
Interactive Mixed-Media Virtual Environment Prototyping
Jonathan Househam

jhouseha@cs.uct.ac.za
David le Roux

dleroux@cs.uct.ac.za

ABSTRACT

This paper details a tool for designing and simulating virtual
environments in two dimensions. The system consists of
computer controlled agents projected onto a whiteboard.
Markings (which can be altered dynamically) on the whiteboard
represent the obstructions (walls). A camera captures new images
of the whiteboard constantly. The image is then processed by the
image-processing component to determine where the walls are
and this information is fed into the artificial intelligence
component so that the agents move about realistically and do not
move through walls.

Natural movement throughout the environment is successfully
implemented via a robust collision detection system as well as
bounded path finding techniques. The AI system is efficient
enough to allow for relatively large agent numbers, as well as
operation at acceptable frame rate.

The image processing first transforms the input images so that the
projected area forms a rectangle. The image is then segmented by
dividing the image into regions and calculating a threshold for
each region based on an offset from the mean.

General Terms
Algorithms, Performance, Design, Experimentation, Human
Factors.

Keywords
Virtual Environment Prototyping, VE, Path Finding, Agents,
Behaviour, Interaction, Segmentation, Thresholds, 2D Perspective
Transforms.

1. INTRODUCTION

This paper details a system be used to simulate and design a
virtual environment (VE) which is more advanced than the
traditional use of cardboard pieces (representing agents) on a
board. Specifically, the artificially intelligent agents are
controlled by a computer and move and interact with a virtual
environment.

VE prototyping is usually done during the design phase of a
virtual environment or game. The aim is to see the layout of the
VE floor-plan, what sort of interactions take place within the VE,
and in what order. It is important to have a precise idea of what a
VE will look like, as well as how it will function, before
development. This is the case due to the fact that changes to the
VE in terms of layout whilst in the implementation phase are
costly. A VE prototyping tool which is cheap and provides a test
bed for agent interactions and movements within a VE is therefore
needed.

The following design was implemented: A web-cam was set up
above a whiteboard. The camera feeds images into an image
processing system which extracts the features of the virtual
environment (such as where the walls are); this information is
used by the artificial intelligence code to determine where to
project the agents, using a standard data projector.

The advantage of using a physical whiteboard instead of a virtual
canvas is that, it is more collaborative since many people can
easily sit around a whiteboard, and many people are more
comfortable drawing with a pen as opposed to a mouse. The white
board system allows for a more direct and tactile user experience.
For example the agents can be herded around by a users hand
movements as well as other physical objects. A further example
of the tactile nature of the system is that the user can possibly use
bits of paper as a bridge across obstructions.

Section 2 gives some background on the development and use of
mixed media interfaces.

Section 3 outlines the system components.

Section 4 describes the artificial intelligence systems.

Section 5 describes the image processing component.

Section 6 gives results of the functioning and performance the
system.

2. BACKGROUND

Mixed media interfaces involve the integration of standard
computer interfaces (i.e. mouse, keyboard and screen) with more
familiar, physical or non-computer related interfaces. The
advantages of such interfaces are that, people are very familiar
with tactile interfaces (i.e. pen and paper). Because of this no
metaphor are used, and the need for user testing of the interface is
reduced.

The paper BrightBoard: a video-augmented environment [6],
details a technique for more interactive and versatile whiteboards.
The technique involves the augmentation of a white board with
the use of computer software and digital cameras. The system
allows the user to effectively control a computer by making
simple marks on a whiteboard. Whilst the system contained image
processing of marks on a whiteboard captured via a digital camera
device, the use of a projector and the complications it creates (i.e.
lens flares and lighting changes), mean that the practical methods
of implementation could not be used for the implementation of the
system proposed in this paper.

The paper PENPETS: A Physical Environment for Virtual
Animals [8] describes the product very similar to the system
described in this paper. Techniques from the PENPETS system

have not been published; hence techniques regarding
implementation from the PENPETS system could not be used.

3. SYSTEM OVERVIEW

A web camera is used to capture user markings and gestures on a
whiteboard. The captured images are processed via an image
processing component, which generates an environment
representation. This representation is used by an artificial
intelligence component to simulate movement through the
environment. The end result is projected agents that react to
markings on a whiteboard.

4. ARTIFICIAL INTELLIGENCE

4.1 Base AI, Obstacle Detection and
Avoidance

The base structure of the AI system consists of the following:

• Agent movement is random.

• Agents cannot walk through obstacle.

• If agents are located on an obstacle they can walk off it.

Random movement is implemented selecting a location on a grid,
(240*320 array of square objects) and then pushing the location
(square object) onto the front of the path-storing list attribute of
the agent. If the path-storing list is empty, or an obstacle blocks
the agent, a new random location.

Figure 4.1 Squares Check for Obstacles

Figure 4.1 is showing an example of the layout of squares
checked for obstacles (walls, etc). The blue square represents the
position of the agent, the red squares represent the squares
checked for obstacles and the arrow indicates the direction of
agent movement.

This enables one to customize the shape of the squares scanned.
This is useful if the agents are different in shape. Due to
inaccuracies of the images obtained via the web camera device,
the location of the obstacles fluctuates (captured image vary). The
pixel bank allows the agents to detect obstacle from further away,
minimizing the risk of agents walking through or getting trapped
within obstacles (more robust collision detection).

4.2 Scan Areas

A mechanism for the detection of locations with various attributes
is implemented. Examples scanned for attributes are food or
danger areas. These locations are detected so the agent can take
the appropriate action.

Figure 4.2 Predator Type Scan Field

The current implementation of the agent scan field consists of a
line shape, which is radiated outwards from the agent position.
The direction, in which the line is radiated, depends on the
direction the agent is moving. Figure 4.2 shows an agent moving
in a North Westerly direction. The blue section represents the
scan area for this agent. One can see that the scanned area of the
agent doesn’t pierce walls and that the field doesn’t proceed
round obstacles (i.e. the agent cannot see round corners). This is
achieved by not projecting the part line outward, if that part of the
line has made contact with an obstacle.

The way in which the scan fields radiate from the agent position,
as well as the shape of the scan field are customisable. For
instance one may want to have a long, narrow, forward facing
scan field (such as the field in Figure 3.2) for a predator type
agent, or a shorter, wider, forward and backward scanning field
for a prey type agent.

4.3 Path Finding

Concerns with respect to path finding are:

• That it should be fast enough to calculate paths, without
noticeable slowdown of the system.

• The path finding algorithm should be suitable for the
calculation of paths in a dynamic environment.

• Agents should move though out the environment in a
natural way.

The following path finding algorithms and techniques were
investigated:

The Breadth first searching algorithm [2], which is an
uninformed search, that functions by scanning uniformly outward
from the starting node (position) in the search graph.

Dijkstra’s shortest path algorithm [3] this algorithm scans
adjacent grid cells for the lowest cost block based on the G cost
heuristic (the cost of moving from the start point of the path to the
scanned grid cell). It is a best first search algorithm. This search
technique is undirected because the heuristics used are not goal
specific.

Potential fields involve the pre-processing of the grid and
calculating a potential value for each of the grid cells, the path is
then calculated to be that which the follows the high to low
potential path (goal has zero or very low potential and obstacles
have a very high potential making it impossible to walk onto
them).

Non Uniform Grid Cells can be used. Pre-processing of the
search grid based on the rectilinear obstacles can lead to fewer
search nodes (adjoining obstacle locations become one).

•The A* algorithm [2]

This algorithm is the same as Dijkstra’s algorithm with the
addition of a heuristic (H cost), which is the predicted cost of
moving from the current grid cell to the goal. The A* algorithm is
therefore a directional search reducing the amount of nodes in the
search graph.

The implemented system uses the A* algorithm due to its superior
performance in terms of both iterations and time taken for path
calculations. The A* implementation was optimised via the use of
a binary heap data structure [10].

Figure 4.3 Bounded A* Calculated Path

A bounded version of the A* algorithm is implemented, where
after the search algorithm performs more than a threshold value of
iterations, obstacles are no longer taken into account. This
facilitates exploration down dead ends as well as performance
optimisation (see Figure 4.3).

4.4 Extended Features

Variables can be changed that affect the behaviour of agents.
These include the speed of the agent, the amount of obstacle
collisions that occur before agents calculate paths as well as the
types of attributes the agents scan for and how the agent reacts to
them.

Path storage for agents is maintained in a standard list structure
allowing for the paths of any length as well as dynamic changing
of an agent’s path at run time.

5. IMAGE PROCESSING

5.1 Segmentation

The two aims of the image processing component are that it:

• Gives a qualitatively correct segmentation
• Is fast enough to segment several frames per second on

the average current PC.

There are several approaches to segmenting images:

Global Threshold

A single threshold is used for the whole image. The
problem is that wall and background values may
overlap, but not in the same region of the image. For
example, the background of one side might be darker
than the other, but then the walls on this region will also

be darker, but a single global threshold will not segment
the image correctly.

Moving average

The image is scanned one pixel at a time. Each pixel
gets its own threshold based on the average grey-scale
value of the last n pixels. This handles variations in
intensity better than the global threshold. A horizontal
and a vertical pass can be done and the thresholds can
be averaged.

Regional Threshold

The image is split up into various regions and each
region gets its own threshold.

Offset from mean

The threshold for each region is simply set to
the mean value of the region minus x. The
reason this is feasible is that the input images
consist mainly of background.

Histogram analysis

The pixel values within a region are plotted in
a histogram. Ideally the histogram should
have a bimodal distribution, one representing
the wall and the other representing the
background. Unfortunately, since the walls
form such a small part of the whole region,
the wall data doesn’t influence the histogram
much. If a crude edge detection is done on the
region first, e.g. by convolving the image with
a Laplacian type matrix, and then only putting
the values of the pixels that were identified as
part of the edge into the histogram[9], two
peaks can be obtained. There are various ways
of determining where the two peaks are, such
as the two peaks method [5] which takes the
first peak as the highest bar and finds the
second peak by taking into account the height
of the bar and the distance from the first peak
(favouring those peaks that are further away).
Another way of determining where to place
the threshold using histogram data is to use
iterative selection [7] which uses consecutive
passes through the histogram to refine the
threshold. The new threshold becomes the
average of: the mean of the pixels above the
threshold, and the mean of the pixels below
the threshold.

5.2 2D Perspective Transformation

Since the projector may not project onto a surface that
is perfectly perpendicular to it, the image obtained by
the camera will not necessarily be a rectangle. A 2D
perspective transformation can convert the image
obtained into one where the corners are at the corners of
a 320 x 240 rectangle. The required matrix can be
numerically calculated using Gaussian reduction. This
transformation preserves lines but not angles. For each
point in the 320 x 240 rectangle the transform is done

and then rounded to give the closest pixel in the input
image. [1] Presents some theory concerning
homogeneous co-ordinates and perspective
transformations.

6. RESULTS

6.1 Path Finding Performance

The use of potential fields and non-uniform grids, require large
amounts of pre-processing of the search grid (space). Because of
this such methods are infeasible in a dynamically changing
environment. Hence they were not considered for implementation.

The breadth first search produces a search graph containing an
unacceptably large number of nodes. This Results in a high
number of algorithm iterations. The relative performance of this
algorithm can be seen in figures 6.1 and 6.2.

The A* algorithm yields optimal performance, in terms of both
algorithm iterations as well as the total time taken to calculate
paths (again see Figures 6.1 and 6.2.).

0

10000

20000

30000

No of Iterations

Average Algorithm Iteration
Comparison

Breadth First
Search

A* Algorithm

Figure 6.1

0

5

10

15

20

Time (ms)

Average Algorithm Time
Comparison

Breadth First
Search

A* Algorithm

Figure 6.2

6.2 Qualitative Performance of Agent AI

The agents successfully avoid obstacles and are prevented from
walking through walls. Agents can navigate a maze without
getting stuck in any one part of the maze if an exit to the area
exists. Agents are capable of successfully detecting entities of
interest in the environment and reacting to these entities, once
detected. These elements of the system were tested by observation
and program use.

6.3 AI General Performance

0

100

200

300

400

500

Frame Rate, with respect to the
Number of Initialized Agents

Number of
Agents

Frame Rate
(fps)

Figure 6.3

The system is capable of operation at acceptable frame rates
whilst large amount of agents are initialised. Figure 6.3 illustrates
that acceptable frame rates are achieved with the initialisation of
up to 100 agents. This illustrates the acceptable functioning of the
AI system in terms of speed and efficiency. The results in Figure
6.3 were obtained with the image processing system deactivated.

6.4 Segmentation Results

No single global threshold gives a satisfactory segmentation
as can be seen in Figure 6.4

Figure 6.4 – Segmentation using a global threshold

The moving average algorithm gives satisfactory results
although it gives best results when the traversal alternates
between left-to-right and right-to-left and when vertical
information is also taken into account. Vertical information
can be taken into account by first doing a horizontal traversal
and then averaging the threshold obtained with the thresholds

obtained from a vertical traversal. Figure 6.5 shows the
segmentation obtained using this method:

Figure 6.5 – Segmentation using a moving average

The regional segmentation based on thresholds calculated
from offsets from the mean gives a satisfactory segmentation
(as can be seen in Figure 6.6) and is fast. This is the
segmentation technique used in the implementation.

Figure 6.6 – Segmentation using interpolated regional offset
from the mean thresholds

Two peaks and iterative selection give similar results and
neither give consistently good results, even when both
classes of pixels are present in a region. Figure 6.7 shows the
segmentation obtained using iterative selection:

Figure 6.7 – Segmentation using iterative selection on
Laplacian generated histograms

6.5 2D Perspective Transformation Results

The 2D perspective transformation is necessary because
otherwise the agents may seem to walk through walls
because the position of the walls relative to the camera is not
the same as the position of the walls relative to the projector.
Agents seeming to walk through walls is not acceptable from
a usability point of view. An example of this transformation
is shown in Figure 6.8

Figure 6.8 – 2D perspective transformation

7. CONCLUSIONS

The AI system successfully simulates natural movement through
the environment represented on the whiteboard. Path finding as
well as agents collision detection is both robust and adequate in
terms of performance.

The interpolated regional offset from the mean segmentation
algorithm is both qualitatively good and fast. The 2D perspective
transformation is also necessary for usability reasons. The image
processing component is capable of processing (transform and
segmentation) 13 frames per second on current low-end hardware.

The system provides a low cost method for the prototyping of a
VE.

8. REFERENCES

[1] Edward Angel, Interactive Computer Graphics: A Top down
Approach Using OpenGL Third Edition, 2003.

[2] [Nilsson, 1998] Artificial Intelligence: A New Synthesis,
Nils J. Nilsson, 1998.

[3] P.E. Hart, N.J. Nilsson and B. Raphael, a Formal Basis for
the Heuristic Determination of Minimum Cost Paths, IEEE
Trans. On Systems Science and Cybernetics, 1968.

[4] Nils J. Nilsson, Artificial Intelligence: A New Synthesis,
1998.

[5] Parker J., “Algorithms for Image Processing and Computer
Vision”, Wiley & Sons Inc., 1997.

[6] Quentin Stafford-Fraser, Peter Robinson, Bright Board: A
Video-Augmented Environment, 1996.

[7] Ridler T., Calvard S. Picture, Thresholding Using an
Iterative Selection Method, IEEE Transactions on Systems,
Man, and Cybernetics. Vol. SMC-8. 8:630-632, 1978.

[8] Shaun O’Mahony and John A. Robinson, PENPETS: A
Physical Environment for Virtual Animals, ACM, 2003.

[9] [Weszka J., Nagel R., Rosenfeld A., A Threshold Selection
Technique, IEEE Trans. on computer. Vol. 23:1322-1326,
1974.

[10] Mark Allen Wiess, Data Structures and Problem Solving
Using C++: Second Edition, 2000.

