
Extending ODRL and XrML to Enable Bi-Directional Communication
Technical Report – CS04-28-00

Alapan Arnab∗

Department of Computer Science
University of Cape Town
Cape Town, South Africa

aarnab@cs.uct.ac.za

Andrew CM Hutchison†

Department of Computer Science
University of Cape Town
Cape Town, South Africa

hutch@cs.uct.ac.za

Abstract

Current rights expression languages (RELs) only
allow for rights holders to dictate terms to the end
users. This limits their use as a means for nego-
tiating electronic contracts and end users are not
able to request for changes in their rights contracts.
In this paper we propose extensions to two popular
XML based RELs: ODRL and XrML that allow for
end users to request changes as well as the rights
holder to grant or deny these changes. These ex-
tensions allow the end user to request for changes
to their current rights, and for the rights holder to
grant or refuse the request. We also provide 2 ex-
amples for each REL to demonstrate possible uses
of our extensions.

1 Introduction

Right Expression Languages or RELs are perhaps
the most important part of DRM systems, since
they allow rights holders to dictate the terms and
conditions which need to be upheld by DRM sys-
tems. RELs have been designed to provide flexi-
bility to DRM systems, allowing rights holders to
offer a variety of terms and conditions without re-
quiring a change in DRM systems. This feature is
well demonstrated in Microsoft’s Rights Manage-
ment Services (RMS) system, which allow content
authors to set various access control rights to the

∗Alapan Arnab is a MSc candidate at the University of
Cape Town

†Prof. Andrew CM Hutchison is an Adjunct Professor of
Computer Science at the University of Cape Town

content using eXtensible rights Markup Language
or XrML [4].

However, RELs have been criticised for being too
restrictive and giving rights holders too much con-
trol. Mulligan et al. have argued that “rights” in
DRM may possibly have no relationship with legal
rights, but should rather be described as “permis-
sions” given by the rights holders to the users [8].
This stems from the access control models used by
most RELs – only rights expressed in the usage
license, are granted to the user, and thus rights
not mentioned are considered to be not granted.
This is partly blamed on missing semantics in the
RELs. For example, Open Digital Rights Lan-
guage (ODRL) has been criticised by some for not
having a “not” semantic [10].

Others, like Felten [7] have argued that expressing
legal rights connected to copyright are too broad,
and would require a highly sophisticated AI to in-
terpret and implement, and current RELs are un-
suitable for implementing legal rights.

Mulligan et al. [8] argued that contracts are nego-
tiated between the involved parties, and true ne-
gotiations require parties to communicate. Refer-
ring to XrML, Mulligan et al. argued that “the as-
sumption of a one-way expression of rights has in
part led to the current deficiencies in the REL” [8].
To allow for bi-directional communication, it re-
quires the REL to provide the vocabulary and syn-
tax, and an extension to the rights messaging pro-
tocol (RMP). The work presented in this paper

1



falls under a broader project Distributed DRM Sys-
tem, and a bi-directional RMP is also part of this
project, but not in the scope of this particular pa-
per.

The problem with the current system can be best
represented using an example from the second sce-
nario in Microsoft’s overview of RMS [4]. Tom cre-
ates a document for Jill, and protects it using RMS.
He specifies that the document can only be viewed
and edited by Jill for one week. If Jill requires ad-
ditional time, Tom is required to edit the rights to
the document, extend the deadline and then redis-
tribute the document to Jill. However, this solu-
tion is impractical when the data sizes become too
large.

With a bi-directional REL, it should allow the user
and rights holder to conduct negotiations on the
rights the user is given. This process can take
more than a single round of “requests” to the rights
holder and “offers” to the user. Furthermore, a
bi-directional REL should also allow a user to re-
quest changes to an existing use license. With bi-
directional RELs it would thus be possible to cater
for fair use at a general level – rights holders can is-
sue use licenses with usage rules fair for majority of
the users. If there are users who require additional
privileges that fall under fair use (academics who
would like to create extra copies for their lectures,
journalists who would like to excerpt a quote for
a review etc.), they can easily negotiate for these
additional rules.

In this paper, we introduce vocabulary and syn-
tax to facilitate bi-directional communication in
two RELs; namely ODRL and XrML. With bi-
directional communication the user can request a
right and the rights holder can then create a li-
cense amendment or issue a new license with the
additional rights.

2 Design

In 2000, Park et al. [9] discussed the different dis-
tribution architectures that could be implemented
for secure content distribution. Park et al. distin-

guished various architectures with three criteria:
the presence of a virtual machine, the type of con-
trol set and the distribution style. They concluded
that a virtual machine is required for secure con-
tent distribution, while the type of control sets and
distribution style dictate the amount of control the
“owner” of the content has after distribution. In
a DRM system, the virtual machine represents the
DRM controller and the control set represents the
REL and the usage licence mechanisms.

Park et al. categorised control sets into three
types: fixed control sets, embedded control sets
and external control sets [9]. In fixed control sets,
the DRM system comes with a predefined set of
controls, and thus the DRM enabled data does not
have to have any additional controls. In embedded
control sets, the DRM enabled data comes with a
set of controls as a single secure package while in
external control sets, the control set and the DRM
enabled data come in separate packages. It is possi-
ble to combine multiple type of control sets, as long
as the DRM controller can regulate which control
sets should be implemented; e.g. if the fixed con-
trol set does not allow copying, but the embedded
control set (issued after the fixed control set) does
allow copying then the DRM controller should al-
low copying. This is important for bi-directional
communication; since the control set issued by the
rights holders is most likely to be an external con-
trol set, and the DRM enabled data might already
have an embedded control set.

In our design we envisage a bi-directional system
to be implemented as a web-service. Thus a user
would request for changes to their current rights
and can expect to receive three types of responses.
Firstly, the rights holders can grant the request
and issue a new license, which can be easily ex-
pressed with the current schemas for both ODRL
and XrML. Alternatively, the rights holders can
grant the request by creating a licence addendum
(in a separate file) (grant-request). To handle this
response, the DRM controller must be able to de-
tect and use the extended license. Lastly, the rights
holders can deny the request (deny-request). The
user would need to be informed which requests

2



are being denied since it may happen that the
user requested three changes, of which only one
is granted. Thus, in both the grant-request and
deny-request there would be a need to include the
requests.

There are three actions that a user could request:

• Request to add one or more permissions, re-
sources etc. that are either not currently
present or to extend the current values e.g.
add one more week to the deadline

• Request to remove one or more permissions,
resources etc. that have been granted through
an earlier license or license addendum. This
feature is most probably not going to be in
big demand, but is necessary for:

• Request to replace one or more permissions
that have been granted through an earlier li-
cense or license addendum. The request to
replace is essentially a combination of an add
and a remove request, but it would be more
useful for tracking purposes to utilise a replace
request mechanism. There should not be any
restriction on how the replace mechanism is
used – for example a user might request a re-
placement of dis-similar permissions, e.g. re-
place his right to print 5 copies with the right
to make a backup.

With a bi-directional system, it would require the
rights holders to keep track of individual licenses,
and how the licenses inter relate. The grant-
request licenses should also be able to identify (pos-
sibly through the use of a URI) the original request
as well as the original license. This would allow
the DRM controller to keep track of the permis-
sions, resources, etc. that have been removed or
changed. For example, if the user originally had
permission to print a document 2 times, printed it
once, and then requested and received permission
to print the document an additional 5 times, the
DRM controller should allow the user to print 6
more times.

Figure 1: ODRL Foundation Model
[2]

3 ODRL

3.1 Background

Open Digital Rights Language (ODRL) is an open
rights expression language that is published and
“available in the spirit of “open source” soft-
ware” [2]. It is well supported by various corpora-
tions like Nokia and IBM; and has been accepted
by the Open Mobile Alliance as the standard for
rights expression in Mobile DRM systems.

Figure 1 shows the overall structure of ODRL.
ODRL revolves around three core entities, Assets,
Rights and Parties. Assets are physical or digi-
tal entities that can be uniquely identified. Rights
comprise of permissions and their constraints and
requirements that an end user is granted to use
over the assets. Both the end user and the rights
holders are parties.

Using ODRL, a rights holder can offer the end
users terms for using a DRM protected asset. With
this feature ODRL allows the rights holders to ex-
press their right policy; and this could be given
to distributors for implementation and can include
details of payments, restrictions, etc. When an
end user accepts an offer, an agreement is created.
The agreement captures the details of a completed
transaction, and essentially creates an end user li-

3



cense with all the terms of the agreement. This
model allows the rights holder to create a variety
of offers for the end user’s usage.

3.2 odrl-ext

Our extension adds three more entities – request,
grant-request and deny-request – and are modelled
on the agreement entity. We envisage its main use
in a web-services environment. The end-user can
request the rights holder for a set of rights on a set
of assets. The rights holder can then deny or grant
that request.

This model can be further extended where the
rights holder can offer various rights at various
prices. The prospective end user can then request
for a combination of rights, pay for these rights and
then receive an end user license. Thus in this man-
ner the request entity can be used for electronic
contract negotiation. The grant and deny request
entities can be used to conditionally accept or re-
ject requests during the contract negotiation.

3.2.1 Add, Remove and Replace

A request from a user can take the form of adding,
removing or replacing a set of permissions, con-
straints, requirements, conditions, assets or even
parties. Thus the remove and add request ele-
ments are simply instances of the offerAgreeType
in the ODRL Expression Language Schema [2].
The replace-request element comprises of a set of
remove requests followed by a set of add requests.
Although a replace-request element is not neces-
sary, we believe that this element would allow
for better tracking and management by the rights
holders. Figures 2,3 and 4 show the content model
for the add, remove and replace elements.

3.2.2 Request

The requestType creates an envelope containing all
the add, remove and replace requests from the user
as well as the context of the request and informa-
tion about the party making the request. The con-
text element allows the rights holder to reconcile

Figure 2: The Add Request Content Model

Figure 3: The Remove Request Content Model

4



Figure 4: The Replace Request Content Model

Figure 5: The Request Content Model

the request against an existing agreement or an of-
fer. At least one party is required to identify the
party making the request. The description element
allows for the end user to write notes, and give
more detailed information to the rights holder. If
the request is processed manually, this feature can
be very useful. Figure 5 shows the content model
of the requestType. The request element is the
only element of the requestType.

3.2.3 Request Response

The requestResponseType creates an envelope for
the rights holder to respond back to the user mak-
ing the request. There are two differences be-
tween the requestType and the requestResponse-
Type. Firstly, the response from the rights holders
must have a context, either of an earlier request or
of the affected agreement. This will allow the DRM
controller to keep track of the chain of agreements
that it needs to manage and also allow the rights
holders to track their responses to requests. Sec-

Figure 6: The Response-Request Content Model

ondly the response must have at least two parties
- one identifying the user who made the request
and another to identify the rights holder. Figure
6 shows the content model of the requestResponse
type. Both the grant and deny request elements
are of this type.

3.2.4 rightsType

In ODRL 1.1 the rightsType complex type encapsu-
lates agreements and offers with a digital signature
and a revoke mechanism. We extended this type
to encapsulate the request, grant-request and deny-
request elements.We have also redefined the rights
element to be of this type. Figure 7 shows the
content model of the rights type. The rightsType
in ODRL 1.1 extends the offerAgreeType and this
portion has been collapsed in the diagram.

3.2.5 Examples

In scenario 2 of the ODRL 1.1 specifications, a
consumer (Mary Smith) purchases an ebook under
conditions laid down in scenario 1 [2]. One of the
conditions set in scenario 1 is that the consumer is
only allowed to print a maximum of 2 copies of the
ebook.

In example 1, the consumer requests the rights
holders to be allowed to print the ebook 5 more
times. Note, that for the sake of clarity we have

5



Figure 7: The rightsType Content Model

left the namespace definitions and schema loca-
tions out of the example. The descriptions of the
namespaces are detailed below.

odrl-ext: The extended ODRL schema as dis-
cussed in this section.

o-ex: The Expression Language Schema of the
ODRL 1.1 specifications.

o-dd: The Data Dictionary Schema of the ODRL
1.1 specifications.

Example 2 shows a grant request should the rights
holders grant the user’s request. A deny request
would be the same except the grant-request ele-
ments will be replaced with the deny-request ele-
ment.

3.2.6 Full Listing

A full listing of the schema definition is available
in appendix A.

<odrl-ext:rights>
<odrl-ext:request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/lic

ense/1234567890-ABCDEF</o-dd:uid>
</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:print>

<o-ex:constraint>
<o-dd:count>5</o-dd:count>

</o-ex:constraint>
</o-dd:print>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/msm
th-000111

</o-dd:uid>
<o-dd:name>Mary Smith</o-dd:name>

</o-ex:context>
</o-ex:party>

</odrl-ext:request>
</odrl-ext:rights>

Example 1: ODRL Request

<odrl-ext:rights>
<odrl-ext:grant-request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/lic

ense/1234567890-GHIJKL</o-dd:uid>
</o-ex:context>
<o-ex:context>

<o-dd:uid>urn:ebook.world/999999/lic
ense/1234567890-ABCDEF</o-dd:uid>

</o-ex:context>

6



<odrl-ext:request-add>
<o-ex:permission>

<o-dd:print>
<o-ex:constraint>
<o-dd:count>5</o-dd:count>

</o-ex:constraint>
</o-dd:print>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

users/msmth-000111</o-dd:uid>
<o-dd:name>Mary Smith</o-dd:name>

</o-ex:context>
</o-ex:party>
<o-ex:party>

<o-ex:context>
<o-dd:uid>x500:c=AU;o=RightsDir;cn

=AddisonRossi</o-dd:uid>
</o-ex:context>

</o-ex:party>
<o-ex:party>

<o-ex:context>
<o-dd:uid>x500:c=AU;o=RightsDir;cn

=EBooksRUS
</o-dd:uid>

</o-ex:context>
</o-ex:party>

</odrl-ext:grant-request>
</odrl-ext:rights>

Example 2: ODRL Grant Request

4 XrML

4.1 Background

Unlike ODRL, XrML is a proprietary REL de-
veloped by ContentGuard. It is based on Xerox
Parc’s Digital Property Rights Language (DPRL),
which was written in Lisp [1]. Xerox Parc still
has an interest in ContentGuard, though the ma-
jor shareholders are now Microsoft and AOL Time
Warner. XrML currently forms the basis of the
Motion Pictures Expert Group’s (MPEG) MPEG-
21 Rights Expression Language. XrML can also be

used for XML-based security tokens in the webser-
vices security (WS-Security) framework [3]. The
WS-Security framework extends the SOAP speci-
fications to allow for message level security, but it
is still in a draft status.

Figure 8: Simplified representation of the XrML
hierarchy

[8]

Figure 8 shows a simplified representation of the
XrML hierarchy. Unlike ODRL, in an XrML li-
cense, the issuer grants one or more users rights
to resources under various conditions. To decrease
repetitions, XrML uses an inventory to store all the
principals, resources, conditions and rights. These
are then referenced in the individual right expres-
sions. This can be clearly seen in the XrML license
model in figure 9. All the parties in the license
are covered under principals, and they can include
non human, non organisational entities such as net-
work nodes or terminals [6]. Resources identify
the object(s) that the license refers to and can in-
clude digital data like email. Rights and conditions
place restrictions on the usage of the resource. Like
ODRL, any right that is not specified in a license
is not granted to the licensee. XrML also has a Li-
censeGroup structure that can be used to envelope
multiple licenses in one file.

4.2 xrml-ext

As in our extension to ODRL, we add three more
entities to XrML namely, request, grant-request
and deny-request. These entities have been mod-
elled slightly differently to the license model in or-
der to make best use of XrML’s inventory con-
struct. Similar to our ODRL extension, we en-
visage the main use of these constructs in a web
services environment. The end-user requests the
rights holders for a set of grants, to which the rights

7



Figure 9: XrML License Model

holders can then agree or refuse. This model can
also be used for contract negotiation, however the
lack of an offer construct like ODRL makes this
less appealing.

4.2.1 Add, Remove and Replace

As in our ODRL extension, the Replace element
is a compound of the add and remove elements.
The Add and Remove elements both extend the
RequestDetails type, which comprise of a number
of grants and grantGroups. These are essentially
the same constructs that appear in the License ele-
ment in XrML 2.0. The grant group is a container
of several grants but it does not convey any asso-
ciations between the grants it contains [1]. Figure
10 shows the model for the ReplaceRequest model,
together with the remove and add components.

4.2.2 RequestBase

To reduce repetition, we first introduce the Re-
questBase type. This type is very similar to the
License element. In addition to the add, remove
and replace elements, this type contains the in-
ventory of the grant elements, an optional title of
the request, an optional description, as well as a
mechanism to cater for other extensions. The en-
cryptedLicense element has the same functionality
as the encryptedLicense element in the License ele-
ment in the XrML specifications. Figure 11 shows

Figure 10: XrML Extension: Replace Request El-
ement Model

the content model for the RequestBase element.

4.2.3 Request

The Request type extends the RequestBase type.
We have added the requestor principal, which
would allow the rights holder to identify the prin-
cipal making the request. In the XrML specifica-
tions, the licenseID was an attribute of the License
element. However in a request mechanism, there
is the possibility of catering for multiple IDs (e.g.
requesting a change to a change granted through
a grant-request). For this reason, we decided to
incorporate licenseIDs as an element of the type.
Figure 12 shows the content model of the request
type. Please note that RequestBase has been com-
pacted, and you can see figure 11 for the details
of RequestBase. The request element is the only
element of the Request type.

4.2.4 GrantDenyRequest

The GrantDenyRequest type creates an envelope
for the rights holder to respond back to the user
making the request. There are two differences be-
tween this type and the Request type. Firstly, a
new element, issuer is added to enable the rights

8



Figure 11: XrML Extension: RequestBase Type
Model

Figure 12: XrML Extension: Request Type Model

holders to positively identify themselves. Each
response to a request must have at least one is-
suer. Secondly, the response must have an identity
tag (LicenseID) to identify the response. Figure
13 shows the content model of the GrantDenyRe-
quest type. Please note that RequestBase has
been compacted, and you can see figure 11 for
the details of RequestBase. The grant-request and
deny-request elements are the only elements of the
GrantDenyRequest type.

4.2.5 Examples

Alice Smith has bought an e-book ”The Art of
War” from the XYZ Books Company. The ven-
dor allows Alice to lend the e-book to any number

Figure 13: XrML Extension: GrantDenyRequest
Type Model

of persons. However Alice does not make use of
this option, and would rather have another per-
mission in its place. XYZ Books does not allow
Alice to print any copies of the book, and Alice
would like to swap her ”lend” permission for unlim-
ited printing permission. Example 3 shows Alice’s
request. Example 4 shows the response from the
rights holder denying the request. A grant-request
response would have been identical except for the
root element.

Note, that for the sake of clarity we have left the
namespace definitions together with their respec-
tive schema locations and the contents of the en-
cryption key fields (like Modulus of a RSA key) out
of the example. The description of the namespaces
are detailed below.

xrml-ext: The extended XrML schema as dis-
cussed in this section

xrmlcore: The Core Schema of the XrML 2.0
specification.

cx: The Content Extension Schema of the XrML
2.0 specification.

dsig: W3C schema for XML Schemas

9



<xrml-ext:request>
<xrml-ext:title>This is a Request Exampl

e</xrml-ext:title>
<xrml-ext:inventory>

<xrmlcore:keyHolder xrmlcore:licensePartId
="Alice">

<xrmlcore:info>
<dsig:KeyValue>

<dsig:RSAKeyValue>
<dsig:Modulus/>
<dsig:Exponent/>

</dsig:RSAKeyValue>
</dsig:KeyValue>

</xrmlcore:info>
</xrmlcore:keyHolder>
<cx:digitalWork xrmlcore:licensePartId

="book1">
<cx:metadata><xml>

<cx:title>The Art of War</cx:tit
le>

</xml></cx:metadata>
</cx:digitalWork>

</xrml-ext:inventory>
<xrml-ext:replaceRequest>

<xrml-ext:removeRequest>
<xrmlcore:grant>

<cx:loan/>
</xrmlcore:grant>

</xrml-ext:removeRequest>
<xrml-ext:addRequest>

<xrmlcore:grant>
<cx:print/>

</xrmlcore:grant>
</xrml-ext:addRequest>

</xrml-ext:replaceRequest>
<xrml-ext:requestor xrmlcore:licensePart

Id="Alice"/>
<xrml-ext:licenseIDs>license://books.xyz

.issue.alice.smith.1</xrml-ext:licenseIDs>
</xrml-ext:request>

Example 3: XrML Request

<xrml-ext:deny-request
<xrml-ext:title>This is a Deny Request

Example</xrml-ext:title>
<xrml-ext:inventory>

<xrmlcore:keyHolder xrmlcore:licensePa
rtId="Alice">

<xrmlcore:info>
<dsig:KeyValue>

<dsig:RSAKeyValue>
<dsig:Modulus/>
<dsig:Exponent/>

</dsig:RSAKeyValue>
</dsig:KeyValue>

</xrmlcore:info>
</xrmlcore:keyHolder>
<cx:digitalWork xrmlcore:licensePartId

="book1">
<cx:metadata>

<xml>
<cx:title>The Art of War</cx:tit

le>
</xml>

</cx:metadata>
</cx:digitalWork>

</xrml-ext:inventory>
<xrml-ext:replaceRequest>

<xrml-ext:removeRequest>
<xrmlcore:grant>

<cx:loan/>
</xrmlcore:grant>

</xrml-ext:removeRequest>
<xrml-ext:addRequest>

<xrmlcore:grant>
<cx:print/>

</xrmlcore:grant>
</xrml-ext:addRequest>

</xrml-ext:replaceRequest>
<xrml-ext:issuer>

<dsig:Signature>
<dsig:SignedInfo>
<dsig:CanonicalizationMethod dsig:

Algorithm="http://www.w3.org/TR/2001/REC-
xml-c14n-20010315"/>

<dsig:SignatureMethod dsig:Algorith
m="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>

10



<dsig:Reference>
<dsig:Transforms>
<dsig:Transform dsig:Algorithm=

"http://www.xrml.org/schema/2001/11/xrml2c
ore#license"/>

</dsig:Transforms>
<dsig:DigestMethod dsig:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue/>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue/>
<dsig:KeyInfo>

<dsig:KeyValue>
<dsig:RSAKeyValue>

<dsig:Modulus/>
<dsig:Exponent/>

</dsig:RSAKeyValue>
</dsig:KeyValue>

</dsig:KeyInfo>
</dsig:Signature>
<xrmlcore:details>

<xrmlcore:timeOfIssue>
2004-05-28T19:00:00</xrmlcore:tim

eOfIssue>
</xrmlcore:details>

</xrml-ext:issuer>
<xrml-ext:requestor xrmlcore:licensePart

Id="Alice"/>

<xrml-ext:licenseIDs>
license://books.xyz.issue.alice.smith.

1
</xrml-ext:licenseIDs>
<xrml-ext:licenseIDs>

license://books.xyz.denyrequest.alice.
smith.1

</xrml-ext:licenseIDs>
</xrml-ext:deny-request>

Example 4: XrML Deny Request

4.2.6 Full Listing

A full listing of the schema definition is available
in appendix B.

5 Future Work

As pointed out by Mulligan et al. [8], bi-directional
communication does not depend on REL support
only. The protocols used by the DRM systems and
the DRM controllers need to be modified. License
servers could also be setup to grant or deny certain
requests automatically. In the broader scheme,
bi-directional REL forms a core part of our pro-
posal to create an open right management services
framework [5], and will hopefully overcome many
of the current obstacles in DRM systems.

6 Conclusions

In this paper we discussed extensions to XrML and
ODRL that creates a request mechanism. It al-
lows users to request for changes in rights, permis-
sions or even resources (and their combinations)
to their existing license. The extensions also al-
low the rights holders to respond to these requests
through a grant and deny request mechanisms. By
extending the XML schema, we have not broken
the existing standard; and thus allows for full back-
ward compatibility. We believe that the request
feedback mechanism would allow for easier rights
management through better contract negotiation,
and would also allow for users to request (and be
subsequently granted) fair use rights that might
not necessarily hold for everyone1.

7 Acknowledgements

This work is supported through grants from the
UCT Council, the KW Johnstone and Daimler-
Chrysler scholarships. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not nec-
essarily reflect the views of UCT or the trustees

1For example, it is generally considered fair use to re-
produce a section of text for academic purposes as long as
there is no monetary gain. In current DRM systems, this
right is hard to express unless it is known that the user is an
academic before the sale. This would be easy to implement
using a request mechanism where an academic could buy
the text as normal, and then request to reproduce a section;
and prove to the rights holders that he/she is an academic.

11



of the UCT Council, KW Johnstone and Daimler-
Chrysler scholarships.

XML Schema content model diagrams were gener-
ated using XMLspy.

This report is based on a paper that was origi-
nally submitted to the ACM Workshop on Digi-
tal Rights Management. While the paper was not
accepted, the reviewers gave a lot of constructive
criticisms, and many of the recomendations and
criticisms have been incorporated and addressed in
this report. We would like the thank the reviewers
on their detailed reviews.

References

[1] eXtensible rights Markup Language (XrML)
2.0 Specification, 2001.

[2] Open Digital Rights Language (ODRL) 1.1,
2002.
URL: http://odrl.net/1.1/ODRL-11.pdf.

[3] Specification: WS-Security Profile for XML-
based Tokens, 2002.
URL: http://www-
106.ibm.com/developerworks/webservices/library/ws-
sectoken.html.

[4] Technical overview of windows rights manage-
ment services for windows server 2003. White
paper, Microsoft, 2003.

[5] Arnab, A., and Hutchison, A. Dis-
tributed drm system. 2004.

[6] Coyle, K. Right Expression Languages, A
report for the Library of Congress. Tech. rep.,
Library of Congress, USA, 2004.

[7] Felten, E. Skeptical view of DRM and
Fair Use. Communications of the ACM 46,
4 (2003), 57–59.

[8] Mulligan, D., and Burstein, A. Imple-
menting Copyright Limitations in Right Ex-
pression Languages. In Proceedings of the
2002 ACM workshop on Digital Rights Man-
agement (2002), ACM.

[9] Park, J., Sandhu, R., and Schifalacqua,
J. Security architectures for controlled digital
information dissemination. In Proceedings of
the 16th Annual Computer Security Applica-
tions Conference (2000).

[10] Wenning, R. DRM and the Web. In
ODRL International Workshop 2004, Vienna
Austria (2004).
URL: http://www.w3.org/Talks/2004/04-
odrl/.

8 Appendix

In the following two appendices, we provide a full
source listing of the two extended schemas. Due to
space constraints, indentation has been reduced.

A Full Listing – Extended
ODRL Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://people.
cs.uct.ac.za/~aarnab-ODRL"
elementFormDefault="qualified"
attributeFormDefault="qualified" version="
0.1" xmlns:odrl-ext="http://people.cs.uct.
ac.za/~aarnab-ODRL"
xmlns:xs="http://www.w3.org/2001/XMLSchema
" xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"
>

<xs:import namespace="http://odrl.net/1.1/
ODRL-EX" schemaLocation="http://www.odrl.n
et/1.1/ODRL-EX-11.xsd"/>

<xs:annotation>
<xs:documentation>

XML Schema extends ODRL Expression Lang
uage Schema by allowing users/distribut
ers to requ-est rights from theright ho
lder.

Alapan Arnab
Validated with XMLSpy 2004

12



</xs:documentation>
</xs:annotation>

<xs:element name="rights" type="odrl-ext:
rightsType"/>

<!-- Add the query element to the language
-->
<xs:element name="request" type="odrl-ext:
requestType"/>
<xs:element name="grant-request" type="odr
l-ext:responseRequestType"/>
<xs:element name="deny-request" type="odrl
-ext:responseRequestType"/>

<!-- The request type comprises of a numbe
r of addition, replace and remove requests
. These requests themselves are of the off
erAgreeType.
-->

<xs:complexType name="requestType">
<xs:choice minOccurs="0" maxOccurs="unbou

nded">
<xs:element ref="o-ex:context" minOccurs

="0"
maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:request-add"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="request-replace"
type="odrl-ext:requestReplaceType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:request-remove

"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="o-ex:party"
maxOccurs="unbounded"/>
<xs:element name="description" type="xs:

string"
minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>
</xs:complexType>

<!-- A grant/deny request should have the
information about the request its granting
, the license number/context information
of the original request and license.contex
t information about the new license.-->

<xs:complexType name="responseRequestType"
>
<xs:complexContent>
<xs:restriction base="odrl-ext:requestTy

pe">
<xs:choice minOccurs="0" maxOccurs=
"unbounded">
<xs:element ref="o-ex:context"
maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:request-add"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="request-replace"
type="odrl-ext:requestReplaceType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:request-remo

ve"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="o-ex:party" minOccurs

="2"
maxOccurs="unbounded"/>
<xs:element name="description"
type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:choice>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<!-- Allows for a multiple number of tuppl
es for replacement.-->

<xs:complexType name="requestReplaceType">
<xs:sequence minOccurs="0"
maxOccurs="unbounded">
<xs:element ref="odrl-ext:request-remove

"/>
<xs:element ref="odrl-ext:request-add"/>
</xs:sequence>
</xs:complexType>

13



<xs:element name="request-add"
type="o-ex:offerAgreeType"/>

<xs:element name="request-remove"
type="o-ex:offerAgreeType"/>

<!-- The rightType container. Added the re
quest container. -->

<xs:complexType name="rightsType">
<xs:complexContent>
<xs:extension base="o-ex:rightsType">
<xs:choice minOccurs="0"
maxOccurs="unbounded">
<xs:element ref="odrl-ext:request"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:grant-reques

t" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:deny-request

" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:schema>

B Full Listing – Extended
XRML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://people.
cs.uct.ac.za/~aarnab-XRML"
elementFormDefault="qualified"
attributeFormDefault="qualified"
version="0.1"
xmlns:xrml-ext="http://people.cs.uct.ac.

za/~aarnab-XRML"
xmlns:xs="http://www.w3.org/2001/XMLSchem

a" xmlns:xrmlcore="http://www.xrml.org/sch
ema/2001/11/xrml2core" xmlns:ns1="http://w
ww.w3.org/XML/1998/namespace">

<xs:import namespace="http://www.w3.org/XM
L/1998/namespace" schemaLocation="http://w
ww.w3.org/2001/xml.xsd"/>

<xs:import namespace="http://www.xrml.org/
schema/2001/11/xrml2core" schemaLocation="
xrml2core.xsd"/>

<xs:annotation>
<xs:documentation>
XML Schema extends XRML Expression Langu
age Schema by allowing users/distributer
s to request rights from the right holde
r.

Alapan Arnab
Validated with XMLSpy 2004
</xs:documentation>
</xs:annotation>

<xs:element name="request" type="xrml-ext:
Request"/>
<xs:element name="grant-request"
type="xrml-ext:GrantDenyRequest"/>
<xs:element name="deny-request"
type="xrml-ext:GrantDenyRequest"/>

<xs:complexType name="Request">
<xs:complexContent>
<xs:extension base="xrml-ext:RequestBase

">
<xs:sequence>
<xs:element name="requestor"
type="xrmlcore:Principal"
maxOccurs="unbounded"/>
<xs:element name="licenseIDs"
type="xs:anyURI" maxOccurs="unbounded

"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="GrantDenyRequest">
<xs:complexContent>
<xs:extension base="xrml-ext:RequestBase

">
<xs:sequence>
<xs:element name="issuer"
type="xrmlcore:Issuer"

14



maxOccurs="unbounded"/>
<xs:element name="requestor"
type="xrmlcore:Principal"
maxOccurs="unbounded"/>
<xs:element name="licenseIDs"
type="xs:anyURI" maxOccurs="unbounded

">
<xs:annotation>
<xs:documentation>
There has to be atleast one ID that
identifies the response from the gr
ant holder. Other IDs could be used
to chain a set of licenses together
.
</xs:documentation>

</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<!--Definition of the Request Base Type-->

<xs:complexType name="RequestBase">
<xs:choice minOccurs="0" maxOccurs="unbou

nded">
<xs:choice minOccurs="0" maxOccurs="unbo

unded">
<xs:element name="title"
type="xrmlcore:LinguisticString"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="inventory"
type="xrmlcore:Inventory" minOccurs="0

"/>
<xs:element ref="xrml-ext:addRequest"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="replaceRequest"
type="xrml-ext:ReplaceRequest" minOccu

rs="0" maxOccurs="unbounded"/>
<xs:element ref="xrml-ext:removeRequest

" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="description"
type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:any namespace="##other"

processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

</xs:choice>
<xs:element name="encryptedLicense"
type="xrmlcore:EncryptedContent"/>

</xs:choice>
</xs:complexType>

<!-- Definitions of the addRequest and
removeRequest elements -->

<xs:element name="addRequest"
type="xrml-ext:RequestDetails"/>
<xs:element name="removeRequest"
type="xrml-ext:RequestDetails"/>

<!-- Definition of the ReplaceRequest comp
lex type -->

<xs:complexType name="ReplaceRequest">
<xs:sequence minOccurs="0"
maxOccurs="unbounded">
<xs:element ref="xrml-ext:removeRequest"

/>
<xs:element ref="xrml-ext:addRequest"/>
</xs:sequence>
</xs:complexType>

<!-- Definition of the RequestDetails comp
lex type-->

<xs:complexType name="RequestDetails">
<xs:annotation>
<xs:documentation>
A request detail contains the details a
s specified by the Grant and GrantGroup
types in the XrML core schema. The inve
ntory, issuer details are global.

</xs:documentation>
</xs:annotation>
<xs:choice minOccurs="0" maxOccurs="unbou
nded">

<xs:element ref="xrmlcore:grant"/>
<xs:element ref="xrmlcore:grantGroup"/>
</xs:choice>
</xs:complexType>

15



</xs:schema>

16


