
Linux Peer-to-Peer File Sharing System

Technical Report No. CS04-10-00

Gilchrist Fortune Mushwana
gmushwan@cs.uct.ac.za

Mzondeleli Boltina
Mboltina@cs.uct.ac.za

Supervised by:
Prof Ken MacGregor

ken@cs.uct.ac.za

Sebastian Rabele Melamu
Smelamu@cs.uct.ac.za

ABSTRACT

In recent years, the evolution of innovative network architecture
called peer-to-peer has been witnessed. Such systems are mainly
characterized by direct access to computers or devices, rather than
through centralized servers. According to the peer-to-peer
working group, p2p is defined as the sharing of resources by
direct exchange.

File sharing is the dominant application you can find on the
internet today. These applications involve the sharing of resources
and services with other computer system through direct exchange
of information. Such resource includes information and content
files, processing cycles, cache storage and disk storage. This kind
of an application was made famous by the introduction of the
server based file sharing application in 1999 called Napster.
Napster was one of the first generation p2p systems to be created;
today P2P computing has advanced towards the third generation
P2P systems. Such a generation includes the likes of Chord [1],
CAN [2] and Tapestry [3].

This paper is aimed at researching how P2P communication can
be applied in a Linux operating system. This is done so by
designing a file sharing system that allows computer systems to
share each other memory. This system provides security,
reliability and availability by distributing multiple encrypted files
to a network of different PC’s. We conclude by analyzing how
successful this architect will be in future.

Categories and Subject Descriptors

*Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

H1 [operating systems]: Information storage and Retrieval
systems.

Keywords

Linux peer-to-peer files system, personal computer, availability,
reliability, security, trust and backup.

1. INTRODUCTION

Recently, a new model of communication and computation, called
peer-to-peer networking, has started to gain significant acceptance
[4]. Contrary to the traditional client-server model,

Peer-to-peer computing enables all clients to act as servers and all
servers to act as clients. In this way, clients not only take a more
active role in the information dissemination process, but also may
significantly increase the performance and reliability of the
overall system, by eliminating the traditional notion of the
“server” which could be a single point of failure and a bottleneck
in the overall system [5].

The first and most widely-known peer-to-peer system called
Napster is considered the first file sharing utility that has enabled
a hundreds of thousand of users to efficiently share files. Today
the likes of windows have adopted this technique of sharing
information. Windows allows personal computers to interconnect
one another and share information securely and efficiently using
its operating system.

In this paper we present an architect for distributing information
in a server less distributed network of computers. This system
will be deployed into Linux operating system to analyze how
possible it to share file in Linux. Further more, to securely and
reliably share information. This system will adopt the
implementation of a backup system, whereby files are replicated,
encrypted and stored in many places.

The remainder of this paper describes our system architecture,
results, and analyzes these results in terms of our proposed
architecture.

2. BACKGROUND PROBLEM

Peer-to-peer file sharing introduces an existing method of sharing
which is currently applied on the internet and windows into the
Linux operating system. This report is aimed at bringing sharing
possible between computers without using a central server. The
success of this architecture will be based on the implementation
of three main components: Distribution of information, protocols
for information discovery and security. To illustrate how data
sharing will be achieved in this architecture, a network of peers is
required. In this network, peers should be able to satisfy the three
main components as indicated above

- Distribution of information: The distribution of information
involves a situation where by a file has to be written or read away.
As a result a decision has to be made on where to write or read it
and how to retrieve or store it. If it’s backing-up information,
preferably this information has to be replicated and distributed
into more than one place to achieve reliability and availability of
the stored information. And if It involves getting a shared file,
searching is highly important and this in most cases is determined
by the structure of the network.

-Protocols for information discovery: protocols for information
discovery involves the implementation of rules that will help
other users to discover each other, bind with one another and
share resources. Same kind of resources can be adopted from the
JXTA platform.

-Security: Security in this case involves protecting the
information distributed such that no peer is able edit it except its
owner.

Figure 1High level architecture of the Linux peer-to-peer file
sharing system

Application

This is the highest layer of this system. Every data sharing request
is invented in this layer and then passed into the security layer.

Security

This layer receives information from the application layer,
encrypts it and passes to the distribution layer.

Distribution Architecture

This layer defines rules that determine how replicated information
should be distributed between computer systems and how to
retrieve them to form the original replicated file.

Network Architecture

This is last layer of this system. This layer implements all the
information discovery protocols such that peers are able to
connect, publish, discover and share.

To solve this problem, the design of this architecture will be
divided into four implementation components. The network,
distribution, security and the application as described above. The
next section describes the components of each design, including
its implementation.

3. Goals

When designing our system, we adhered to the following goals:

Reliability. Our top priority was to ensure that our
system was as reliable as a secondary storage device.
We want to be able to retrieve data even when some
hosts holding our data are down.

Storage space. We want to minimize the amount of data
stored in each of our peers. We don’t want full
replication for our data.

Speed of recovery. Recovery from a disk failure should
be dominated by the network bandwidth and disk IO
speed for writing the recovered files to disk.

Ease of use. Users should be able to backup a file by
inputting at the command prompt without having to
worry about where his files are stored and the files
should be automatically recovered in the event of disk
failure without the user having to specify how or where
from to recover the files.

Cost. Our backup system should not cost the user any
additional hardware or resources other than slack
resources.

4. DESIGN
Linux peer-to-peer file sharing system provides distributed data
storage and retrieval. It is structured as a collection of peers that
share excess resources for storage. This system allows peers to
send as much data as it can to other peers within this network. An
algorithm is used to break files into blocks and store them in
different destination peer nodes. In addition to this, this system
also provides an offer for recovering the file in case it was
accidentally deleted. The design of this system is made up of
four components, namely: The network, distribution, security and
application.

4.1 Network Architecture

Information, and the way in which it is represented and
distributed, is fundamental to the success of any P2P network.
Without the successful transmission of data between the peers that
constitute the network nodes, P2P computing would not be
feasible. This design is aimed at designing a distributed file
sharing. This system should be able to provide distributed data
storage and retrieval. The structure of the system is that of
collection of peers sharing excess resources for storage. Each
peer can store as much data as it wants in other peer’s storage. In
this system, there is no central server. Every user acts as both
client and server. It should be able to discover users, files and
store information in their memory. At the same time each user
should also be able to provide files to other users connected to it.
Basically the final product obtained in this design, provides a
foundation to our back-up protocol discussed in the section.

This network will be designed based on three object, peer,
storage, and group. In this section we propose a partially
centralized hybrid network that allows users to form a group
centrally controlled by an index node. Each node has storage and
files.

Figure 2 High level network design

The index node maintains a registry a of user information
connected to it. It allows peers to quickly discover other peers
within a group and to publish advertisements by making one
request. A group of index nodes connect to one another to make a
peer to peer network. In addition to this, the nodes can directly
communicate with one another by creating a virtual direct
communication.

Virtual direct communication is created by any peer to directly
communicate with other peers. This is done by a peer directly
requesting available peers from the index node and directly
connecting to them. The index node is not a stand alone node; it
performs all the tasks done by other peers and extra more
management.

The implementation of this network is made of the client and
server components.

Basically the client duties are to send request and receive result
from any server. The server listens for request process them and
sends results. Each peer is designed to run both at the same time.

4.1.1 Server

A class is written, which triggers every time the server gets an
event. The server contains a list of functions that implement the
required processing for the clients request.

4.1.2 Client

To interact with the system, the client provides a list of functions
with requests to be processed by the server functions.

4.1. 3Peer

The peer class spawns the server and client processes, such that
each peer is able to process both client and server requests. This
allows each peer to publish and discover resources with others.

4.2 Distribution Architecture

This system is based on the concepts of distributed virtual
memory where the files and information for each computer can be
resident on another computer system. Each peer’s storage device
is divided into two:

The user space – The user has full control of this space
and can do anything he wants to do in it.

The system space – The user has no control whatsoever
of this space as it is the space donated for the system.
All the backed up files of other users are stored in this
space.

From the command line, the user can automatically backup a file
without worrying about where the file is stored. Similarly when
retrieving or deleting a file the user will just have to specify the
name of the file and everything will be done automatically. This
section is made up two parts, Back up and Recovery.

4.2.1 Back up process

The backup process consists of following steps:

Specifying the name of the file you wish to backup

Break up the file into multiple blocks

For each block of file

I. Hash the contents of the file block.

II. Concatenate the contents of the file block with
the hash (new block).

III. Encrypt the new block.

IV. Send the encrypted new block to peer.

Save the status and location of the file.

4.2.1.1 Breaking up the file into multiple pieces

If the file the user entered exists the file is broken into blocks. The
number of blocks in which the file is broken into depends on the
number of peers in the network. The number of blocks in which
the file is divided into is equal to the number of peers in the
network. Therefore if there are six peers in the network, then the
file will be divided into six blocks. This decision was based on
the routing algorithm that I have come up with and will ensure
that at most 50% of the storage peers can be faulty or damaged at
the time of retrieval and the file will still be able to be retrieved.

4.2.1.2 Sending each piece to peer

To ensure reliability there must be replication. Our system
supports exact-copy block replication to increase the reliability of
a backup. Blocks are stored on several different peers, and if one

peer fails then the blocks can be retrieved from any of the
remaining peers.

4.2.1.3 How do the transferred blocks look like

After the file has been broken into blocks, the content of each
block is still pure text(M). Some cryptographic hash function is
applied on this pure text to produce some hashed text (H(M)).
This hashed text is then concatenated with the pure text to form
the new block. This new block is then encrypted using symmetric
encryption. This encrypted block is the one that is stored in the
network. The figure below illustrates the process described above

4.2.2 Recovery process

The recovery process is essentially the reverse of the backup
process. The process follows these steps:

Specifying the name of the file you wish to restore.

Use the users Backup.txt file to retrieve the blocks from
their location

For each block recovered

I. Decrypt the block

II. Check if the block was tampered with

III. Separate the hash from the contents

IV. Reassemble the file

Each of the steps is explained in detail in the sub sections that
follow

4.2.2.1 Specifying the name of the file you wish
to restore

The user is presented with a text based menu where he can choose
what operation he would like to achieve. After the user has
chosen option 10 which is to retrieve a file he would be asked to
enter the name of the file he would like to restore. If more than
one version of the file is backed up the user is also asked for the
version number. The Backup.txt file is then used to check whether
the file has been backed up or not. If not the user is notified and
taken back to the main menu.

4.2.2.2 Using the Backup.txt to retrieve the
blocks and reassemble the file

If the file was backed up, the blocks will then have to be retrieved
from their locations. Because Backup.txt tells us which block is
stored which on location, for each block we are trying to retrieve
we get all the locations where it has been saved. We go through
the list of locations and we check if the peer at the location is
active meaning that there is nothing faulty with it. If the peer is
active we get the block and stop going through the list. If however
we go through all the locations and none of the peers were active
the user is told that the file could not be retrieved. On arrival of
each block some cryptographic mechanisms are applied to the
block to ensure that the file was not tampered with. If it appears
that the file was tampered with the other location storing the same
block is visited and the same checks are applied. For each block
that is retrieved the hash is removed at the bottom such that we
end up only with pure text. Once all the blocks are retrieved the
blocks are concatenated to reassemble the file and the file is
stored in the user’s space.

4.3 Security

The main objective of the overall system is to design and develop
a secure peer-to-peer file sharing system that will run on a Linux
machine. Unlike other file sharing systems, this system allows
users to share their own hard-drive space. This further enables the
users to backup their files in other peer’s memory storage. One of
the main things to consider about security in file sharing systems
is data integrity. To solve that, this system was designed work as
follows:

A user joins the network by registering his/her computer as a peer
and supplying all the required details. Once connected a user can
discover other peers, backup file, retrieve backed up files, view
other shared files and download any shared files. When a user
shares of backs up his/her files the following occurs:

The file is divided into blocks; the number of blocks is
equal to the number of peers in the network e.g. if there
are eight peers then each file is divided into eight blocks

Each block is hashed

The hash gets appended on the original block

The new entire block is then encrypted and sent over
the network to all the available peers.

The encrypted block is later sent over the network to destination
peers for storage. A registry file is then kept for the retrieval
process.

Figure 3 Entire system flow diagram

To implement security in this system the following classes were
implemented namely, hashing class, encryption class and
controller class.

4. 4.3.1 Hashing Class

The hash class has one major function i.e. hashing. The algorithm
takes in a file that has maximum length of 264 bits and produces
as output a 160-bit message digest. The input is processed in 512
bit blocks. The following steps describe how SHA-1 works.

Step 1: append padding bits. The block is padded so that its length
is congruent to 448 modulo 512, this means that the padded block
will be 64 bits less than a multiple of 512 bits.

Step 2: Append length. A block of 64 bits is then appended to the
padded block. This 64-bit block is an unsigned 64-bit integer that
contains the length of the original block.

These two steps yield a block that is an integer multiple of 512
bits in length.

Step 3: Initialize MD buffer. A 160-bit buffer is used to hold the
intermediate and final results of the hash function. The buffer is
implemented as five 32-bit registers.

Step 4: Process message in 512-bit block. This step makes use of
the compression function that has four rounds of processing of 20
steps each. The four rounds have a similar structure but each uses
a different primitive logical function.

Step 5: Output. After all the 512-bit blocks have been processed,
the MD buffer outputs a 160-bit message digest.

4.3.2 Encryption Class

The encryption class encrypts and decrypts files to ensure
confidentiality. The chosen algorithm (Blowfish) uses dynamic S-
boxes, an XOR function and a binary addition. The S-boxes are
generated as a function of the key.

The algorithm consists of two parts: a key-expansion part and a
data- encryption part. Key expansion converts a key of at most
448 bits into several subkey arrays totalling 4168 bytes. Data
encryption occurs via a 16-round Feistel network. Each round
consists of a key-dependent permutation, and a key and data-
dependent substitution. All operations are XORs and additions on
32-bit words. The only additional operations are four indexed
array data lookups per round.

Subkeys

Blowfish uses a large number of subkeys. These keys are pre-
computed before any data encryption or decryption. These keys
are generated as a function of the key.

Encryption

The input is a 64-bit data block, this means if a block is bigger
than 64-bits then it will be divided and padded as needed. The
XOR function is used along with the binary addition to mix the
original bits with the subkey bits. The process finishes after 16
rounds.

Decryption

Decryption is exactly the same as encryption, except that the
subkeys are used in the reverse order.

4.3.3 Controller Class

This class makes use of the hash class and the encryption class. It
takes in the blocks to be encrypted, call the hashing method to
hash the block and append the hash into the original block. It then
calls the encryption method in the encryption class to encrypt the
block. Encryption is complete and the file can be backed up. If the
file is to be shared, then only the hash will be encrypted and
appended in the original block.

For retrieval, the block is decrypted first. Original hash is
removed and a new hash is computed. The two hashes are then
compared and if they are identical then the block is verified.

In the case of downloading a shared file, only the verification is
done. The original hash is removed, a new hash is computed and
the two hashes are compared. If they are identical then the block
is authentic.

4.4 Application

This is the highest level of the system. It provides the users with a
menu to directly interact with the file sharing system.

5. Performance

We have tested the network and distribution layer on eleven
Pentium 4 processor machines with 200GHz and 516 MB RAM
connected through 100Mbps LAN and presented our findings
below.

System Performance of the three main
functions of the system

1.097788

1.0977885

1.097789

1.0977895

1.09779

1.0977905

1 2 3 4

Time (sec)

lo
ad

 (n
u
m

b
er

 o
f
p
ee

rs
)

Series1

Series2

Series3

Figure 4 System performances on three functions of the
network. Peer discovery, store and get files

Active Peers Non Active Peers Percentage of file
retrieved

0 9 0%

1 8 60%

2 7 70%

3 6 80%

4 5 90%

5 4 100%

Table 1: Table showing results from a test with a network of
peers

Active Peers Non Active Peers Percentage of file
retrieved

0 10 0%

1 9 64%

2 8 73%

3 7 82%

4 6 91%

5 5 100%

Table 2 : Table showing results from a test with a network of
peers

According to figure 4, a partially centralized hybrid network
performance is indirectly proportional to the load factor of the
network. This is due to the fact that when more users join the
network, the load of work of the index node increases and its
performance reduces too. In this case the results are highly
affected by the assumption that all users are declared to have
equal capabilities in terms of system power. As a result, if each
user is given the token of being an index node based on merit.
The results would improve from been a straight line to a concave
distribution. To improve on these results, the number of user
joining a GROUP should be based on a certain percentage

benchmark such that index nodes don’t get bottlenecked and
abused by other users.

From table 1 it comes out that even if at most 44% of the peers in
the network could be faulty or malicious during any time of the
retrieval, file will still be restored.

The results that follow are the results obtained from a network of
11 peers with 10 storage peers. And From these results it comes
out that even if at most 50% of the peers in the network could be
faulty or malicious during anytime of the retrieval, the file will
still be restored.

Comparing the results from the two tables it is clear that the
system is more reliable when there is an even number of storage
peers meaning an uneven number of peers in the network.

6. Related Work

Linux File Sharing System was inspired by the abundance in
peer-to-peer systems today such as Gnutella [4] and Kazaa [6].

The skyrocketing capacity of disk storage and the corresponding
decrease in cost has led to very natural choice to consider storing
data on slack resources at peers.

The Cooperative File System(CFS) is a peer-to-peer read-only
storage system that provides provable guarantees for the
efficiency, robustness, and load balance of file storage and
retrieval [7]. The basic unit of storage in CFS is a block. CFS
provides a distributed hash table using Chord for block storage.

OceanStore is a utility infrastructure designed to span the globe
and provide continuous access to persistent information [8]. The
authors of OceanStore envisioned a utility model in which
consumers pay a monthly fee in exchange for access to persistent
storage. This is not dissimilar to Internet backup sites offering
reliable storage of data. It’s not clear why any user would want to

store their data globally, although such a system guarantees
persistent data in the face of catastrophe to continents [9]

7. Future Works

This paper describes a file sharing system. This system deploys a
partially centralized network to connect computer systems.
Reliability is always a problem when centralization is involved,
investigating other topologies like CHORD can prove better for
such a system.

Our system allows different versions of a file to be backed up in
the network. Each version of a file is treated as a different file.
Our system could be improved by storing only incremental
changes between different versions.

8. Conclusion

Peer-to-peer networking introduces a way of allowing users to
create a network without relying on servers. This project creates a
prototype of how this networking can be implemented in Linux
operating system. Not only does it do that, it also investigates
how information can be distributed and how resources can be
shared amongst a network of users. In this work, we have seen
how computer systems can be connected to one another using this
approach and the results and benefits of this type of
communication. Not all organizations can afford servers; peer-to-
peer gives all organization an ability to implement without
expensive server. Further more, this project highlights how the
utilization of unused memory storage can be achieved by
applying peer-to-peer computing to share data.

This is simple prototype of a file sharing and it has proven a
successful achieving our goals. This prototyped has been further
evaluated and the future deployment of such a system in a better
network will prove better for future opportunities, but the current
result indicate that storing files at peer hosts is a viable option for
a backup system.

References

[1] I. Stoica., R., Morris., D., Karger., M., Kaashoek., K and
Balakrishnan., H. Chord: A Scalable Peer-to-peer Lookup
Service.

Available at:

http://citeseer.ist.psu.edu/cache/papers/cs/32722/http:zSzzSznms.l
cs.mit.eduzSzpaperszSzchord.pdf/stoica01chord.pdf

 [2] D. Tucker. Survey of Searching Methods in Internet Peer-to-
Peer Systems. Available from:
http://www.cs.kent.edu/~javed/DL/surveys/IAD03F-dtucker/

 [3] B. Zhao.Supporting Rapid Mobility via Locality in an
Overlay Network.

Available from:
http://www.cs.berkeley.edu/~ravenben/tapestry/MobileTapestry.p
df

 [4] C. Yang, peer to peer networks. Available at:

www.aect.cuhk.edu.hk/~ect7010/ Materials/Lecture/Lec6.pdf

[5] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-
peer systems. In Proc. of the 27th Intl. Conf. on Very Large
Databases, September 2001

[6] Kazaa website.

http://www.kazaa.com

[7] F. Dabek, M. F. Kaashoek, D. Karger,

R. Morris, and I. Stoica. Wide-area

http://citeseer.ist.psu.edu/cache/papers/cs/32722/http:zSzzSznms.l
http://www.cs.kent.edu/~javed/DL/surveys/IAD03F-dtucker/
http://www.cs.berkeley.edu/~ravenben/tapestry/MobileTapestry.p
http://www.aect.cuhk.edu.hk/~ect7010/
http://www.kazaa.com

cooperative storage with CFS. In 18th

ACM Symposium on Operating Systems

202–215.

[8] J. Kubiatowicz et al. Oceanstore: An

architecture for Global-Scale Persistent

Storage. In 17th ACM Symposium on

Operating Systems Principles

(SOSP ’00), November 2000, pp. 190–

201.

[9]Gattu., N.,Huang., R.,Lynn.,J and Xia., H. Magnus: Peer to
Peer Backup System. Available at:

www-csag.ucsd.edu/individual/huaxia/
academic/classes/sp03/cse291/Sp03_291Project.pdf

The text should be in two 8.45 cm (3.33") columns with a .83 cm
(.33") gutter.

5. TYPESET TEXT
5.1 Normal or Body Text
Please use a 9-point Times Roman font, or other Roman font with
serifs, as close as possible in appearance to Times Roman in
which these guidelines have been set. The goal is to have a 9-
point text, as you see here. Please use sans-serif or non-
proportional fonts only for special purposes, such as
distinguishing source code text. If Times Roman is not available,
try the font named Computer Modern Roman. On a Macintosh,
use the font named Times. Right margins should be justified, not
ragged.

5.2 Title and Authors
The title (Helvetica 18-point bold), authors' names (Helvetica 12-
point) and affiliations (Helvetica 10-point) run across the full
width of the page – one column wide. We also recommend phone
number (Helvetica 10-point) and e-mail address (Helvetica 12-
point). See the top of this page for three addresses. If only one
address is needed, center all address text. For two addresses, use
two centered tabs, and so on. For more than three authors, you
may have to improvise.1

5.3 First Page Copyright Notice
Please leave 3.81 cm (1.5") of blank text box at the bottom of the
left column of the first page for the copyright notice.

5.4 Subsequent Pages
For pages other than the first page, start at the top of the page, and
continue in double-column format. The two columns on the last
page should be as close to equal length as possible.

Table 1. Table captions should be placed above the table

Graphics Top In-between Bottom

Tables End Last First

Figures Good Similar Very well

5.5 References and Citations
Footnotes should be Times New Roman 9-point, and justified to
the full width of the column.

Use the standard Communications of the ACM format for
references – that is, a numbered list at the end of the article,
ordered alphabetically by first author, and referenced by numbers
in brackets [1]. See the examples of citations at the end of this

1 If necessary, you may place some address information in a
footnote, or in a named section at the end of your paper.

document.
Within this
template
file, use the
style
named
references
for the text of your citation.

The references are also in 9 pt., but that section (see Section 7) is
ragged right. References should be published materials accessible
to the public. Internal technical reports may be cited only if they
are easily accessible (i.e. you can give the address to obtain the
report within your citation) and may be obtained by any reader.
Proprietary information may not be cited. Private communications
should be acknowledged, not referenced (e.g., “[Robertson,
personal communication]”).

5.6 Page Numbering, Headers and Footers
Do not include headers, footers or page numbers in your
submission. These will be added when the publications are
assembled.

6. FIGURES/CAPTIONS
Place Tables/Figures/Images in text as close to the reference as
possible (see Figure 1). It may extend across both columns to a
maximum width of 17.78 cm (7”).

Captions should be Times New Roman 9-point bold. They should
be numbered (e.g., “Table 1” or “Figure 2”), please note that the
word for Table and Figure are spelled out. Figure’s captions
should be centered beneath the image or picture, and Table
captions should be centered above the table body.

7. SECTIONS
The heading of a section should be in Times New Roman 12-
point bold in all-capitals flush left with an additional 6-points of
white space above the section head. Sections and subsequent sub-
sections should be numbered and flush left. For a section head and
a subsection head together (such as Section 3 and subsection 3.1),
use no additional space above the subsection head.

7.1 Subsections
The heading of subsections should be in Times New Roman 12-
point bold with only the initial letters capitalized. (Note: For
subsections and subsubsections, a word like the or a is not
capitalized unless it is the first word of the header.)

7.1.1 Subsubsections
The heading for subsubsections should be in Times New Roman
11-point italic with initial letters capitalized and 6-points of white
space above the subsubsection head.

7.1.1.1 Subsubsections
The heading for subsubsections should be in Times New Roman
11-point italic with initial letters capitalized.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1. Insert caption to place caption below figure.

7.1.1.2 Subsubsections
The heading for subsubsections should be in Times New Roman
11-point italic with initial letters capitalized.

8. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates
they had developed.

9. REFERENCES
[1] Bowman, B., Debray, S. K., and Peterson, L. L. Reasoning

about naming systems. ACM Trans. Program. Lang. Syst.,
15, 5 (Nov. 1993), 795-825.

[2] Ding, W., and Marchionini, G. A Study on Video Browsing
Strategies. Technical Report UMIACS-TR-97-40, University
of Maryland, College Park, MD, 1997.

[3] Fröhlich, B. and Plate, J. The cubic mouse: a new device for
three-dimensional iput. In Proceedings of the SIGCHI
conference on Human factors in computing systems
(CHI ’00) (The Hague, The Netherlands, April 1-6, 2000).
ACM Press, New York, NY, 2000, 526-531.

[4] Lamport, L. LaTeX User’s Guide and Document Reference
Manual. Addison-Wesley, Reading, MA, 1986.

[5] Sannella, M. J. Constraint Satisfaction and Debugging for
Interactive User Interfaces. Ph.D. Thesis, University of
Washington, Seattle, WA, 1994.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

