
Analysis of Structured Use Case Models through Model Checking

Ksenia Ryndina
IBM Zurich Research Laboratory

CH-8803 Rueschlikon
Switzerland

ryn@zurich.ibm.com

Pieter Kritzinger
Department of Computer Science

University of Cape Town
Rondebosch 7701, South Africa

psk@cs.uct.ac.za

Technical Report: CS05-02-00
Abstract

Inadequate requirements specification remains to be one
of the predominant causes of software development project
failure today. This is mainly due to the lack of suitable pro-
cesses, techniques and automated tool support available for
specifying and analysing system requirements. In this paper
we suggest a way to improve the approach to requirements
specification that is the most popular at the moment - use
case modelling. Despite their popularity, use case models
are not adequate for creating comprehensive and precise
requirements specifications. We amend the traditional use
case metamodel such that more formal and structured mod-
els can be built. Further, we define several analysis schemes
for these structured use case models that assist in discover-
ing inconsistencies and other errors in the models. These
analysis schemes are automated in a tool that we developed
called the Structured Use case Model Analyser (SUM Anal-
yser). The SUM Analyser provides an accessible interface
that allows the user to construct use case models, configure
and execute several analysis options and view the produced
results. The existing NuSMV model checker is used to per-
form the actual verification tasks for the analysis. To facil-
itate this, the SUM Analyser transforms use case models to
NuSMV programs and also interprets the produced results
so that they can be understood by the user.

1. Introduction

It is fairly common knowledge that today only one out
of every three software development projects is completed
successfully. The latest CHAOS Surveys by the Standish
Group [2] report that 15% of projects fail outright, and 51%
are late, run over budget or provide reduced functionality.
On average only 54% of the initial project requirements are
delivered to the client. Inadequate specification of system
requirements is considered to be one of the main causes for

project failure.
What is it about requirements specification that devel-

opers find so challenging? One of the major issues is the
lack of adequate processes, techniques and automated tool
support available for specifying and analysing system re-
quirements. We thus set out in our research to enhance
requirements specification methodology by improving the
approach that is the most popular at the moment - use
case modelling [5, 6]. The use case approach is well-
suited for specifying functional requirements for software
systems. Despite their popularity, use case models lack
structure and exact semantics, which makes rigorous anal-
ysis of such models impossible. We amend the traditional
use case metamodel such that more formal structured use
case models can be built. Further, we define several analy-
sis schemes for these structured use case models that assist
in discovering inconsistencies and other errors in models
early in the development cycle. These analysis schemes are
automated in a tool that we developed called the Structured
Use case Model Analyser (SUM Analyser). The SUM Anal-
yser provides an accessible interface that allows the user to
construct use case models, configure and execute several
analysis options and view the produced results. The exist-
ing NuSMV model checker [8] is used to perform the ac-
tual verification tasks for the analysis. To facilitate this, the
SUM Analyser transforms use case models to NuSMV pro-
grams and also interprets the produced results so that they
can be understood by the user.

In order to validate our proposed requirements specifi-
cation and analysis approach, we performed a case study
of a Cash Management System (CMS) developed for an in-
ternational business group. We successfully used the pro-
posed notation to model the CMS requirements and per-
formed various analyses on the models with the SUM Anal-
yser. Numerous errors were identified and remedied during
this process and the general state of the requirements spec-
ification for the system was considerably improved. To the
best of our knowledge, our approach to enhancing use case
modelling is unique.

The main objective of this paper is to introduce the
structured use case modelling and analysis technique and
demonstrate its advantages. The next section provides an
overview of the proposed solution. Section 3 gives back-
ground to the CMS case study. Section 4 explains the
amended use case modelling notation, using examples from
the case study to illustrate the various concepts. In Sec-
tion 5 we show how a structured use case model is mapped
to the NuSMV input language for analysis with the NuSMV
model checker. The different analysis options offered in the
SUM Analyser are discussed in Section 7. Finally, the last
two sections describe related work, conclusions and sugges-
tions for future work.

2. Solution Overview

The enhanced technique that we propose uses several ex-
isting approaches as building blocks to form an improved
solution, as depicted in Figure 1. The notation that we adopt
is based on use case modelling [5, 6], shown in block (1) in
the diagram. The use case approach to modelling require-
ments was first presented by Ivar Jacobson [15], but it is
now considered to be a part of the Unified Modeling Lan-
guage (UML) [1]. Requirements models in the use case no-
tation are semi-formal and usually consist of diagrams sup-
plemented by text. We extend use case models with a more
formal syntax and semantics as shown in block (2), to make
them suitable for rigorous automated analysis.

Figure 1. Enhanced Technique for Require-
ments Analysis

Rigorous analysis of formalised use cases is enabled
with model checking [9, 18] in our solution, as illustrated
in block (6) in Figure 1. Model checking is the process of
algorithmically determining whether a behavioural model
satisfies certain specification properties, which are usually
expressed in some form of temporal logic. Our amendment
of the use case notation facilitates creation of high-level be-

havioural models that capture the desired functionality of a
system, and these are then analysed with model checking.

In our research we utilised the NuSMV model checker as
the analysis engine for our requirements models. NuSMV is
a state-of-the-art symbolic model checker, which is based on
Binary Decision Diagrams. It verifies finite state-transition
models expressed in a prescribed NuSMV input language.
In order to make use of this tool, we defined a mapping from
our structured use case models to NuSMV programs.

Specification properties for NuSMV analysis can be ex-
pressed in Computational Tree Logic (CTL) [10]. Our solu-
tion shelters the developer from the complexities of tempo-
ral logic in two ways. First, we define a number of generic
analysis properties shown in block (5) in Figure 1 that can
be used to analyse any structured use case model, which al-
lows the developer to check models without providing any
extra input. Second, we make use of property specification
patterns [11, 12] that allow one to construct simple analysis
properties in terms of behavioural patterns and model ele-
ments. Specification patterns appear in block (4) in Figure 1
as part of the proposed analysis technique.

The construction, manipulation and analysis of the struc-
tured use case models is automated by the SUM Analyser
tool, which is represented by block (1) in Figure 1. The
SUM Analyser translates use case models to the NuSMV
input language for analysis and also interprets the results
produced by the model checker in terms of the original use
case models.

3. Case Study: A Cash Management System

The case study of the Cash Management System or CMS
was made possible through cooperation with an established
South African IT company, which we refer to as SoftCo in
this paper. SoftCo were contracted to develop the CMS for
an international business group and at the time of the case
study a part of this project was still in progress. The main
goal of the CMS is to support management of receipts, as
well as coordinate the flow of information between various
other computer systems employed by the client company.
Examination of the acquired requirements models and doc-
uments for the CMS revealed that they were to a large ex-
tent ambiguous, inconsistent and incomplete. Our goal was
to show that the proposed structured use case notation and
analysis schemes offered in the SUM Analyser could im-
prove the quality of this requirements specification.

The requirements specification for the CMS obtained
from SoftCo comprised use case diagrams supplemented by
informal textual descriptions for each use case. Textual use
case descriptions contained information about actors asso-
ciated with use cases, their main and alternative flows, as
well as their pre- and post-conditions. We used a subset of
the CMS requirements specification for the purpose of the

case study that consisted of 35 use cases, which described
the administration and manual handling of receipts in the
system.

Figure 2 shows an extract from one of the revised use
case diagrams for the CMS. The diagram depicts three ac-
tors: Administrator, Clerk and Audit Control System. The
Administrator is responsible for adding and deleting valid
users within the system. The main user is represented by
the Clerk actor and needs to Log In before gaining access
to the system’s receipt handling services, such as the saving
and printing of receipts. A Clerk can have three different
roles: Capture Clerk, Enquiry Clerk and Supervisor. Ac-
cess rights to different services are assigned according to
these roles. For instance, a Capture Clerk can save receipts
but does not have the right to delete them. Only the Su-
pervisor has the access right to void receipts. The include
relationship between the Print Receipt and Post Receipt use
cases indicates that whenever a receipt is printed, it is posted
to the accounting and operations systems. Once a receipt is
posted, it cannot be deleted from the CMS. A receipt that
is saved but not posted can be deleted, however on dele-
tion it is only flagged as deleted thus retaining the infor-
mation necessary for auditing purposes. After an audit is
performed and the information about the deleted receipts is
not required anymore, the Audit Control System indicates to
the CMS that the deleted flags can be cleared. This subset of
the CMS requirements and the accompanying use case dia-
gram shown in Figure 2 are used throughout the remainder
of the paper for illustrative purposes.

Open Receipt

Add User

Print Receipt

Clear Deleted Flags

Log In

Log Out

Delete Receipt

Void Receipt

Clerk

Administrator
Audit Control System

Save Receipt

Post Receipt

Delete User

<<include>>

<<extend>>

<<extend>>

<<extend>>

Figure 2. Revised CMS Use Case Diagram

We constructed structured use case models for the CMS
requirements in the SUM Analayser. During this process,
the provided informal use case descriptions were changed to
adhere to our amended use case metamodel and the format
prescribed by the SUM Analyser. Several inconsistencies
were discovered and remedied during the process of merely

structuring and formalising the use case descriptions. Fur-
thermore, the resultant models captured in the SUM Anal-
yser were more precise and comprehensible than the origi-
nal models.

Numerous errors were identified in the CMS use case
models by running them through the analyses in the SUM
Analyser. These errors mostly constituted missing use
cases, incomplete use case descriptions and logically flawed
pre- and post-condition definitions. From the usability per-
spective, the analysis features offered by the SUM Analyser
were found to be very accessible. The feedback provided by
the tool in case of discovered errors offered valuable assis-
tance for tracking down sources of the problems.

In the following sections we present the metamodel
for structured use case models and our proposed analysis
schemes.

4. Structured Use Case Models

We took the fundamental concepts from the standard use
case approach and appended them with additional elements
to facilitate construction of models suitable for rigorous
analysis. The diagram in Figure 3 shows the metamodel
for structured use case models.

ModelElement

VariableType

Variable Condition

InitialCondition

Actor UseCase

name : String

values : List

value : String isTrue : Boolean

pre-conditions 0..*0..*

parameters

0..*

1..* 1..*actors use_cases

type

attributes

0..*
0..*parameters post-conditions

condition

Figure 3. Amended Use Case Metamodel

In accordance with the traditional use case approach, our
amended use case notation captures requirements in terms
of actors as external entities interacting with the system and
use cases representing the required system services. Fur-
thermore, we formalise the existing notion of use case pre-
and post-conditions by defining their structure and rela-
tion to use cases precisely in the metamodel shown in Fig-
ure 3. A use case model in our approach is a high-level
behavioural model that represents the required interaction
between actors and the system through use case activation.
Initial conditions are used to describe the system state be-
fore any interaction between actors and the system occurs,
thereafter use case activations alter the system state. When
an actor activates a use case, the pre-conditions of that use

case are queried against the system state and if they hold
then the activation is said to be successful. On a successful
use case activation, post-conditions of the use case are used
to adjust the current system state.

A structured use case model consists of a use case di-
agram showing the graphical representation of actors, use
cases and their associations. A predefined format is used to
define additional properties for actors and use cases, such
as actor attributes and use case parameters. Attributes can
be defined to capture an actor’s particulars that the system
needs to access in order to deliver services to that actor. Use
case parameters state the information that an actor needs to
pass to the system when activating that use case. Further-
more, initial conditions, variable types and condition defini-
tions need to be specified in order to complete a structured
use case model. This can be seen in Figure 4 that shows
a screenshot of the main model editor window in the SUM
Analyser. Separate windows are available in the tool for the
different analyses of models.

Figure 4. Screenshot of SUM Analyser

From the metamodel in Figure 3 it can be seen that re-
lationships among use cases such as extend and include, or
actor generalisation relationships are not supported. In its
current state our technique is built around the fundamental
features of use case models only, as our goal was to test the
approach first before incorporating the additional use case
modelling features. However, in [19] we discuss some pre-
liminary and potentially extensible solutions for expressing
use case relationships and actor hierarchies in structured use
case models. These solutions allowed us to “flatten” the
CMS use case diagrams by taking out the unsupported re-
lations between actors and use cases, but at the same time
retaining most of the semantics of these relations by includ-
ing additional textual elements.

We next discuss a few examples of model element
definitions extracted from the CMS use case models con-
structed in the SUM Analyser. Below are the definitions for
Delete User and Void Receipt use cases and the Clerk actor,
all shown in Figure 2. Additionally, one initial condition
and further elements from the structured use case model
are also shown below.

USE CASE 1
name: Delete User
actors: Administrator
parameters: Username of type User Login
pre-conditions: User Exists (#uc Username) is true
post-conditions: User Exists (#uc Username) is false

USE CASE 2
name: Void Receipt
actors: Clerk
parameters: Receipt of type Receipt Number
pre-conditions: Logged In (#self Username) is true, User Of Role (#self
Username, #Supervisor) is true, Receipt Opened (#uc Receipt) is true, Re-
ceipt Posted (#uc Receipt) is true
post-conditions: Receipt Reversed (#uc Receipt) is true

VARIABLE TYPE 1
name: User Login
values: jbloggs, mjane, agatonye

VARIABLE TYPE 2
name: Role Description
values: Capture Clerk, Enquiry Clerk, Supervisor

ACTOR 1
name: Clerk
attributes: Username of type User Login

CONDITION 1
name: User Exists
parameters: Username of type User Login

CONDITION 2
name: User Of Role
parameters: Username of type User Login, Role of type Role Description

INITIAL CONDITION 1
name: Supervisor 1
condition: User Of Role (#jbloggs, #Supervisor)

The definition of the Delete User use case (USE
CASE 1) is quite straightforward. The definition indicates
that the Administrator is the only actor that can activate this
use case and that the Username of the user to be deleted
needs to be provided to the system as a use case parameter.
Note that each use case parameter has an associated vari-
able type, where each variable type defines a finite set of
symbolic values. In this case, Username is of type User Lo-
gin (VARIABLE TYPE 1) and hence can take on any of the
three valid symbolic values: jbloggs, mjane and agatonye.
The pre-condition for this use case states that an activation
is successful if the user with the provided Username exists

at the time of activation. As indicated by the post-condition,
on successful activation the state of the system changes to
reflect that this user no longer exists. Note that each use case
pre- and post-condition corresponds to a condition declara-
tion within the model, where the number and type of condi-
tion parameters are defined. In this example, the User Exists
condition is declared in the CONDITION 1 definition. This
definition indicates that the condition has one parameter of
variable type User Login. The #uc prefix in User Exists
(#uc Username) is true indicates that at the time of activa-
tion, the value of the use case parameter Username should
be used for the evaluation of this pre-condition.

The definition of the Void Receipt use case (USE
CASE 2) states that for a successful activation the Clerk
must be logged in, the Clerk must have Supervisor access
rights, and the receipt under consideration must be opened
and posted. If these pre-conditions are satisfied at the time
of the use case activation, then the receipt is reversed in
the accounting and operations system. The #self prefix in
Logged In (#self Username) is true indicates that the User-
name attribute of the Clerk actor must be used to evaluate
this pre-condition. Two more options for pre- and post-
condition parameters besides #uc and #self are available.
One is illustrated in User Of Role (#self Username, #Su-
pervisor) is true, where a literal value Supervisor from the
Role Description type (VARIABLE TYPE 2) is used. This
pre-condition checks that the Clerk’s Username is associ-
ated with the Supervisor role. The last option #forall allows
to check that a condition holds for all values of a particular
variable type. For instance, we can check that nobody is
logged in with Logged In (#forall User Login) is false.

Both use cases in the above example have only one flow
and thus one set of pre- and post-conditions. If a use case
has alternative flows, a pre- and post-condition set for each
flow is included in the use case definition. All the pre- and
post-conditions in the same set are implicitly joined with
an AND logical operator, while pre- and post-condition sets
are implicitly joined with an OR.

The initial condition definition in the above example
(INITIAL CONDITION 1) states that the Clerk with User-
name jbloggs is assigned a Supervisor role in the initial state
of the system.

A structured use case model created in the SUM Anal-
yser is translated into the NuSMV input language and then
all the possible behaviours are checked with the NuSMV
model checker. With this in mind, the concept of condition
parameters is comparable to formal and actual parameters
of methods in programming languages like Java. In a struc-
tured use case model, a condition declaration (such as CON-
DITION 1) defines formal parameters for that condition and
their variable types. When that condition is used as a pre-
or post-condition for a use case (such as USE CASE 1),
the user assigns each of the formal parameters to an actual

parameter as described before. During the verification of
the system model, all the possible use case activations are
simulated. When a use case activation is simulated, the at-
tributes of the associated actor and use case parameters are
assigned literal values. These values are then propagated to
fill the pre- and post-condition parameters of the use case.
Once the pre- and post-conditions have all their parameters
assigned, pre-conditions can be queried against the current
system state and post-conditions used to alter it. In con-
trast with a condition definition, we say that a condition in-
stance has its parameters assigned to literal values. User
Exists (jbloggs) is an example of a condition instance. A
use case with values assigned to its parameters and the at-
tributes of its associated actor is called a use case instance.
A use case instance corresponds to a use case activation,
such as Administrator.Delete User (jbloggs). The mapping
from a structured use case model to the NuSMV input lan-
guage is described next.

5. Mapping Use Case Models to NuSMV

This section describes the mapping of structured use case
models to the NuSMV input language. For an explanation
of the NuSMV input language itself, we refer the reader to
[8] and the documentation for the NuSMV model checker.

A structured use case model as described in the previ-
ous section can be seen as a finite state machine, where
values of condition instances define the system state and
state transitions are defined by activation of use case in-
stances. In our mapping to NuSMV, we represent each
condition instance in a use case model as a state variable.
These condition variables are initialised in accordance to
the initial conditions in the model. For each use case in-
stance, a NuSMV module is defined inside which the con-
dition variables are reassigned values as indicated by the
pre- and post-conditions of the use case. The following ex-
tract from a NuSMV program shows the modules generated
for instances of the Delete User and Void Receipt use cases
discussed in the previous section.

1 MODULE DeleteUser0(UserExists0)
2 VAR
3 return : boolean;
4 ASSIGN
5 init(return) := 0;
6 next(return) :=
7 case
8 (UserExists0 : 1;
9 1 : 0;
10 esac;
11 next(UserExists0) :=
12 case
13 (UserExists0) : 0;
14 1 : UserExists0;
15 esac;
16 FAIRNESS running;
17
18 MODULE VoidReceipt$0$0$(LoggedIn$0$, UserOfRole$0$2$,
19 ReceiptOpened0, ReceiptPosted0, ReceiptReversed0)
20 VAR

21 return : boolean;
22 ASSIGN
23 init(return) := 0;
24 next(return) :=
25 case
26 (LoggedIn0 & UserOfRole$0$1$ & ReceiptOpened0
27 & ReceiptPosted0 : 1;
28 1 : 0;
29 esac;
30 next(ReceiptReversed0) :=
31 case
32 (LoggedIn0 & UserOfRole$0$2$ & ReceiptOpened0
33 & ReceiptPosted0 : 1;
34 1 : ReceiptReversed0;
35 esac;
36 FAIRNESS running;

A special scheme is used to generate compact and unique
names for condition variables and use case instance mod-
ules in a NuSMV program. During the name generation
process, spaces are taken out from use case and condition
names and their parameter values are replaced by numbers.
For example, the DeleteUser0 use case module is
used to represent the Administrator.Delete User (jbloggs)
use case instance.

Inside a use case instance module, the pre-conditions of
the use case instance are checked. This is done by consid-
ering the values of the corresponding condition variables.
Passing the appropriate condition variables to each use case
instance module as parameters provides the modules access
to the values of these variables. Additionally, condition
variables for the post-conditions of a use case instance also
need to be passed to its module as they get re-assigned there
(lines 12-16, 34-39). In the example above, the passing of
parameters into the use case modules is shown in lines 1,
21-22.

As can be seen in lines 3 and 24 above, a boolean vari-
able called return is declared inside each use case in-
stance module. This variable is used to determine whether
a use case activation represented by the use case instance
module is successful or not. This variable is first initialised
to 0 (lines 6, 27) and if the pre-conditions of the use case
are met then its value is re-assigned to 1 (lines 7-11, 28-33).

There is also one main module in every NuSMV pro-
gram, where we place condition variable declarations and
initialisations. Each use case instance module is instan-
tiated as a process in the main module. Using processes
in NuSMV and including the FAIRNESS clause in the use
case modules (lines 18-19, 41-42), ensures that during veri-
fication these modules are instantiated nondeterministically.
Each instantiation represents a use case instance activation.
Nondeterministic choice between activations allows us to
check all the possible ways in which the system can be used.

Finally, the NuSMV program needs logic specification
properties to perform verification. CTL specifications for
verification are included in the main module of a NuSMV
program. More details on how these specifications are gen-
erated is given in the following section.

6. Analysis of Models with the SUM Analyser

The SUM Analyser supports two modes of analysis or
verification: generic and model-specific. An overview of
how verification is performed with the SUM Analyser tool
and NuSMV is given in Figure 5. The mappings from struc-
tured use case models to NuSMV described in the previous
section are used to translate the models created in the SUM
Analayser to NuSMV programs. Generic verification can
be applied to any use case model and the CTL properties for
this verification mode are embedded into the SUM Anal-
yser (see Appendix). They are simply parameterised for
the current model and passed to the NuSMV model checker
as shown in the diagram. The SUM Analyser provides a
number of specification patterns that assist the user in con-
structing model-specific properties for verification. As can
be seen, these are automatically translated to CTL by the
SUM Analayser. Finally, verification results are interpreted
for the user in terms of the original use case model. The
details of the two verification modes are described next.

Get billing data

Disable account

Billing system Administrator

Formalised structure
and semantics

Use case diagram

+
Structured use

case model NuSMV program

Generic properties in CTL

Model-specific properties
based on specification patterns

Model-specific
properties in CTL

Verification results
Verification results
interpreted for user

SUMAnalyser NuSMV

Figure 5. Verification with SUM Analyser

6.1. Generic Verification

Generic verification of a structured use case model in the
SUM Analyser does not require any additional input from
the user. This verification mode is used to analyse use cases
for liveness and conditions for reversibility.

Liveness of use cases: An informal definition of the
liveness property is that “something good will always even-
tually happen” [16]. We define three liveness categories for
a use case: Dead, Transient and Live. The SUM Analayser
checks a model and places each use case instance into one
of these categories.

(a) Dead: Successful activation of the use case instance
is not possible. Usually, one should be alarmed if all

instances of a use case fall into the Dead category, be-
cause a use case that can never be successfully acti-
vated serves no purpose in a model.

(b) Transient: It is possible to successfully activate the
use case instance a finite number of times. A typical
example of this would be something that only happens
once and is irreversible.

(c) Live: It is possible to activate the use case instance
infinitely many times. Most use case instances in a
model usually fall into this category.

Reversibility of conditions: The SUM Analayser
checks how condition instances change their truth-values
throughout system execution. Each condition instance is
placed into one of the following reversibility categories.

(a) Constant: The truth-value of the condition instance
never changes, it remains the same as assigned ini-
tially.

(b) Irreversible: In this case the truth-value of the con-
dition instance is changed once and then remains con-
stant.

(c) Finitely-reversible: The condition instance changes
its truth-value more than once, but still a finite number
of times.

(d) Reversible: The condition changes its truth-value in-
finitely many times. Most conditions fall into this cat-
egory.

Verification for liveness of use cases and reversibility of
conditions with the SUM Analayser generates a report that
classifies each use case instance and condition instance ac-
cording to the above-described categories. This report pro-
vides the user with insight into the behaviour of the system
described by the model, as well as warns him of potential
errors in the model.

During liveness analysis of the use cases from our CMS
case study, we discovered that all instances of the Open Re-
ceipt use case were Live. This was in accordance with our
expectations since any Clerk can open a receipt an unlim-
ited number of times. Furthermore, all instances of the Void
Receipt use case were also reported Live. This meant that
a particular receipt could be voided more than once. Since
every time a receipt is voided the corresponding transac-
tion is reversed in the accounting and operations systems,
this situation would ultimately result in incorrect transac-
tion records. Taking into consideration that these trans-
actions could involve very large amounts of money, such
a flaw in the requirements model could have devastating
consequences. The model was corrected by adding a pre-
condition to the Void Receipt use case that ensured that the
receipt in question had not been voided before.

Verifying the CMS conditions for reversibility revealed
that all the instances of the Receipt Saved condition were
Irreversible. At a closer inspection, we discovered that
according to the requirements model when a receipt was
deleted it was just marked with a deleted flag and still con-
sidered to be “saved” within the system. This also meant
that a deleted receipt could be opened as any other saved
receipt, which was not desirable. We remedied this situa-
tion by adding the following post-condition to the Delete
Receipt use case: Receipt Saved (#uc Receipt) is false.

Several other errors were discovered and corrected in the
structured use case models for the CMS during generic ver-
ification with the SUM Analyser. Careful inspection of the
verification results and a good knowledge of the liveness
and reversibility categories were necessary during this pro-
cess.

6.2. Model-Specific Verification

Verification against generic properties yields useful re-
sults, but because the generic properties cannot be used to
test model-specific behaviour, this type of analysis is lim-
ited. We present the user with property specification pat-
terns for the creation of custom properties. These patterns
let one express simple properties for behavioural analysis
without knowing the details concerning the underlying for-
malism, which is CTL in our case.

Property specification patterns are generalised descrip-
tions of commonly-sought behaviours for verification of fi-
nite state systems. Specification patterns were first pro-
posed by Dwyer et al in [11] and further supported by
empirical studies [12]. Dwyer et al developed a system
of specification patterns, which comprises a set of patterns
that are organised into a hierarchy showing the relationships
between them. We tailored the original pattern hierarchy
slightly to suit our specific needs for use case model analy-
sis. In our augmented pattern hierarchy we did not include
the patterns that were rarely used as shown by the surveys
in [12], furthermore we added several new patterns to it.
The SUM Analayser pattern hierarchy is shown in Figure 6.
The original patterns that were not included in our hierarchy
are indicated in grey and the new patterns are shown with a
border.

Instantiation of patterns to construct behavioural prop-
erties is performed as follows. Each specification pattern
contains one or more pattern variables that the user must
substitute with valid values from the model being verified.
Pattern variables are predicates or in other words functions
that yield a boolean value. A pattern variable is parame-
terised and may be true for some arguments and false for
others. For our use case models, pattern variables can be
constructed from: condition instances and the logical op-
erators NOT (!), AND (&), OR (|) and implication (→).

Occurrence

Absence

ExistenceUniversality

Property specification patterns

Order

Precedence

Response

Bounded
Existence

Chain
Precedence

Chain
Response

Everywhere eventually

Possible existence Always eventually

Liveness

Figure 6. Property Specification Pattern Hier-
archy for SUM Analyser

Once the user chooses a pattern and fills in the pattern vari-
ables, the corresponding CTL formula can be generated.

Occurrence: Occurrence patterns can be used to ver-
ify existence or absence of system states where a property
holds.

(a) Absence: Safety properties can be constructed using
this pattern. An informal definition of a safety property
is that “something bad will never happen” [16].

(b) Universality: This pattern can be used to express in-
variants for a model. An invariant is a property that
must hold throughout the execution of the system.

(c) Existence: If we are interested in reachability of cer-
tain system states, then this pattern can be used to con-
struct properties for model verification. We extended
the Existence pattern proposed by Dwyer et al and cre-
ated four sub-categories of this pattern.

– Everywhere eventually: Something will always
eventually happen, no matter what execution path
is taken.

– Possible existence: It is possible for something
to happen. In other words, the property may hold
on some paths but not all the paths of execution.

– Always eventually: No matter where in the sys-
tem execution we are, something will always
eventually happen. This pattern is a stronger vari-
ation of the Everywhere eventually pattern.

– Liveness: Sometimes we want to ensure that
at any time during the execution of the system,
something will eventually become possible. This
pattern is a stronger variation of the Possible ex-
istence pattern.

Order: Order patterns can be used to construct proper-
ties that verify a certain ordering of system states or events.

(a) Precedence: This pattern describes a dependency be-
tween two system states or events. It can be used to
verify that one state or event always occurs before the
other one.

(b) Response: Cause-effect relationships between system
states or events can be expressed using this pattern.
It is similar to the Precedence pattern but is used to
verify that every cause must be followed by an effect
rather than for every effect there must be a cause. In
the Precedence pattern causes may occur without sub-
sequent effects, while in the Response pattern effects
may occur without causes.

In the SUM Analayser, we used the mappings to CTL
as defined by Dwyer et al for all the patterns except the
new Existence sub-patterns, for which we defined our own
mappings (see Appendix).

The NuSMV model checker generates a counter-
example trace whenever the verified property is found to
be false. During model-specific verification, such traces are
interpreted for the user to demonstrate what use case acti-
vations lead to violation of the verified property. However,
certain properties such as Possible existence do not generate
counter-examples.

We used model-specific verification in the SUM Anal-
yser to verify that the CMS use case models satisfied cer-
tain constraints and also discovered several further flaws
in the models. For instance, using the Universality pat-
tern we verified that once a receipt is posted it cannot be
deleted in the system. The property that was constructed in
the SUM Analyser to check this is Universality of (Flagged
Deleted (a)→ ! Receipt Posted (a)). During verification, a
is replaced by all possible values from the Receipt Number
variable type.

Using the Absence pattern, we constructed a property
to check that only valid users can log into the system:
Absence of (Logged In (b) & ! User Exists (b)). During
model checking, b is replaced with all possible values from
the User Login variable type. This property was evaluated
to false in the model with the following counter-example:

1. Administrator.Add User (jbloggs) - successful
2. Clerk (jbloggs).Log In () - successful
3. Administrator.Delete User (jbloggs) - successful

The counter-example shows that the Administrator can
successfully delete the user jbloggs while a Clerk with
this Username is logged into the system. This flaw was
remedied by adding a pre-condition to the Delete User use

case to ensure that the currently logged in users cannot be
deleted.

The Receipt Posted condition was analysed using the Ex-
istence patterns in the SUM Analyser. We used the Pos-
sible Existence pattern to determine that it is possible for
receipts to be posted successfully within the system as re-
quired. However, we also discovered that instances of the
Receipt Posted condition are not Always Eventually true.
This result was also plausible since those receipts that are
deleted can never be posted in the system.

The model-specific verification mode of the SUM Anal-
yser allowed us to perform valuable analyses of the CMS
use case models. A grasp of the patterns and a basic un-
derstanding of the logical operators were required during
construction of model-specific analysis properties. On the
other hand, counter-examples were very easy to understand
and proved valuable in resolving why a verification property
failed.

It is well-known that the main drawback of model check-
ing is its performance, in other words the time it takes to
compute verification results. Since the model checking al-
gorithm performs an exhaustive search of all the possible
execution paths of a given model, verification time increases
exponentially with the size of the model. The NuSMV
model checker that we chose for this work performed rela-
tively well in obtaining the analysis results for the CMS use
case models. All verification results for the CMS use case
models could be obtained within a period of 4 to 1300 sec-
onds. However, some large models had to be separated into
smaller models using appropriate abstraction techniques to
ensure that verification results remained valid for the entire
model. More details about the performance of the SUM
Analyser can be found in [19].

7. Related Work

Many different techniques for specifying system require-
ments have been proposed by researches, but very few have
gained acceptance in the industry. On the one hand, there
are techniques based on expression of requirements in natu-
ral language such as ARM [21] and SREM [20]. Natural
language requirements specifications are easy to produce
and can be understood by all system stakeholders. How-
ever, such specifications can be very ambiguous and the
possibility of performing rigorous analysis on them is ex-
tremely limited. On the other hand, there are approaches
that propose formal requirements notations suitable for au-
tomated analysis; these include SCR [14] and PAISLey [4].
These formal approaches can be very effective when ap-
plied to real-time embedded or safety-critical systems, how-
ever in other domains developers seem reluctant to use such
complicated techniques. The middle-ground between in-
formal requirements in natural language and formalised re-

quirements models is taken up by semi-formal graphical
representations of system requirements, which emphasise
the importance of visualising requirements models. UML
use case, sequence and state diagrams fall into this cate-
gory. Owing to its flexibility, UML has become the de facto
standard in modelling software systems, with requirements
specification being done predominantly with use case dia-
grams.

Several attempts have been made to address the draw-
backs of use case modelling. Hausmann et al [13] pro-
pose refining use cases with UML activity diagrams and
expressing their pre- and post-conditions in terms of UML
collaboration diagrams. This approach allows for static
analysis of conflicts and dependencies in use case models.
Back et al [3] formalise use cases with contracts defined in
refinement calculus, which facilitates rigorous analysis of
use case models for properties such as “achievability” and
safety. The complexity of the mathematical notation under-
lying this approach and the absence of tool support automat-
ing the analysis makes this technique impractical. Our pro-
posed solution enhances use case modelling by formalising
the models and facilitating their automated analysis while
keeping the intricacies of the analysis hidden from the user.

The use of model checking has proved to be very suc-
cessful in verifying hardware designs, and recently its ap-
plication to software models has notably increased [7].
McUmber et al [17] have developed a framework and a
number of tools for translating UML class and state dia-
grams to formal specifications that can be simulated and
analysed by model checkers. In a similar way, we use the
NuSMV model checker as a verification engine of high-
level behavioural models created in the SUM Analyser.

8. Conclusion

The main objective of the work presented in this paper
was to provide better support for requirements specification
and analysis. We did this by developing an enhanced tech-
nique based on use case modelling and the supporting SUM
Analyser tool that uses the NuSMV model checker for ver-
ification. Our approach allows for the creation of structured
use case models that are more complete, consistent and cor-
rect. Verification of models with the SUM Analyser can
help developers to identify logical flaws and missing re-
quirements in the models early in the development cycle.
Additionally, by using the SUM Analyser developers can
get much better insight into their requirements models. The
work was successfully validated with the Cash Management
System case study.

A number of further developments of the approach and
the SUM Analayser tool would be interesting and bene-
ficial. These include extension of the amended use case
metamodel to incorporate use case and actor relationships,

adding new features to the SUM Analayser tool such as use
case animation and undertaking further case studies.

Acknowledgement: The authors thank Jana Koehler and
Jochen M. Küster for their valuable comments on an earlier
version of this paper.

References

[1] UML 2.0 Superstructure Final Adopted Specification,
ptc/03-08-02. OMG Document, 2003.

[2] What Are Your Requirements? The Standish Group Inter-
national, 2003.

[3] R.-J. Back, L. Petre, and I. Porres-Paltor. Analyzing UML
Use Cases as Contracts. In UML’99 - Second International
Conference on the Unified Modeling Language: Beyond the
Standard, pages 518 – 533. Springer-Verlag, October 1999.

[4] E. Berliner and P. Zave. An Experiment in Technology
Transfer: PAISLey Specification of Requirements for an Un-
dersea Lightwave Cable System. In Proc 9th International
Conference on Software Engineering, pages 42–50, Mon-
terey, California, United States, 1987. IEEE Computer Soci-
ety Press.

[5] K. Bittner and I. Spence. Use Case Modeling. Addison-
Wesley, June 2003.

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language. Addison-Wesley, 1999.

[7] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. Reese. Model Checking Large Software
Specifications. IEEE Transactions on Software Engineering,
24(7):498–520, July 1998.

[8] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV
Version 2: An OpenSource Tool for Symbolic Model
Checking. In Proc International Conference on Computer-
Aided Verification, volume 2404 of LNCS, Copenhagen,
Denmark, July 2002. Springer.

[9] E. Clarke, E. Emerson, and A. Sisla. Automatic Verification
of Finite State Concurrent Systems using Temporal Logic.
In ACM Trans on Programming Languages and Systems,
volume 8, pages 244–263, 1986.

[10] E. M. Clarke and E. A. Emerson. Synthesis of Synchro-
nization Skeletons for Branching Time Temporal Logic. In
Logics of Programs: Workshop, volume 131 of LNCS, York-
town Heights, New York, May 1981. Springer.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Prop-
erty Specification Patterns for Finite-State Verification. In
Proc 2nd Workshop on Formal Methods in Software Prac-
tice, pages 7–15, New York, 1998. ACM Press.

[12] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in Property Specifications for Finite-state Verification. In
Proc 21st International Conference on Software Engineer-
ing, May 1999.

[13] J. H. Hausmann, R. Heckel, and G. Taentzer. Detection of
Conflicting Functional Requirements in a Use Case-Driven
Approach: A Static Analysis Technique based on Graph
Transformation. In Proc 24th International Conference on

Software Engineering, pages 105–115, Orlando, Florida,
2002. ACM Press.

[14] C. Heitmeyer, J. Kirby, and B. Labaw. The SCR Method
for Formally Specifying, Verifying, and Validating Require-
ments: Tool Support. In Proc 19th International Con-
ference on Software Engineering, pages 610–611, Boston,
Massachusetts, United States, 1997. ACM Press.

[15] I. Jacobson. Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley, 1st edition, June
1992.

[16] E. Kindler. Safety and Liveness Properties: A Survey. Bul-
letin of the European Association for Theoretical Computer
Science, 53:268–272, 1994.

[17] W. E. McUmber and B. H. C. Cheng. A General Framework
for Formalizing UML with Formal Languages. In Proc 23rd
International Conference on Software Engineering, pages
433–442, Toronto, Ontario, Canada, 2001. IEEE Computer
Society.

[18] J. P. Quielle and J. Sifakis. Specification and Verification of
Concurrent Systems in CESAR. In Proc 5th International
Symposium on Programming. LNCS 137, pages 337–350,
New York, 1981. Springer.

[19] K. Ryndina. Improving Requirements Engineering: An
Enhanced Requirements Modelling and Analysis Method.
Master’s thesis, Department of Computer Science at Uni-
versity of Cape Town, South Africa, November 2004.

[20] P. Scheffer, W. Rzepka, and I. A.H. Stone. A Large System
Evaluation of SREM. In Proc 7th International Conference
on Software Engineering, pages 172–180, Orlando, Florida,
United States, 1984.

[21] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Auto-
mated Analysis of Requirement Specifications. In Proc 19th
International Conference on Software Engineering, pages
161–171, Boston, Massachusetts, United States, 1997. ACM
Press.

APPENDIX
The table below shows the CTL formulae that are used to deter-

mine liveness categories for use case instances and reversibility cate-
gories for condition instances in the SUM Analyser. In the table, u
stands for the name of a NuSMV use case instance process such as
activated DeleteUser0 for example. Similarly, c stands for the
name of a NuSMV condition variable such as UserExists0. The
table also shows the mappings of the Existence patterns to CTL that we
defined. In the table, v stands for a pattern variable composed of condition
instances and logical operators as explained in Section 6.2.

Liveness category CTL formula
Dead !EF u
Transient EF u & !AG EF u
Live AG EF u
Reversibility category CTL formula
Constant !EF c
Irreversible EF c & AG (c→ AG c)
Finitely-reversible EF c & !AG EF c
Reversible EF c & AG (c→ EF c)
Existence pattern CTL formula
Everywhere eventually AF v
Possible existence EF v
Always eventually AG AF v
Liveness AG EF v

