

Eliminating Design and Execute Modes from Virtual Environment Authoring
Systems

Gary Marsden & Shih-min Yang
Department of Computer Science, University of Cape Town, Cape Town, South Africa

Email: gaz@cs.uct.ac.za, Tel: +27 21 650 2666, Fax: +27 21 689 9465

Abstract
In this paper we report on efforts to create a virtual

environment authoring tool for novices. In particular we
set out to eliminate separate design and execute
behaviors from these tools. We present two alternative
prototypes for achieving this and report on the results of
a usability experiments comparing each environment.

Keywords- Virtual reality authoring, modes,

programming environments.

1. Introduction

Within the Computer Science Department at the
University of Cape Town we are embarked on building a
software that supports novice users in creating desktop
virtual environments. The most comparable system to
our own is Alice[1], but whereas Alice is designed
explicitly for children, our system is designed for domain
experts (e.g. architect, teacher etc.) who do not have the
necessary computer science skills to use existing systems
such as DIVE[2] or Genesis[3].

The work for creating this tool is divided across
various groups of researchers and programmers; in this
paper we will concern ourselves only with the specific
portion of the research conducted into the high level
interface design.

In creating an interface to the authoring system, our
intuition was that the biggest barrier to novices would be
the programming interface. From our initial
observations, however, we discovered that even before
they reached the scripting level, users were confused by
the whole notion of having separate design and execute
modes. Users would click in frustration at objects,
expecting them to react, only to be greeted with an
attribute browser window.

It has long be known that modes in general are
undesirable in a user interface, but this problem of
separate design and execute modes has also been well
reported in research relating to 2-dimensional interface

authoring tools [4]. It seems that this duality, which is so
obvious to programmers, confuses those not used to
programming environments. This manifests in the form
of mode confusion behaviors, like the appearance of the
attribute browser, mentioned above.

In virtual environment authoring, we speculated that
the impact could be even greater than in two dimensional
interface builders.

Virtual environments are often touted as the last
word in direct manipulation environments [5]. In a sense,
there is no interface as the environment is a complete
visualization of the entire system. In a really good virtual
environment, the user should have a sense of ‘being
there’[7], focusing more on the virtual environment than
their physical environment. This notion of ‘being there’
is formally called ‘presence’ and is a very active research
area in the virtual reality community. Environments
which generate a strong sense of presence are obviously
more effective than environments which do not (if the
user does not relate and engage with the VE, then there is
little point in creating it in the first place). One of the
ways in which environments may inadvertently reduce
presence is through the intervention of external events, or
breaks-in-presence (BIPs) [13]. If we return to our user
who is engaged in the activity of creating an
environment, the need to switch out of the execute
environment, to the design environment, to effect a
change must surely introduce a break in presence. (The
break would be further exacerbated if the user was
wearing data gloves and a head mounted display). It
would seem logical, therefore, to create an interface
which allowed the user to alter the environment from
within the environment itself. This will necessitate the
removal of the “design” environment completely and
somehow integrate that functionality into the “execute”
environment.

2. Previous Research

By removing the design environment, we do not
remove the need for separate modes of interaction. In the
parlance of [4], we will always want to use things and

other times want to mention them, regardless of being in
a real world or a virtual one. How then should one add
these two capabilities to a virtual world?

The goal of supporting in-environment use and
editing is not entirely new. For example, the Worlds in
Miniature (WIM) system allows the user to manipulate a
facsimile of an environment whilst in that environment
[6]. However, it forces splitting the display real estate
between the original environment and the miniature
copy. In addition, it is difficult to select, and manipulate
objects especially for fine-grained manipulations as the
entire environment is scaled down into a hand-held size
[8]. Perhaps most crucially, the metaphor cannot
maintain the sense of presence because working with two
different worlds emphasizes that the world is artificial.

The “Voodoo Dolls system” was proposed and
implemented by Pierce et al [9]. This technique allows
the users to interact with objects that are beyond one’s
physical reach. It supports direct manipulation of an
object by creating miniature copies of the object. This
method gives the user an illusion of interacting as if in
real life. However, the miniature copies of objects have
different properties when they are held on the user’s right
or left hand. This feature might confuse novice users
since they might not fully understand the concept of the
metaphor. Furthermore, presence may be reduced as
users are forced to interact with the ‘doll’ of an object,
rather than the object itself.

We are looking for a more general solution which
tries to mirror the user’s real world experience as closely
as the virtual environment will allow.

3. Migrating Functionality

Returning again to the two dimensional interface
world, the “tool” approach is one of the proposed
solutions for the problem of “mention and use” in a
single window[4]. The tool approach is derived from
everyday experience by adopting the interaction methods
used in real life. It uses the idea of direct manipulation
mediated through some tool. Every interaction requires
some kind of tool, e.g. a “paintbrush” is used to paint
objects, and a “hand” tool is for grabbing objects.
Different tools can be seen as different modes so the
interaction takes on the form of a global mode.

An alternative to the tool approach is adopting a
mode-per-object. This approach allows different objects
to be in different modes, meaning that there will be
multiple active modes in one environment. An example
of using the “mode per object” approach is presented in
our earlier work[10]. A screw is attached to every user
interface component. To edit a particular component, one
clicks on the screw which reveals an attribute browser.
To use a component, one simply clicks on any part of its
surface (other than the screw) as in a normal system –
see Figure 1 for a typical sequence if interactions. Thus
in one environment, some interface components are in
design mode, while some are in execution mode. In this
particular interface, the screw is shown screwed in to

reflect an object in execute mode; or shown screwed out
to reflect edit mode.

Certainly this approach more accurately reflects the

real world where different objects can be in both modes
simultaneously. The difficulty of this approach are visual
cues to indicate state, as they consume space on the
virtual objects. Additionally, these visual cues would
diminish the sense of the presence as users are aware of
the artificial visual cues which appear on the virtual
objects – we cannot simply place screws on every object
in a virtual environment.

Whilst the mode-per-object approach more closely
mirrors real world behavior, the tools approach is more
common in current software. Therefore, before
committing to a particular design we set out to
investigate if different ways of interacting with objects
will cause users to behave differently.

4. Investigating Behavior

We hypothesize that the users will change their ways
of working depending on the system they are using. For
instance, with the tool approach, we expect the users to
work in the fashion of “tool by tool” and users might
work “object by object” in the mode-per-object system.

4.1 Tool system

In real life, workers normally carry a toolbox to the
working site. When they want to modify or fix an object,
they take out an appropriate tool from the toolbox. Once

Figure 1. The screw in the bottom left is
first removed to reveal more screws and

a parts tray. Undoing the screw on an
individual widget allows details of the

widget to be edited

the job is done, they put the tool into the toolbox and
walk to another place with the toolbox.

Most virtual environments are quite similar to real
life in this respect, and therefore we felt that using the
toolbox idea in virtual environments is appropriate. To
implement the idea, a toolbox is provided in the virtual
environment as a 3D object that can be opened and
closed. In real life, the toolbox is not seen until it is
actively sought out. It is difficult to implement this in the
virtual environment because objects outside the users’
view frustum are difficult to access. Instead, we place the
toolbox in a fixed location related to the user’s
viewpoint. Thus the users know where to find the
toolbox when it is needed, and time is reduced in
searching the entire virtual environment for the toolbox
if it is located at a fixed position. Figure 2 shows the tool
environment.

Figure 2 shows the toolbox, circled in the
bottom left corner

While the toolbox is open, the tools appear for
selection. These virtual tools are represented as buttons
and arranged in a virtual menu, shown in Figure 3.

Figure 3 Shows the tools available once the box
is opened

In Houde [11], the different shapes of the mouse
cursor are used as an indication of the action performed.
In our work, we follow this method – once the desired
tool is selected, the shape of the mouse cursor will
change accordingly. For instance, while the “paintbrush”
is selected, the mouse cursor will change to a “brush”
shape. While the toolbox is closed, the virtual menu
disappears automatically and the shape of the mouse
cursor changes to default (i.e. the arrow shape).

4.2 Pin System

As a comparison, we built an identical environment
to that described above, the difference being that the
interaction was conducted on a mode-per-object basis.
This approach allows the users to “use” an object while
the object is not in editing mode. For this reason, we
have created objects to populate the scene, each of which
has a default “use” function. For instance, the users can
open and close the door or turn on the television set. As
we mentioned earlier, we need a way to indicate the
mode status of each object and an easy-to-understand
metaphor to edit objects.

We have adapted our earlier idea of the screw
indicating mode and have drawn our metaphor from the
way that an artist draws a picture. In real life, an artist
would put drawing paper on the drawing board and pin
the paper on. The pin is used to fix the paper on the
drawing board. It can be also seen as an indication that
the drawing is in process. Therefore, to pin an object and
then edit it is the metaphor we use in the virtual
environment, eliminating the need to place a screw
equivalent on every environment object.

As the metaphor required, a drawing pin is provided
in the virtual environment. The drawing pin, similar to
the toolbox, is placed at the left-bottom corner of the
screen and it is always in this fixed location. The
drawing pin will not block the users’ view and it is
always available despite of the users’ position (the
system re-places the pin in the object so that it is always
visible). See Figure 4.

Figure 4. The drawing pin is at the corner of the
screen (circled). The chair is pinned and the pin
attached to the chair is in a different color from
the drawing pin at the corner. While the chair is

pinned, the users can still invoke the basic
function of any unpinned object in the virtual

environment.
To pin an object, the user simply drags the drawing

pin and drops it on the object. To show that it is being

edited, a new drawing pin will appear on that object. A
tool list then appears from which the user can choose the
desired tool and apply it to only that object. The users
have to unpin the object in order to use the object, even
when there is no tool mode set for that object. In order to
avoid confusion between the drawing pin, which is
always at the left-bottom corner of the screen, and the
pin attached on object, we use different colors to
differentiate class from instantiation.

We have provided visual feedback to indicate the
currently active mode of the pinned objects. While the
mouse is moving over the pinned object, the mouse
cursor will change the shape according to the status of
the object. Further feedback is provided via the texture
on the pins, which are attached to the objects. The
texture on the knob of the drawing pin will be the same
as the active tools.

5. Study Design

For our study, we were able to find nine subjects
who fitted the target user population we were interested
in. These participants were paid volunteers and were
students from various faculties in our university. We
expect the end-users of these prototype systems to be
non-experts in computer programming and computer
graphics – they are interested in creating and editing their
own virtual environments. However, they must be
familiar with, and know how to use, standard computer
input and output devices.

The experiment has a between-groups design. The
participants were divided randomly into two groups and
each was assigned to one of the prototypes. Four
participants used the tool approach VE and five
participants used the pin approach VE.

5.1 Tasks

There are two virtual rooms in the two prototypes.
One room is a storage room, which contains all the
furniture at the beginning of the experiment. The other
room is a living room with a lamp inside. The users can
walk freely in the virtual environment. However, they
can only walk from storage room to living room through
the door, and vice versa.

The task is to arrange the virtual living room
according to the image in one of the virtual books. The
users need to move all the furniture and objects to the
other room (the living room), through the door. There are
three books in the virtual environment. The books
contain the images of three different arrangements of the
room. There are three channels on the TV. On each
channel, there are four images of the particular
arrangements from different viewpoints. (One view is
shown in Figure 5). The three books are marked
differently at the back. One book is marked a “L”, one is
marked a “1” and the last one does not have a mark. The
users are asked to find the book with “1” at the back, and
arrange the room accordingly.

We use the living room and storage room scenario
as this is a real-world task familiar to users. Additionally,
compared to manipulating some boxes, manipulating
virtual furniture is more realistic. By placing instructions
in books and on the television, we ensure that users are
required to perform “use” actions in the environment – if
users were give the plan on physical paper, they would
not need to “use” the objects and hence comparison of
the two interaction techniques would be pointless.

Figure 5. Pictures on the television set which
shows users how to lay out the environment.

6. Measurement of Usability

We used two ways to measure the usability of both
prototype systems, namely observation and
questionnaires. The questionnaire we used is the
Computer System Usability Questionnaire from AMC
[12]. This was developed by J. R. Lewis of IBM and
measures on a 7-point Likert scale. There are nineteen
questions, which are based around three themes: system
usefulness, information quality and interface quality.

Users were observed unobtrusively by splitting the
monitor output lead and recording everything that
happened on the user’s screen.

6.1 Tool Usage Observation Results

From post experiment video analysis, we have
identified some behavioral patterns among the
participants within each system and across both systems.
With the tool approach prototype, we have found some

patterns that the participants do while performing the
task. These are summarized as following:
• Of all four participants, only one participant did not

manage to complete the task. The other three
managed to move all the furniture and books across
the room and painted some objects.

• The users tried all tools on one object at the
beginning.

• The users seemed to be familiar with the initially,
but rapidly learnt how to use them efficiently.

• The participants moved objects to the other room in
any order and put the objects in any position. Once
all objects were in the living room, they then put the
objects in the correct location. The last thing they
did was to paint them.

• Some participants would put the book in the same
orientation as the living room. That is, if they are
standing in the storage and facing the living room,
then they will place the book vertically and rotate it
in such a way that the door is at the left bottom of
the book.

• After using the system for a short while, the users
understood that tools were applied to all objects. In
other words, if they wanted to use the currently
used-tool on other object, they did not have to click
on the tool again.

6.2 Pin Usage Observation Results

With the pin approach prototype, we have identified
some patterns of performing the tasks.
• Of all five participants, two of them did not

complete the task of placing the objects correctly.
The other three managed to move all the furniture
and books across the room and only one of them did
not start painting objects.

• When editing an object, no matter if the object was
pinned or not, the participant would pin the object
before starting.

• The participants would move objects to the correct
position one by one. Once all objects are in the
correct position, then they would paint the objects
according the image in the book.

• Most participants did not fully understand the
function of the drawing pin and would tend to
invoke the functionality of the object while the
object was pinned. Some participants only took a
few mouse clicks to learn how to invoke the
functionality of the objects; some took longer (about
ten minutes). Eventually all participants learned
before the end of the experiment. Once they learned
it, they made fewer mistakes, and took fewer tries.

6.3 Overall Findings

There are some common behavioral patterns found
in both systems.
• Even though the participants were informed that it

was possible to walk through objects, they would try
to not walk through objects.

• The participants would move objects away from
each other if they collided.

• Most participants were confused with moving the
object up and down (along Y-axis) and push and
pull (along Z-axis). Even with exploring in the
virtual environment for a while, some subjects were
still confused with these two operations.

• To put objects one on top of the other, the users used
all manipulation tools (rotation, movement, and push
and pull) to make sure that the objects were lying
flat on each other, even though this was not
necessary (there was no physics modeling).

• The way of choosing color – using red, green and
blue sliders – is not a good idea. Most subjects took
a long time to find the desired colors.

6.4 Questionnaire Results

We asked the participants to answer the usability
questionnaire (CSUQ). We present a summary findings.

5.4.1 Positive Comments
The subjects feel that using the mouse to navigate,

and to interact in the virtual environment is easy to
understand.
• Collision detection on the walls was good because it

let them know if the object is against the walls.
• The manipulation method is intuitive, as if the users

were in the real world.
• They feel that they have control of the environment.
• Negative Comments
• There is no Undo function.
• There is no Zoom function.
• Pieces of furniture can pass through one another and

people can walk into objects.
• It is difficult to find the correct colors.

7. Discussion

From an analysis of the questionnaire results, it
seems that the tool approach prototype is preferred to the
pin approach prototype in terms of usability. This is also
confirmed by observations, most probably because the
users are more familiar with the tool interaction
metaphor. Apart from that, the questionnaire picked up
shortcomings in the prototype (e.g. no undo feature)
rather than provide meaningful insight into the difference
in interaction techniques.

We had expected that the users work “tool by tool”

in the tool approach prototype and “object by object” in
the pin approach prototype. However, there were no
observed behavioral differences in working technique.

One interesting observation was that the participants
who used the pin approach prototype would re-pin the
objects, even if they could see the pin. It would seem
that, rather than reflect on the state of an object, it was
much faster just to pin it regardless. However, the
participants who used the pin approach prototype more
frequently invoked the function (“use” behavior) of
objects, than those who used the tool approach prototype.

In both systems, the subjects avoid walking into
objects and when one object collided into another, they
moved one away from the other. This would indicate a
high level of presence amongst the subjects, as they
could have walked through objects put instead projected
the attributes of the physical objects onto those in the
environment. Many researchers suggest that high fidelity
graphics are required to induce high levels of presence.
However, our virtual environments are not photo-
realistic and some physical laws, such as gravity, and
collisions between users and objects are ignored.
Nevertheless, the participants attempt to model the
virtual environment as the real world, and obey the laws
of reality without prompting.

8. Conclusions and Recommendations

Initially we thought that the pin approach prototype
would be more useful than the tool approach prototype.
One reason is that the ability to work on different objects
with different modes is more efficient because users do
not need to change modes constantly. Another advantage
of the pin approach prototype over the tool approach
prototype is that the pin approach is somehow more
intuitive for the “use” functionality than the tool
approach – the users do not need to use the “hand tool”
to use an object in the pin approach.

That said, our observation of the users’ actions
shows that the users are more familiar with the tool
approach than the pin approach. We suspect the reason it
that global mode is more common in interactive
software. As our subjects were all computer literate, this
style of interaction may be more intuitive for them.

Although less suited to this task, it could be the case
that the pin system would be more appropriate in an
environment where the focus was primarily on use with
only occasional editing required. This approach may also
be suitable for collaborative virtual environments. The
drawing pin can serve as a lock – while the drawing pin
is on an object, others can see that the object is currently
being edited. As the texture of the pin would change
depending on the tools applied on that object, others in
the environment can also know which operation is used
on that object as well. These applications include
architecture building, or design discussion meetings.

Acknowledgements

This work was made possible via NRF funding and
Innovation Fund grants from the South African
government.

References

[1] Alice Home Page http://www.alice.org/
[2] Dive Home Page http://www.sics.se/dive/
[3] Genisis Home Page http://www.genesis3d.com/
[4] Smith, R. B., Ungar, D. and Chang, B. The Use-Mention

Perspective on Programming for the Interface. In
Languages for Developing User Interfaces, Jones and
Bartlett Publishers, Inc. (1992), 79-89.

[5] Poupyrev, I., Billinghurst, M., Weghorst, S., and
Ichikawa, T. The Go-Go Interaction Techniques: Non-
linear Mapping for Direct Manipulation in VR. Proc.
UIST 1996, ACM Press (1996), 79-80.

[6] Stoakley, R., Conway, M. J. and Pausch, R. Virtual
reality on a WIM: Interactive worlds in miniature. Proc.
Human Factors in Computing Systems, (1995), 265-272.

[7] Heeter, C. Being There: The Subjective Experience of
Presence. Presence: Teleoperators and Virtual
Environments, (1992), 1(2): 262-271.

[8] Mine, M. R., Brooks, F.P. Jr. and Sequin, C. H. Moving
Objects in Space: Exploiting Proprioception In Virtual-
Environment Interaction. Proc. SIGGRAPH, ACM press,
(1997), 19-26.

[9] Pierce, J. S., Stearns, B. C. and Pausch, R. Two Handed
Manipulation of Voodoo Dolls in Virtual Environments.
Symposium on Interactive 3D Graphics, pages 141-145,
1999.

[10] Marsden, G. Overcoming Design and Execute Modes in
User Interface Design Environments. HCI 95 people and
Computers (1995), 133-137.

[11] Houde, S. and Sellman, R. In Search of Design
Principles for Programming Environments. Proc CHI’94,
ACM Press (1994) 230.

[12] Perlman, G. Web-Based User Interface Evaluation With
Questionnaires. http://www.acm.org/~perlman/

[13] Slater M., Brogni A., Steed A. Physiological Responses
to Breaks in Presence: A Pilot Study. Proceedings of ‘6th
International Workshop on Presence’, Aalborg Denmark,
6-8 October, 2003.

