace Deformation (SSD) and Multi-Weight
Enveloping (MWE) in both the user experiments conducted,
and the mesh comparisons carried out. SSD produced the
characteristic volume loss defects and showed inherent limi-
tations in its ability to closely fit the example poses used for
training. Despite these shortcomings, SSD produced good
approximations to most of the example animations. MWE
proved general enough to fit the example poses extremely
closely but suffered from overfitting due to this flexibility.
Animation Space was able to fit the example poses closely
but did not suffer from overfitting to the same extent, gen-
eralising well to new poses.
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Figure 3: The effect of the regularisation parameter on the accuracy of the AS model. After an initial increase
in accuracy, the increasing regularisation parameter results in the accuracy of the mesh approximations
generated by the AS model decreasing.

Figure 4: Horse poses (first column), RS with recovered skeletons (second column), recovered skeletons only
(third column) and recreated poses using Animation space(last column)



Figure 5: Geometric deviation when fitting the example poses of the horse data set. A comparison between
the three frameworks fitting the poses used as training examples. Note that the colour scales are constant
along the rows, that is for a set of meshes in a particular pose, but differ down the columns, that is differ
from pose to pose.

Figure 6: Geometric deviation when fitting non-example poses of the horse data set. A comparison between
the three frameworks fitting poses that are not used as training examples. Note that the colour scales are
constant along the rows, that is for a set of meshes in a particular pose, but differ down the columns, that is
differ from pose to pose.



Figure 7: Normal deviation when fitting the example poses of the horse data set. A comparison between the
three frameworks fitting the poses used as training examples. Note that the colour scales are constant along
the rows, that is for a set of meshes in a particular pose, but differ down the columns, that is differ from
pose to pose.

Figure 8: Normal deviation when fitting non-example poses of the horse data set. A comparison between the
three frameworks fitting the poses not used as training examples. Note that the colour scales are constant
along the rows, that is for a set of meshes in a particular pose, but differ down the columns, that is differ
from pose to pose.



Figure 9: Box and wisker plot of the user experiment. AS has the lowest spread and the highest mean,
followed by SSD and lastly MWE.


