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Abstract 
The aim of this project was to develop a prediction system 
that uses Artificial Intelligence, machine learning using 
training data and Image Processing (AI) to extract training 
data from Sea Surface temperature (SST) images to predict 
the ocean surface, temperature features around the coast of 
the Southern African region.  

Region growing and histographic algorithms were used in 
the image processing section to extract thermal fronts as 
training data from the available SST images. A Temporal 
Bayesian Network was developed as the prediction model 
which used approximate stochastic learning and inference 
algorithms based on the Maximum Likelihood Algorithm 
(MLE). User-Centered Design (UCD) and Human-
Computer Interaction (HCI) methods were used to develop 
user-friendly and easy to understand Graphical User 
Interfaces (GUI).  

Results and evaluations of the project revealed that a 
generally successful prototype implementation of a 
prediction system that used AI, machine learning and 
image processing was developed.  

Categories and Subject Descriptors: 
 G.3 [Mathematics of Computing]: Probability Statistics 

 

Probabilistic Algorithms, Stochastic Processes, Time 
Series Analysis; H2.4 [Database Management] System 

 

Relational Database; H5.2 [Information Interfaces and 
Presentation]: User Interfaces 

 

Graphical User 
Interfaces (HCI), User-centered design; I 2.4 [Artificial 
Intelligence]: Knowledge Representation Formalism and 
Methods 

 

Temporal logic; I 2.3 [Artificial Intelligence]: 
Deduction and Theorem Proving 

 

Inference Engine; I 2.6 
[Artificial Intelligence]: Learning 

 

Parameter Learning; 
I 4.6 [Image Processing and Computer Vision] 
Segmentation 

 

Region Growing, Pixel Classification; I 
5.1 [Pattern Recognition]: Models 

 

Statistical; I 5.3 
[Pattern Recognition]: Clustering 

 

Similarity Measure  

General Terms: 
Design, Theory, Human-Factors 

Additional Key Words and Phrases:  
Bayesian Network, Temporal Bayesian Network, 
Approximate Stochastic Learning, Approximate Stochastic 
Inference, Poisson Distribution, Human-Computer 
Interaction, Region Growing, Histographic, Segmentation.  

1. INTRODUCTION 
"Prediction is very difficult, especially if it's about the 
future." 
Nils Bohr, Nobel laureate in Physics  

Although the above quote, from Nils Bohr [10], perfectly 
describes the reality of prediction, it is one of the most 
common activities that is done in all aspects of today s 
world. Some examples of prediction include predicting the 
weather, predicting sports results, predicting people s 
behavior, predicting the age of matter using carbon dating,  
predicting experimental results, etc.   

The uncertain or unforeseen factors that are involved in 
prediction make prediction so difficult.  

There have been several attempts at minimizing the effect 
of such uncertain and unforeseen factors to make 
prediction more accurate. Some of the attempts include 
using experience, using scientific reasoning and using 
previous observations or data, known as training data , as 
a guideline to the prediction. Lately, the use of statistics to 
model future predictions based on probabilities has gained 
interest within the researching and Computer Artificial 
Intelligence (AI) communities. An example of using 
statistics to aid with prediction can be found in Nielsen s 
work [11], which uses statistics to predict the risk in a wall 
condensation technique.  

Although prediction can be narrowed down to a small 
prediction error rate using such techniques, for example 
prediction of weather, one can never be 100 percent certain 
that the prediction that was made is an accurate prediction. 
That is the main driving forcing behind finding better 
prediction techniques that will give better predictions about 
desired events.  

This project focuses on detection and prediction of ocean 
surface, temperature features that are present in the 
Atlantic and Indian oceans around the Southern African 
Region using image processing, Artificial Intelligence 
(AI), machine learning and stochastic algorithms. 
Furthermore, the project presents the use of User-Centered 
Design (UCD) and Human Computer Interaction (HCI) to 
design user-friendly and easy to use interfaces for the 
prediction system.  



The project was taken in collaboration with the Zoology 
Department at the University Of Cape Town and a French 
company named de l Institut de Recherche pour le 
Dévelopement.   

2.MOTIVATION AND BACKGROUND 
2.1 Motivation 
The collaborating companies expressed the following 
problem areas, which created the project domain: 

 

A visualization and prediction tool for SST 
images (including daily, 5 day and monthly).  

 

Identify persistent and re-occurring features  

 

Develop a prediction system that will be user-
friendly and easy to use and interpret by non-
expert users. 

In addition to the above problems, the fishermen and 
anglers in the Southern African region could benefit form a 
prediction system that could monitor and predict ocean 
surface, temperature feature. The reason being, as Dan 
Rudnick suggests, Oceanic weather influences the 
distribution of phytoplankton, which other marine life 
feeds upon. [13] Hence, by monitoring and predicting the 
ocean surface, temperature features the fishermen and 
anglers could predict where the most likely accumulation 
of phytoplankton would be found, thus leading to the most 
likely accumulation of marine life. Furthermore, biologists 
who study the migration of fish to monitor whether or not 
the ocean surface temperature features influence the 
migration of fish could also benefit from the project 
prediction system. Thus, the project would add to the value 
of Artificial Intelligence and computer science in today s 
world.  

Finally, as Semtner A. [15] suggests that only the most 
advanced parallel computers are fast enough to produce 
high-quality ocean simulations and accurate global climate 
predictions of temperature and precipitation. Furthermore, 
Wang P. et al [17] support the views of Semtner in terms 
of computationally expensive ocean models. Thus, there is 
a need for a prediction system that is not computationally 
expensive and can be utilized on a personal computer (PC), 
which what the targeted users of the system will have 
access to.  

2.1.1 High-Level Project Requirements 
From the stated problem areas, the following overall 
project requirements were established:  

 

Design software to detect the actual positions of 
temperature features from SST images 

 

Design a prediction model for prediction of ocean 
surface features over a time series period 

 

the feature 
being: fronts, filaments and gyres 

 

Design a prediction model that will be able to identify 
ocean surface, temperature features that are persistent 
features and features that are re-occurring features. 

 
Design a prediction system, which will be able to use 
existing data as training data 

  
Design a prediction model that uses minimum system 

requirements in its prediction of ocean surface features 

 
Design a prediction model that will be user-friendly 
and easy to use for non-expert users  

2.1.2Division of project work 
The project was divided into two sections, which are 
detailed below: Image Processing and Understanding of 
the available ocean surface temperature data and Creation 
of a prediction tool, using AI and machine learning, which 
can predict ocean surface temperature features over time, 
using available data as training data.   

2.2 Background 
2.2.1. Threshold Algorithms 
Thresholding is used to distinguish classes of pixels in an 
image based on their intensity value [16]. In the simplest 
(binary) case an image is segmented by assigning pixels to 
one class if they are below the threshold and to the other 
class if they are above or equal to it.   

One can extend this to more than two classes of pixels, 
where a class is defined by an upper and a lower threshold. 
Where k is the number of classes, there are k-1 thresholds, 
and a class is defined as all pixels with an intensity value 
of between ki and ki-1.  

Histographic methods are designed to automatically 
identify the optimal threshold to use in an area. A 
histogram of the pixel values in the area is created and 
examined for the existence of 2 peaks.   

[12] describes a method where one segments the image 
using a threshold and evaluates the goodness of 
segmentation for each of the possible threshold levels for 
the image. If the maximum goodness value (the value 
corresponding to the best threshold level) exceeds a given 
limit, the area is said to have 2 populations.   

The goodness measure is defined to be the ratio of the total 
variance to the within class variance.   

[3] describe a very similar approach for applied to the 
identification of SST fronts. They apply this method on 
local, overlapping windows within the image. The size 
of the windows is a critical tuning parameter in this 
approach, as is the amount of overlap between these 
windows.   

If a window is identified as having two populations the 
special compactness of the populations is evaluated. This 
compactness is measured as the ratio of edges between 



pixels of the same class to the total number of edges 
between pixels.  

A more statistically correct method for histographic 
threshold identification is to fit 2 Gaussian distributions to 
the histogram and take the intersection between these two 
distributions as the threshold value.  

2.2.2. Region Growing 
Region growing as the name suggests is the process of 
merging neighboring areas into larger regions to segment 
an image.  

A region can be defined as follows: let R be and image and 
R, R2,   Rn such that: 

 

Where P(R) is a logical predicate over the points in set Ri 
and Ø is the null set. 
 One can group them these methods into two main classes, 
seeded and unseeded.   

Seeded region growing [1] starts from some set of points 
selected either manually or automatically and grows 
regions around these points. Pixels bordering on these 
regions are iteratively added to the seeded regions until all 
the pixels in the image are included in one of the regions. 
Thus in the final segmentation each region will contain 
exactly one of the seed points.   

Unseeded region growing starts from many small regions 
and merges them based on some measure of similarity to 
form larger regions. These methods usually begin by 
dividing the image up as blocks. Split and merge [6] 
methods make these initial blocks large and then split them 
recursively until the blocks meet some homogeneity 
criteria. Other approaches include making each pixel in the 
original image a region, or making regular blocks of a 
small number of pixels. These small regions are then 
merged until some criteria such as the number of regions 
or a threshold in the difference between regions is reached.   

2.2.3 Bayes  Rule 
Due to the rule of symmetry in probability the conditional 
probability can be expressed without using the joint 
probability P (A,B). Hence, an alternative way to calculate 
P(A|B) is possible, and is known as Bayes Rule. The rule 
can be modeled with the following equation, using e as an 
evidence variable and H as the hypothesis:  

 

The use of Bayes 

Rule underlies all modern AI systems for probabilistic 
inference [5]  

2.2.4 Bayesian Networks (BN) 
A Bayesian Network (BN) is an AI technique that uses 
probabilistic reasoning to calculate the conditional 
probability of an event occurring, based on related, 
existing data about the event, which is known as training 
data. The calculations are based on a cause-effect 
relationship between the events in the network. However, a 
BN can not model temporal relations between and within 
the random variables.  

A BN can be graphically represented using a directed 
acyclic graph (DAG) structure which has to conform to the 
following rules: 

1. A set of random variables, either discrete or 
continuous, or uncertain quantities make up the 
nodes of the BN.  

2. A set of directed links or arrows connects pairs of 
nodes. This is a representation of a cause and 
effect relationship. 

3. Each node N has a set of conditional probability 
distributions P(Ni | Cause(Ni)) , which can be 
stored in a conditional probability table (CPT), 
that quantify the effect of the cause(s) or parent(s) 
on the node. 

4. The graph has no directed cycles. 
5. The root(s) of the network should have a prior 

probability P(root) in stead of the CPT 

The following figure, adopted from [14], gives an example 
of a Bayesian network. It represents a situation where an 
alarm responds to a burglary, but also goes off when an 
earthquake occurs, notifying the police and the fire 
department. 

 

Figure 1: Showing a Bayesian Network 

The tables next to each node represent the CPT tables for 
that particular node. P(X) denotes the probability of X 
being true. This could be extended to include the 
conditional probabilities of each node being false, by the 
simple calculation: 1-p.    

2.2.5Bayesian Network Learning/Training 
Before one can start using a BN, the network structure and 
parameters have to be specified from the available training 
data. Murphy K. [8] suggests that in order to train a BN, 
two operations have to be performed. Firstly, the structure 



of the BN has to be established and then the parameters of 
the CPT tables have to be evaluated. Leaning the structure 
of the BN can prove to be an NP-hard problem and be 
much more difficult than parameter learning, especially 
when the BN has hidden nodes that are not directly 
observed from the training data.  

There are four cases that have to be examined for learning 
a BN: when the network structure is known and data 
variables are observable, when the network structure is 
known and the data variables are hidden / missing, when 
the network structure not known but the data variables are 
observable when the network structure not known and the 
data variables are hidden/missing.  

In the first case where the structure is known and the data 
variables are fully observable the leaning required would 
be parameter learning of the CPT. [8] and [14] suggest the 
use of a maximum-likelihood estimation (MLE) algorithm 
to do parameter learning in this case.  

To illustrate this type of learning, the following example 
can be used, which was adopted from [8]: where a 
produces supplies bags of balls to a sport facility, which 
can contain only be soccer balls or volley balls. The 
probability distribution of the bags is not known. Hence 
the probability of getting a bag with only volley balls is , 
and the probability of getting a bag with only soccer balls 
is 1- . The fraction of volley balls in a particular bag can 
be denoted a hypothesis h. Suppose that N bags were 
received, of which there were (s) soccer balls and (v) 
volley balls. The following mathematical model can be 
used to demonstrate this example:  

  

The MLE can be used to do parameter leaning in this case 
and is given by the value of  that maximizes the above 
expression. Using the log-likelihood the above equation 
can be model as : vlog + slog(1- ). Differentiating the 
equation with respect to  one gets: 

 

Hence, the proportion of volley balls in a given bag is the 
proportion of observed volley balls from the existing data. 
This means that this type of learning is a simple count of 
occurrences over the entire data set. When the data is 
continuous, a Gaussian distribution can be used to perform 
MLE instead. However, the MLE algorithm has 
disadvantages with small data sets. A more detailed 
elaboration on the MLE algorithm can be found in [14], [8] 
and [9]  

The second case, where the structure of the network is 
known, but some data variables are hidden or data is 
missing, according to [14] and [8], would be best suited to 
the Expectation Maximization (EM) algorithm which uses 

inference. The EM algorithm can be used to find a 
(locally) optimal Maximum Likelihood Estimate of the 
parameters. [8] An exhaustive explanation of the EM 
algorithm can be found in [14], [8] and [9].  

In the third case, were the network structure is not known, 
but all the data variables are observable a search through 
all possible network structures needs to be performed to 
determine which network structure fits the data best. This 
problem is an NP-hard problem. Possible solutions to this 
case are to use greedy algorithms (e.g. scoring metric or 
hill-climb algorithm) and clustering technique which find 
the most likely number of clusters. This case is exhaustive 
explained in [14], [8] and [9]  

According to [8], the last case, where both the network 
structure is not known and the data variables are hidden or 
data is missing can be solved by using a combination of the 
EM algorithm and a network structure search. Murphy K. 
[8] also suggests that introducing hidden variables can 
make the BN model more compact and can sometimes lead 
to easier structure learning and better results.  

2.2.6 Bayesian Network Inference/Querying 
The basic task of inference in a BN is to establish the 
posterior probability of a set of query variables/ nodes 
given the state of some observed event / variable. In other 
words, this means that we wish to know the probability of 
and effect variable given the current state of the cause 
variables. Inference in a BN can be either exact or 
approximate. The choice of inference methods to use is 
dependent on the network structure. Furthermore, the 
choice of exact inference or approximate inference 
depends on the quantity and availability of data. If the data 
that is available is sparse and only a small quantity of data 
is available, then approximate inference would be more 
suitable because to perform exact inference, a large data 
set is required. Finally, exact inference tends to be more 
computationally expensive than approximate inference, 
hence is one is looking for a BN that is less 
computationally expensive and exact results are not a strict 
requirement, then approximate inference would be more 
suited.  

Possible BN Learning Algorithms include, for exact 
learning: Enumeration [14], junction tree [14] [9] [2], 
variable elimination [14] [9], clustering algorithms [14], 
linear algebra (for Gaussian nets), Pearl's message passing 
algorithm (polytrees) [14] and for approximate inference: 
likelihood weighting [14], [9] and sampling algorithms, 
e.g. Markov chain Monte Carlo (MCMC) [14], [9]  

2.2.7 Dynamic/Temporal Bayesian Network  
A Dynamic Bayesian Network (DBN) is an extension of a 
BN to facilitate the modeling of temporal observations of 
stochastic random variables over discrete time steps. 



Murphy [8] suggests that a "temporal Bayesian network" 
(TBN) would be a better name than "dynamic Bayesian 
network", since it is assumed that only the parameters of 
the model change and the model structure over time. 
Hence, a DBN will be referred to as a TBN in the rest of 
the report.   

A TBN has to have the following CPTs for each variable: a 
prior probability, a transitional model CPT from time slice 
t to t+1 and a sensory model CPT for the attributes of the 
nodes/variables. These can be specified for the first time 
slice only as a TBN is assumed to be time-invariant, hence 
the structure of the TBN is assumed to be constant in each 
time slice. The first time slice is simply un-wrapped for the 
required number of time slices when an inference 
operation is performed. In such a way, a TBN can be 
converted into a BN. An example of a TBN would be the 
following example which relates to the project where an 
ocean temperature feature s (e.g. a front) attributes change 
is being predicted over time. Hence, the attributes can 
either change or not. The attributes that the feature has are 
temperature and position. The following diagram could be 
used to model the TBN (unwrapped for 2 time slices): 

 

Figure 2: Showing a Temporal Bayesian Network (TBN) 

2.2.8 Hidden Markov Models 
A Hidden Markov Model (HMM) is a temporal 
probabilistic model which has only one discrete random 
state variable per time slice and models how that state 
variable behaves over time. The state variable is linked to a 
single discrete hidden node that forms the HMM. Hence, 
an HMM is the simplest kind of TBN. One has to note that 
all HMMs are TBN, but not all TBN are HMMs. [14] The 
example below taken from [8] demonstrates a possible 
HMM, where Q is the hidden node and Y is the observed 
node. The model is un-wrapped for four time slices: 

 

Figure 3: Showing a Hidden Markov Model 

2.2.9 Temporal Bayesian Network Learning 
Murphy [9] suggests that the learning techniques for TBN 
are mostly straightforward extensions of the learning 
algorithms applied to BN. The only difference between 
TBN and BN is that online, as well as offline, parameter 
learning can be applied. This is a great advantage when the 
training data is continuously being increased or updated. 

As in a BN, a TBN has structural learning and parameter 
learning. Hence, most of the previously mentioned learning 
algorithms for BN are applicable to TBN. A discussion of 
all the learning algorithms that can be applies to TBN can 
be found in Murphy [9].  

2.2.10 Temporal Bayesian Network Inference 
The most common types of inference performs using a 
TBN include: filtering, prediction and smoothing and these 
are shown in the diagram below. 

 

Figure 4: Showing various kinds of inference in a Temporal Bayesian 
Network [9]                                   

Several algorithms exist to perform inference in a TBN. As 
in the case of BN, inference can be exact or approximate. 
The same ideology for choosing between exact inference 
and approximate inference in a BN applies to a TBN 
because the TBN is an extension of a BN. Some of the 
inference algorithms include for exact inference: forward-
Backward algorithm Dugad [4] , Murphy [9], [14], 
Junction tree algorithm Barber [2], Frontier algorithm 
Murphy [9] and for approximate Inference the Boyen-
Koller (BK) algorithm Murphy [9],the factored frontier 
(FF) algorithm Murphy [9], loopy belief propagation 
(LBP) Murphy [9], stochastic algorithms Murphy [9]  

2.2.11 Poisson Distribution 
The Poisson distribution (PD) is a discrete probability 
distribution [18] that expresses the probability of a 
number of events occurring in a fixed time if these events 
occur with a known average rate, and are independent of 
the time since the last event. [18] There is no limit to the 
number of values that a Poisson random variable can 
assume which give it several advantages over other 
probability distributions such as the binomial distribution. 
As adopted from [18], the Poisson distribution of k, a 
poison random variable, is given as: 

 

Where: k is a non-negative integer 
k = 0,1,2..n, e is the base of the natural logarithm (e = 
2.71828...), k! is the factorial of k,  is a positive real 
number that is, according to [18] , equal to the average 
number of successes occurring in a specified interval. The 
cumulative Poisson distribution, which is modeled as: 

 

And can be used to get the cumulative effect all Poisson 
random events k0..kn, where kn is the desired Poisson 
random event.  



2.2.12 User-Center Design  
User-Centered Design (UCD) is a methodology used to 
design interactive computer programs for targeted users. 
UCD places the targeted users at the center of the design 
stage and builds the final product based on the reaction of 
the user to the continually evolving prototype. The 
international standard ISO 13407 [5] is a standard that 
provides guideline for UCD that should be followed when 
designing an interactive computer based systems. The 
standard specified UCD principles that have to be met to 
ensure a user centered design is achieved and also specifies 
the activities that should be carried out to ensure that the 
principles of UCD are met in designing a product.   

3. METHOD 
3.1. Histographic Algorithm 
This algorithm follows the idea of the algorithms described 
in [3] and [12]. It segments the image by looking at local 
25 * 25 pixel windows within the image. For each 
possible threshold level in the window (256 for the 1bit 
grey scale images used in this project) the optimal 
threshold is determined. Based on this threshold, it 
determines whether the window contains 2 distinct 
populations of pixels and whether these 2 populations are 
spatially distinct. If both of these criteria are true, a front is 
determined to exist.   

For each pixel intensity level in the image it is assumed 
that two populations exist, separated by this threshold. This 
segmentation is then assessed by calculating the variance 
within the whole population VT and the variance within 

each class V1 and V2 and calculating the ratio R = (V1 + 

V2) / VT. The threshold that produces the highest value for 

this ratio is considered to be the optimum threshold.   

The variance is defined as   

 

Where xi is the value of pixel i and µ is the average 

intensity of all the pixels in that window.  

If the ratio value R corresponding to the optimum 
threshold is above a given threshold the window is 
considered to contain two classes. These classes are then 
checked for their spatial compactness by checking the ratio 
of pixels that occur on the inter-class boundary. The 
number of pixels that neighbor on pixels of a different 
class is calculated by looking at each pixel and its 
neighbors below and to the left. In this way all the 
boundaries between pixels are checked. If the ratio of this 
number to the number of pixels in the smaller class is 
above a certain ratio, the classes can be said to be in 
spatially distinct.   

If the window passes both these tests, a front exists 
between the two classes identified. The pixels on the inter-
class boundary are marked as edge pixels and   

3.2. Region Growing Algorithm 
This algorithm is an unseeded region growing algorithm 
that segments an image by growing homogeneous regions. 
Regions are defined here as a group of spatially coherent 
pixels. The image is initially divided into tiny regions, each 
containing one pixel. At each iteration the two most similar 
neighboring regions are merged to form a bigger region.   

Several similarity measures were implemented in this 
project. They include one based on the difference between 
the average pixel intensities of the regions, one based on 
the edge strength and one based on a combination of these 
two, with deferent weightings.   

On initialization each border between regions is located 
and an object representing this edge is created and placed 
in a priority queue. This object stores the difference 
between the two regions it connects, and thus the most 
similar regions can be found by taking the edge off the 
front of the priority queue.   

When regions are merged, their point sets are joined. Since 
the similarity measure is based on the pixels in the region,  
all the edges which pointed to the old regions have to be 
updated. This requires removing them from the priority 
queue and re-inserting them with their new values, a very 
resource intensive job. Edges that, after a merge, end up 
joining the same two regions also have to be merged.    

The regions are iteratively merged in this way until a 
stopping criterion is reached. This could be a threshold in 
the similarity measure, or a number of regions. The latter 
was implemented in this project.   

3.3. Prediction Tool 

Figure 5: Showing the Prediction Tool  

3.3.1 The Prediction Tool 
The prediction tool was designed using AI agents for each 
feature prediction and was modularized to improve 
performance, database access and testing capability.   



3.3.2 Temporal Bayesian Model 
The TBN network chosen to represent each ocean surface, 
temperature feature was the following: 

 

Figure 6: Showing the TBN model 

3.3.3 Learning algorithm 
An approximate, stochastic, online parameter learning 
algorithm was applied, which was based on the Poisson 
distribution. The learning algorithm was adopted from the 
MLE algorithm and was a by-product of the inference 
algorithm.  

3.3.4 Inference algorithm 
Due to the nature of the training data, an approximate, 
stochastic inference algorithm based on the MLE algorithm 
was used to perform inference. The current feature 
attribute was matched to the closest matching training set 
data to perform the MLE algorithm. In the case where a 
feature s attribute was a complex one, the Euclidean 
Distance was used to evaluate the closest training data 
match.  

3.3.5 Prediction Tool Interface 
A Prediction tool interface was designed to allow easy 
access to the prediction tool and to display the prediction 
results. The visualization of the prediction results was in 
the form of graphs and tables, which were found to be 
user-friendly and easy to use. The prediction engine 
interface was designed to hide the internal workings of the 
TBN from the end-user.    

 

Figure 7: Showing the Prediction engine results 

3.3.6 Database selection 
A MySQL database server was chosen to store the training 
data.   

3.3.7 Update Module 
An update module was designed to allow the users to enter 
training data into the database and to hide all the internal 
workings of the database from the end-user.  

3.3.8 User-Centered Design (UCD) 
UCD was used in the form of participatory and PICTIVE 
sessions to ensure that users were at the center of the 
design stages of all interfaces that were created. Iterative 
prototypes were designed based on these sessions and were 
continually evaluated by users, then modified until the 
final user-friendly and easy to use interfaces were 
established. Human Computer Interaction (HCI) methods 
were also employed to ensure that a user-friendly interface 
was developed. In addition, HCI methodologies were used 
while evaluating the interface to ensure the participants of 
the sessions were treated with respect.  

4. RESULTS 
4.1 Image Processing 
Due to the nature of the problem, one can not perform a 
rigorous evaluation of the segmentation. To do that one 
would require a ground truth set of images to compare to.  

From a casual observation one can see that the histograhpic 
algorithm seems to identify fronts more reliably. It does 
not, however form continuous lines, as can be seen here   

   

Figure 8: Showing the discontinuous lines produced by  

the histographuc algorithm 

These are usually due to the window level boundaries, 
where different windows have different optimal thresholds.   

The region merging algorithm is particularly sensitive to 
tuning parameters. This can be seen by the drastic 
difference between the images produced with different 
parameters.   



     

Figure 9: two different sets of parameters for the region merging 
algorithm applied to the same image. The first image here is produced 
using a merging criterion of the difference between average pixel 
intensity and the strength of the edge, weighted equally. The edge strength 
is calculated as the maximum strength along the edge. The second image 
uses the criterion as the edge strength only, defined as the maximum 
strength of along the edge.  The third uses a merging criterion of edge 
strength only, taken as the average over the whole edge.  

4.2 Prediction Tool 
4.2.1 Learning Algorithm 
The learnt Poisson rates were compared to Poisson tables 
and were found to match, hence this result showed that a 
successful learning algorithm  

Comparison Of Poisson Rates 
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Figure 10: Showing results of multiple-cross validation  

4.2.2 Inference Algorithm 
The inference algorithm was tested using multiple-cross 
validation using a sub-set of the training data. Results 
showed that the error rates for the inference algorithm were 
varied and can be attributed to tuning of inference 
parameters using sampled training data. However, after 
further evaluation of the inference algorithm, results 
showed that a reasonably acceptable inference algorithm 
was developed. 
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Figure 11: Showing results of multiple-cross validation  

4.2.3 Evaluation of GUIs 
The evaluations of both the update module and the 
prediction engine were done by means of questionnaires, 
and in general confirmed that the interfaces were user-
friendly and easy to use by non-experts.  

5. CONCLUSION  

Comparing the delivered project to the project 
requirements, one can conclude that almost all the required 
goals were accomplished, except for the fact that the Image 
Processing part of the project could only detect thermal 
fronts, and could not detect filaments and gyres. Besides 
this requirement, all the other project requirements were 
met. Although the prediction engine was not tested using 
real-time data for filaments and gyres, it was tested using 
thermal front training data and was found to predict 
reasonably acceptable results. Hence, because the same 
algorithms were used in all three feature predictions, one 
can state that the prediction would also work for filaments 
and gyres, although this would have to be tested further.   

Although it was not possible to rigorously evaluate the 
detection algorithms, they appear to recognize most fronts. 
The region growing algorithm is very sensitive to tuning 
parameters, and does not perform as well as the 
histographic algorithm.  

According to the evaluation done, the interfaces designed 
were user-friendly and easy to use by non-experts, which 
met the initial project requirement.  

Hence, to conclude, through a global view, the project was 
an implementation of a prediction system which could 
predict ocean surface, temperature features which used AI 
techniques, machine learning and Image Processing to 
extract training data successfully.  

6. FUTURE WORK 
6.1 Prediction model 
The prediction model that was implemented was a naïve 
model in which all attributes and all feature were assumed 
to be independent. Hence, a good are for future work 
would be to extend the model to incorporate feature and 



attribute interactions to design a more realistic ocean 
prediction model.  

6.2 Learning algorithm 
The learning algorithm that was implemented was a 
parameter learning algorithm that assumed that the 
structure of the network was known, As future work, this 
could be extended to a structure learning algorithm, which 
attempts to find the best possible network structure for the 
training data set.   

6.3 Inference Model 
The inference algorithm that was implemented was a naïve 
maximum likelihood inference which assumed attribute 
independence. This could be extended to an inference 
algorithm that takes into account the interactions with all 
other attributes and features for a more realistic inference 
prediction.  
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