
 1

Component-based Digital Library scalability using Cluster Computing

M.Z. Omar
Department of Computer Science

University of Cape Town
Cape Town
South Africa

momar@cs.uct.ac.za

H. Suleman
Department of Computer Science

University of Cape Town
Cape Town
South Africa

hussein@cs.uct.ac.za

Abstract

Most institutions make use of digital library systems (DL) to deal with the information they
use. DL systems allow them to provide information management services, including the
ability to search through and browse the information they have made available. The
current architecture of the systems however, does not scale well when the amount of
information increases dramatically.

A good example of a digital library would be a national collection of academic theses. Such
a system provides anyone the service of searching, browsing and viewing the theses in its
collection. These services allow users to effectively and efficiently locate and make use of
the materials available. With an increase in the number of users and underlying
information these systems degrade quite rapidly though.

This research is therefore aimed at creating digital library systems using components or
services with the ability to migrate and replicate themselves on a collection or cluster of
computers. Component based systems have proven to be more extensible and
maintainable than monolithic systems. Each component encapsulates the functionality it
requires and can be tested, modified and used without affecting other parts of the system.
The components in this experimental system consist of Web services and are mobile, in
that they have the ability to move around the cluster. Migration allows services or
components to move to different locations in order to maximally use available resources.
Replication serves to improve performance by improving availability as well as creating
duplicates of services as an increase in the need for them arises. These two service
enhancements promote a dynamic architecture with a greater degree of system efficiency
and reliability.

Currently, routing and migration modules have been implemented for the proposed
system. Initial performance tests have been conducted and the results from these are
discussed and analysed.

Keywords: digital library, scalability, migration, web services, components

 2

1. Introduction

Digital Library – or Information Management (IM) – systems are software systems to help
with the management of metadata and data, as well as provide end-user services for
activities such as submission, discovery and retrieval of digital objects. In most cases
these systems have developed out of the needs of brick-and-mortar libraries to manage
digital equivalents of their holdings, especially catering for the new trend towards
publishing solely in digital form.

The existing generation of such software tools – systems such as Greenstone (Witten and
Bainbridge, 2002), DSpace (Tansley, et al., 2003) and Eprints (University of Southampton,
2006) – have made it possible for non-programmers to easily set up and manage a digital
archive. However, all of these are relatively young tools and have much room for
improvement.

One often requested feature is the ability to scale to handle much larger collections of data
and/or much higher numbers of requests for services. Improving scalability is unfortunately
not trivial – in most cases it requires a re-engineering of the core architecture. Even then,
the nature of data processing places natural bounds on the increase in performance
possible (Wilkinson and Allen, 1999). In such situations the only solution is to use faster
computers or more computers. This is the approach taken in this research – to address
scalability issues in an information management system by using a cluster of computers.

Another often requested feature of IM systems is the ability to add on new functionality to
existing systems. This has led to a number of research efforts on extensible component
frameworks (Suleman and Fox, 2001) and a gradual adoption of the concept by production
systems. Greenstone 3 has already incorporated a Web Services-based component model
(Bainbridge, et al., 2004) and DSpace has documented an intention to consider this for its
next version (Tansley, 2004).

In bridging these two requirements, this research effort has thus attempted to exploit the
components being created in IM systems in order to appropriately distribute tasks within a
Beowulf cluster, without the applications needing to be particularly cluster-aware. In order
to support scalability at this high level, it has been necessary to design and implement a
node-independent service layer using DNS-like resolution of location-independent
identifiers to URLs. Then, a simple migration and replication system was added to
transparently balance load across the cluster as and when needed.

The rest of this paper discusses relevant background work, the design and implementation
of this high-level scalability framework and initial performance test results. Finally, an
analysis of the current system and thoughts on future work are presented.

2. Background

This section covers technologies related to the system being developed. It discusses the
Open Digital Library architecture, cluster computing, registry systems as well as migration
and replication. All of these are incorporated into the system in one way or another.

2.1 Open Digital Library (ODL)

The Open Digital Library (ODL) framework (Suleman and Fox, 2001) was adopted for this
research because of the availability of components and their simplicity of use.

 3

The Open Digital Library suite consists solely of service-oriented Web-based components,
each one performing a unique task or service. An extended version (XPMH) of the Open
Archive Initiative’s Protocol for Metadata Harvesting (OAI-PMH) is used by the component
instances to communicate with one another. While certain components are completely
independent, others rely on additional components for common functionality (such as the
storage of metadata). Users can download specific components in order to customise
their digital library systems to provide specific services. Using the ODL architecture,
different components can run on different machines and still work together as a single unit.

Each component of the digital library is a Web-service and the reference implementations
are written in Perl. This scripting language allows components to be platform independent
and thus portable to all machines with a Perl interpreter. Component instances can be
queried directly, using the verbs/requests in the XPMH, or indirectly if such an interface is
provided. Individual ODL protocols for components are also specified as each component
supports specific functionality (Suleman, et. al, 2003).

In a typical scenario, such as searching, the user accesses a search interface in a Web
browser. The user types in his search request and waits for the response. The user’s
request is sent to the search component. The search component then checks its indices
for any matching items. The matching items are requested from the repository component
instance and forwarded to the interface for the user to view.

Table 1 contains a list of some of the ODL components available.

Table 1: List of ODL Components, descriptions and protocols (Suleman, 2002)

Component
Name

Functionality Interface
Protocol

DBUnion Merges together metadata from
different sources.

ODL-Union

IRDB Search Engine. ODL-Search
DBBrowse Facilitates browsing through metadata

based on values of particular metadata
fields.

ODL-Browse

WhatsNew To track and obtain a sample of recent
entries.

ODL-Recent

Box Dumb archive supporting submit and
retrieve functionality.

ODL-Submit

Thread Engine for discussion forums, guest
books and resource annotation.

ODL-Annotate

Suggest System to make suggestions based on
collaborative filtering.

ODL-
Recommend

DBRate Manages the submission and access
to ratings of individual resources.

ODL-Rate

DBReview Peer review workflow manager. ODL-Review

The ODL architecture provides a platform that may be extended for dynamic configuration
of services given its distributed design. This feature has been exploited in this research by
overlaying the ODL components on a Beowulf cluster.

 4

2.2 Cluster Computing

Cluster computing is best characterized by combining a number of off-the-shelf computers
and resources, using both hardware and software, in order to work as a single machine
(Duggan, 2001).

Over the past 10 years cluster computing has grown dramatically and there is a wide
variety of software and hardware choices when creating a cluster today. Currently clusters
are classified according to their functionality (Burleson, 2003). These include:

• Failover clusters
This is the most widely used type of cluster today. Emphasis is placed on achieving
high availability with minimum or no downtime if possible.

• Scalable high performance cluster
These clusters are referred to as parallel or high performance computing clusters.
They provide scalability, high-performance and high availability.

• Application clusters
Application clusters provide high availability and scalability. Each node runs an
instance of the application server and clients can connect to any of the server
instances.

• Network Load balancing clusters
This type of cluster distributes incoming requests among the multiple nodes it
contains. Every node can handle requests for the same content or application.

Cluster software can be categorised into cluster-aware and cluster-unaware applications.
Cluster-aware applications have been built or designed specifically for use in a cluster
environment. These applications know about other nodes in the system and may
communicate with them if necessary. Cluster-unaware applications, on the other hand, do
not know whether they are running on a cluster or single node. As a result of this, some
additional software may be necessary to set up the cluster.

Most of the focus in cluster computing has moved away from the hardware issues and is
currently more concerned with developing efficient and usable cluster software. By
making use of a cluster correctly, systems can speed up their execution time and provide
better service. Having multiple computers may increase scalability of a system as more
resources are available. However, it is necessary to track the location of compute
resources within the cluster, especially at the high level of Web-based services.

2.3 Domain Name System (DNS)

The DNS system (Network Working Group, 1987) fulfils the role of a resource locator on
the Internet – mapping generic resource (typically domain) names to specific locations.

A domain name is used to refer to resources on the Internet, in preference to a fixed IP
address. The URL http://www.howstuffworks.com contains the domain name
“www.howstuffworks.com”. Similarly, the email address “iknow@howstuffworks.com”
contains the domain name “howstuffworks.com”. These URNs are easier to remember
than their corresponding IP addresses. For example, when someone types
http://www.howstuffworks.com into a WEB browser, the computer they are working on
retrieves the corresponding IP address (216.183.103.150) in order to locate and retrieve
the Web page (HowStuffWorks, Inc., 2006). This conversion from the human-readable
address to the IP address is provided by the DNS.

 5

The DNS has three main components (Network Working Group, 1987), namely:

• Domain Name Space and Resource Records
These provide specifications for a tree structured name space as well as the data
associated with those names. Each node and leaf of the tree names a specific set
of information or resources and query operations can be used to extract specific
information from a set.

• Name Servers
Name Servers are server programs which hold information about the domain tree's
structure and set information. These servers may cache structure or set information
and a particular name server may have complete information about a subset of the
domain space. It will also have a list of pointers to other name servers that can be
used to retrieve information from any part of the domain tree. Name servers know
the parts of the domain tree for which they have complete information and are said
to be authoritative for these parts of the name space.

• Resolvers
Resolvers extract information from name servers in response to client requests.
They must be able to access at least one name server and answer requests directly
or indirectly using referrals to other name servers.

Based on the immense size of the database to manage all online resources, the DNS is
maintained in a distributed manner with local caching in order to improve performance.
Information is also replicated on various name servers.
In practice, after typing in a URL into a Web browser, it is passed to the local resolver on
the machine. The resolver then takes this URL and queries a name server to retrieve the
IP address associated with the URL. If the name server has the address it will send it to
the resolver and the resolver may then retrieve the resource (webpage). If the name
server does not have the IP address it will refer the resolver to another name server which
has more information about the URL. This process may continue until a name server with
the IP address is located or until the domain name is considered invalid.
The DNS system has been proven to work both efficiently and effectively (Berinato, 2002).
Attacks on the system in order to take down the Internet have failed and experts have
concluded that a successful one would take about eight to nine hours of constant
bombardment of requests. The DNS system provides a model that was used to develop
the registry component of the system for this research project.

2.4 Migration

Process migration allows for processes or objects to be moved from one machine to
another during execution in a distributed environment. Migration is transparent if the
process or object is unaware that the move has taken place (Nuttal, 1994).

It is of primary interest due to its offering improved performance over static allocation
schemes for processes and objects, where the system load is unstable or not known a
priori. Migration can be used to speed up the execution time of a single task. It enables
dynamic load balancing, fault resilience, ease of administration, and data access locality
(Milojicic, et. Al, 2000). For the purpose of this paper the emphasis will be on object
migration of component instances.

Systems which support object migration include the Persistent Object Infrastructure by
Mike Olsen, the Chorus Object-Oriented Layer developed by Chorus Systémes and
Emerald, to mention only a few (Nuttal, 1994). In order to improve system performance

 6

migration as well as replication of components will be implemented as part of the system
being developed.

3. Analysis and design

In order to develop a digital library system that manages mobile component instances,
additional infrastructural services had to be introduced. These services are called the
Registry and the Resolver. The Registry is responsible for tracking all component
instances in the system while each Resolver would track components on its local machine.
The figure below shows this system (on a single machine) and will be referred to as the
experimental system.

Figure 1: Experimental System with Registry and Resolver

Search Engine

Search Interface

ResolverRegistry

Browse Engine

Browse Interface

Archive Component

External
Access

External
Access

External
Access

Experimental System with Resolver and Registry

The system was based on an ODL architecture (as shown in Figure 2) which was
extended as discussed later in this section. The system itself is spread across a cluster.
In the rest of this document, machines inside the cluster will be referred to as nodes. The
cluster consists of 13 3Ghz Pentium nodes connected via a Gigabit switch, of which
appropriately-sized subsets were used for development and testing of this system. The
modifications to the original ODL architecture are discussed below.

 7

Figure 2: ODL architecture used for system

Search Interface

Browse Interface

Search Engine

Browse Engine

Archive Component

Open Digital Library System

External

Access

External

Access

The first phase was the implementation of the Registry and Resolver components. The
need for these components arose due to the introduction of component migration and
replication. The traditional ODL architecture uses hard-coded URLs inside the component
instances. Thus, in a system where components can migrate, once a component has
moved the hard-coded URL would be invalidated and the system would no longer function
correctly. Thus the Registry and Resolver were introduced in order to alleviate this
problem and they are discussed below.

A Resolver resides on each node in the cluster. It keeps track of all component instances
residing on that node and could be seen as a local registry. The Resolver acts as an
intermediary between the component instance and the Registry. The Resolver’s list
contains the name, version, type, owner, the actual URL to the component instance and a
database name if the component has one. This list is only updated when existing
component instances migrate or replicate and new component instances are created or
removed. An entry is removed when a component instance is removed or migrates to
another node. An entry is added to the list when a component instance is created or an
instance is migrated or replicated to the node. When a component instance requires a
URL to another component it sends a request to the Resolver. The Resolver then forwards
the request to the Registry. The Registry responds with the appropriate URL and the
response is forwarded from the Resolver to the component.

The main responsibility of the Registry is to keep track of all components within the system
and provide their associated URLs on demand. It stores all of this information in a
database – it contains the following information for each instance:

• name of the component instance,

• type of component the instance is,

• the actual URL to the instance,

• the version of the instance,

• the status of the instance (running or migrating/replicating), and

• the owner of the instance.

 8

When a node starts up the list of component instances residing on it is sent to the Registry
and the list is updated. When a node is shut down, the Registry is informed and it removes
all component instances which reside on that node from the list. The list is also updated
during component instance migration or replication. After migration, the component
instance URL is updated in the Registry. During replication though, a complete new entry
is added. Finally, when an instance is created, the list adds a new entry and when an
instance is removed, an entry in the list is removed. The Registry also sends out URLs to
component instances (e.g., search interface) that depend on other component instances
(e.g., search engine) for some request to be fulfilled. The Registry communicates with
components via the Resolver. The entire component instance, Registry and Resolver
system is seen in Figure 3.

Figure 3: System with Registry and Resolver

Computer

Registry

Node 1

Component

Instance

A

Component

Instance

B

Resolver

Node 2

Component

Instance

C

Component

Instance

D

Resolver

Node 3

Component

Instance

E

Component

Instance

F

Resolver

Node 4

Component

Instance

G

Component

Instance

H

Resolver

The second phase was the modification of each component so that they can migrate and
replicate. Components are divided into two different categories with respect to migration
and replication. These are components that have associated data (e.g., databases or flat
files) and those that do not have any data associated with them (such as interface
components). The system caters for both types of components. The process of migration
is explained in the following paragraphs.

 9

When a component instance is requested to migrate, the instance determines whether it
may or may not migrate. Once the migration request has been accepted, the component
creates a copy of itself inside a predefined directory. This is done by copying the
component instance directory to the predefined one. Any databases or flat files that the
component instance uses are also copied into this directory. This directory is then
compressed and encoded into an XML document using base 64 encoding. This document
is then transferred to a migration service on the destination machine using HTTP.

Once the migration service has received this XML document, the archive file is recreated
and uncompressed. The component instance itself is then moved to the directory in which
a template of the component exists. Any data dependencies are set up. Once the instance
has been set up and is working correctly, the original component instance is removed from
the original node. This process is illustrated graphically below.

Figure 4: Migration of a component instance

A

B

Node 1

File Transfer via SOAP

Node 2

Node 1 Node 2Node 3

Resolver Resolver
Central Registry Update

Update

B

Node 1

A

Node 2

Component instance

A is zipped up along

with its dependencies

and is encoded into

an XML document.

This is transferred to

node 2 via HTTP

After setting up

component instance

A on node 2, the

local Resolver, the

Registry and the

Resolver on node 1

are updated.

Component instance

A is then removed

from node 1.

Component instance

A has now migrated

to node 2.

1.

2.

3.

The replication of a component happens in the same way as the migration with the
exception that the original component instance is not removed from the system.

These modifications to the system provide a basis for system scalability. Testing the
impact of the Registry, Resolver, additional communication and other overheads is
discussed in the next section.

4. Initial evaluation and testing

The aim of testing is to evaluate the various performance impacts of the introduction of a
Registry and Resolver as well as the extra communication introduced to the component
instances. Ultimately, the system will be tested for its ability to scale – when the
implementation of a load balancer has been completed. The series of test cases outlined

 10

below have been created in order to evaluate particular aspects of the system and how it
compares to the traditional system.

4.1 End-to-End communication test

The first part of the testing was aimed at evaluating the overall slow-down of the system
due to the introduction of the Registry and Resolver. This test had both the experimental
and normal (historical) system running on a single node (at the same time).

The architectures of both experimental (Figure 1) and normal systems (Figure 2) can be
seen in the previous section. Batch jobs of 200 requests were sent to the search and
browse interfaces and the results are documented below in Tables 2 and 3. The requests
were sent serially. The request to the search interface was for the search term ‘computer’.
The browse interface was requested to display the records in descending order by title and
date.

Table 2: Normal and Experimental System Overall Search Time in Seconds

Run Number Normal Search
System

Experimental Search
System

1 101.402 143.537

2 101.543 143.028

3 100.542 142.985

4 100.516 143.557

5 100.493 143.262

6 101.598 143.167

7 100.545 143.611

8 100.537 143.554

9 100.668 142.997

10 100.670 143.661

Table 3: Normal System and Experimental System Overall Browse Time in Seconds

Run
Number

Normal System
Browse

Experimental System
Browse

1 249.514 334.087

2 249.548 333.924

3 249.573 333.675

4 249.473 333.952

5 249.550 333.872

6 249.590 333.921

7 249.704 334.020

8 249.467 333.729

9 249.482 333.824

10 249.433 333.922

The results obtained from this test indicate a delay of approximately 43 seconds for a set
of 200 search requests submitted to the experimental system. Therefore the delay can be
seen as a 43/200 or 0.215 second delay per request. This of delay is relatively small for an
end user submitting requests to the search interface. The browse interface delay is
approximately 85 seconds for the entire batch of 200. The delay for an end user in this
case is 85/200 or 0.425 seconds. In both cases, for search and browse, the delay is
minimal and is a small cost for the introduction of the Registry and Resolver components.

 11

It is expected that the benefit of supporting migration and replication will more than make
up for this additional cost.

4.2 Distributed components test

The second test had both systems distributed over multiple nodes. With this test the
performance impact as well as the additional network communication between component
instances could be taken into account. The figures below show how the instances were
distributed and the results for this experiment (with identical parameters to the prior test)
are documented as well.

Figure 5: Distribution of experimental system for testing

Registry

Archive Component

Search Interface Search Engine

Browse Interface

Browse Engine

Resolver Resolver Resolver

Node 1 Node 2 Node 3

Figure 6: Distribution of normal system for testing

Archive Component

Search Interface Search Engine

Browse Interface Browse Engine

Node 1 Node 2

Table 4: Distributed experimental and normal system request times

Request to Average experimental time Average normal time
Search 1.199 0.592
Browse 8.0315 2.366

The results above show an increase in both search and browse time which was expected.
The experimental search component took twice as long as the normal one. This would still
be acceptable as it is only a difference of 0.5 seconds. The browse component took four
times as long which was unexpected. This may be due to other network traffic on the
system or the way in which the browse component was configured. We can thus ascertain
that the browse component needs more attention to perform optimally.

4.3 Single instance performance test

The third part of the testing focused on the performance impacts on individual component
instances, as a result of indirection through the Registry and Resolver services. The
component instances in the traditional system were compared to those in the experimental
one. Each instance was tested directly using the command line. The instances that were
used in this test were the search and browse engines. The tests requested that both the

 12

search and browse instances retrieve a record from the archive component instance and
this was done in batch jobs of 100. The performance differences between the traditional
and experimental components, for the test, are as follows:

Table 5: Normal and Experimental Search Component Times in Seconds (command line)

Run
Number

Normal Search
Component

Experimental Search
Component

1 11.793 22.479

2 11.809 22.485

3 11.789 22.536

4 11.789 22.508

5 11.817 22.499

6 13.233 22.498

7 11.766 22.477

8 11.759 22.507

9 11.787 22.604

10 11.799 22.487

Table 6: Normal and Experimental Browse Component Times in Seconds (command line)

Run
Number

Normal Browse
Component

Experimental Browse
Component

1 18.895 21.390

2 18.901 21.399

3 18.887 21.407

4 18.931 21.439

5 18.887 21.486

6 18.889 21.417

7 18.938 21.408

8 18.910 21.401

9 18.939 21.413

10 18.890 21.488

The testing of the browse engines individually show that the extra communication
introduced is very small. The time difference in the request time for 100 requests is just
under 4 seconds, making the delay time for a single request 0.04 seconds, which is barely
noticeable to someone using the component instance. The search engine however
performed differently. The search engine in the experimental system took almost twice as
long as the normal one. This makes the delay time for the search engine 0.11 seconds,
which is quite large compared to the browse engine but still quite small in terms of search
time.

4.4 Overheads isolation test

The next phase of testing was to evaluate the network usage of the layers of the
experimental system. As additional communication has been introduced, it is necessary to
determine the amount of time it takes as well as the amount of extra information that is
being sent. With this it can be determined whether or not the network is being used
optimally and the system can be tweaked if necessary in order to improve performance.
The network traffic between the following component instances was monitored on the
distributed system (Figure 5):

 13

• between the Resolver and the component instances and

• between the Registry and Resolver.

Communication between component instances was not monitored as there is no change in
the way the modified component instances communicate with one another. Also, each
component communicates with the Resolver in order to get the URL to another component
and never contacts the Registry. The network usage between the two can be seen below
as well as the size of the data being transferred.

Table 7: Bytes sent and received from component instance to Resolver as well as time taken

Component Bytes
sent

Bytes
Received

Average
Time

Request for

Search Interface 87 388 0.01911 Search Engine URL
Browse
Interface

91 400 0.020237 Browse Engine
URL

Search Engine 90 393 0.019506 Archive URL
Browse Engine 90 393 0.020064 Archive URL

Table 8: Bytes sent and received from Resolver to Registry as well as time taken

Component Request from Bytes
sent

Bytes
Received

Average
Time

Request for

Resolver Search Interface 42 388 0.010076 Search Engine
URL

Resolver Browse
Interface

45 393 0.010124 Browse Engine
URL

Resolver Search Engine 45 393 0.010012 Archive URL
Resolver Browse Engine 45 393 0.010061 Archive URL

As can be seen from the results in the table 6, the overall time used for networking for
each component instance is quite small. In table 6 we have the time it takes a component
to get a URL from the Registry. This includes the time in table 7 for each component
respectively. The time for connecting an instance to the Resolver is just over 0.010
seconds and the time for the Resolver to connect to the Registry is 0.010 seconds on
average. From this we can gauge that most of the time during communication may be
spent in establishing connections with the other component instances and also
computation time for extracting the URL at the component level.

5. Conclusions

The use of a cluster of computers shows promise as a mechanism to achieve scalability
for a component-based digital library system. An overall system design for such an
approach is based on existing tools and practices in Internet technology (such as DNS)
and cluster computing, albeit at a high level. The initial implementation of this system, to
support location independence and resolution, has been tested and the services have
achieved acceptable performance levels. It is expected that with migration, replication and
simple load balancing added, this experimental system will provide sufficient evidence to
support the use of clusters for high-level scalability of information management systems.

 14

6. Future work

The current system is a proof-of-concept one and provides a platform for additional work to
be done. It serves to prove that this type of system could perform better than other
systems not incorporating migration and replication of services as well as provide a
possible solution to scalability problems. The current system has various aspects which
can be improved upon. These are discussed in the following paragraphs as well as how
they form part of the current system.

The introduction of a simple load-balancing component will be done as part of the
research. This load-balancing component is responsible for ensuring that requests go to
the appropriate component instances which have the least load. It will also decide when
these instances should migrate and replicate in order for the system to perform optimally
at all times.

Components may vary in the way they operate in terms of system resources. Finding
combinations of components which compliment one another may increase performance of
the system. Having a model for components which perform optimally when placed together
would also help with migration and replication decisions.

Another improvement is the granularity of service provision. Here we need to determine
which services are being used more often and make them more available through
replication. Certain services may only be needed for a short period of time and these
services should then be removed from the system as soon as the duplicates are no longer
needed.

A better load-balancing component will need to be implemented. This could encompass
some sort of artificial intelligence system which could learn when certain component
instances are needed more than others and then replicate them as needed. It should also
have an idea of request times for different types of components so that request routing can
be improved.

With all of the above-mentioned improvements, a fully functional and working version of
this experimental system could be implemented and used.

 7. List of references

Bainbridge, D., K. J. Don, G. R. Buchanan, I. H. Witten, S. Jones, M. Jones and M. I. Barr.
2004. Dynamic Digital Library Construction and Configuration. In Proceedings of Research
and Advanced Technology for Digital Libraries: 8th European Conference (ECDL2004),
Bath, UK, 12-17 September 2004, LNCS 3232, Springer.

Berinato, S. 2002. The DNS Attack: A Success Story for the Good Guys, CSO Magazine.
[Online] Available: http://www.csoonline.com/read/120902/briefing_dns.html (Accessed 21
June 2005)

Burleson, D. 2003. RAC – Types of Clusters. [Online] Available:
http://www.praetoriate.com/oracle_tips_mamt_cluster_types.htm (Accessed 15 June 2005)

Duggan, A. 2001. Technical Supplement – Beowulf Computer Clusters. [Online] Available:
http://www.tessella.com/Literature/Supplements/PDF/beowulf.pdf (Accessed 14 June
2005)

 15

Gerry McGovern Publications, 2006. Content Critical: Chapter One: Everything you know
about publishing is wrong: Part Two: Two: It's an information overloaded world. [Online]
Available: http://www.gerrymcgovern.com/cc_ch1_2.htm (Accessed 12 May 2006)

HowStuffWorks, Inc. 2006.Howstuffworks “How Domain Name Servers Work”. [Online]
Available: http://computer.howstuffworks.com/dns.htm/printable (Accessed 21 June 2005)

Kaufmann, M (ed). 2002. How to build a digital library. San Francisco, CA.

Milojicic, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S. 2000. Process
Migration. ACM Computing Surveys (CSUR), 32(3):241-299. [Online] Available:
http://delivery.acm.org/10.1145/370000/367728/p241-
miloiic.pdf?key1=367728&key2=1102019411&coll=portal&dl=ACM&CFID=72555809&CFT
OKEN=28259796 (Accessed 15 May 2006)

Network Working Group. 1987. RFC 1035 Domain Names – Implementation and
Specification. [Online] Available: http://www.rfc-editor.org/rfc/rfc1035.txt (Accessed 15
June 2005)

Network Working Group. 1987. RFC 1034 Domain Names – Concepts and Facilities.
[Online] Available: http://rfc.dotsrc.org/rfc/rfc1034.html (Accessed 21 June 2005)

Nuttal, M. 1994. A brief survey of systems providing process or object migration facilities.
ACM SIGOPS Operating Systems Review. 28(4):64-80. [Online] Available:
http://delivery.acm.org/10.1145/200000/191541/p64-
nuttall.pdf?key1=191541&key2=2391019411&coll=portal&dl=ACM&CFID=72555809&CFT
OKEN=28259796 (Accessed 15 May 2006)

Suleman, H., Fox, E.A., Kelapure, R., Krowne, A., Luo, M. 2003. Building digital libraries
from simple building blocks. Online Information Review, 27(5): 301-310. [Online] Available:
http://www.emeraldinsight.com/Insight/ViewContentServlet?Filename=Published/EmeraldF
ullTextArticle/Articles/2640270501.html (Accessed 12 May 2006)

Suleman, H. 2002. Open Digital Libraries, Ph.D. dissertation, Virginia Tech. [Online]
Available http://www.husseinsspace.com/publications/odl.pdf (Accessed 12 May 2006)

Suleman, H. and E. A. Fox (2001). A Framework for Building Open Digital Libraries. D-Lib
Magazine 7(12). [Online] Available:
http://www.dlib.org/dlib/december01/suleman/12suleman.html (Accessed 15 May 2006)

Tansley, R. 2004. DSpace 2.0 Design Proposal, presented at DSpace User Group
Meeting, 10-11 March, Cambridge, USA. [Online] Available:
http://wiki.dspace.org/DspaceTwo (Accessed 16 May 2006)

Tansley, R., Bass, M., Stuve, D., Branchofsky, M., Chudnov, D., McClellan, G., Smith, M.
2003. The DSpace Institutional Digital Repository System: Current Functionality. In
Proceedings of Joint Conference on Digital Libraries 2003, Houston, TX, May 27-31, 2003,
ACM Press, New York, NY, 87-97. [Online] Available:
http://delivery.acm.org/10.1145/830000/827151/p87-
tansley.pdf?key1=827151&key2=3503019411&coll=GUIDE&dl=ACM&CFID=11792774&C
FTOKEN=13954292 (Accessed 16 May 2006)

 16

Witten, I.H., Boddie, S.J., Bainbridge, D., McNab, R.J. Greenstone: A Comprehensive
Open-Source Digital Library Software System. Proceedings of the Fifth ACM Conference
on Digital Libraries, San Antonio, Texas, 2000, 113 – 121. [Online] Available
http://delivery.acm.org/10.1145/340000/336650/p113-
witten.pdf?key1=336650&key2=9711019411&coll=portal&dl=ACM&CFID=72555809&CFT
OKEN=28259796 (Accessed 14 May 2005)

Wilkinson, B., Allen, M. 1999. Parallel Programming. Prentice Hall, New Jersey.

