

1

TraPT: A Traceability Pattern Tool

CS04-13-00

ALISTAIR POTT DANIEL BERMAN
Department of Computer Science Department of Computer Science

University of Cape Town University of Cape Town
Cape Town Cape Town
South Africa South Africa

SUPERVISOR:
JUSTIN KELLEHER

Department of Computer Science
University of Cape Town

Cape Town
South Africa

ABSTRACT

TraPT is a tool for the structured and
collaborative creation and cataloguing of
software patterns. The goal of the tool is to
facilitate an increase in the creation and use of
patterns in organisations.

The tool is comprised of two modules, a pattern
creation tool and a pattern encyclopaedia tool.
The pattern encyclopaedia aids in accessing and
learning about patterns. The encyclopaedia
includes detailed information about patterns and
traceability. The pattern creation tool allows for
the collaborative creation and review of patterns
according to a defined creation workflow.

1. INTRODUCTION

Over the past decade software patterns have

become well established both within computer

science and in industry. The benefits of using

patterns are well described and evidenced [1],

[2].

Despite this increase in attention on patterns

most organisations do not utilise patterns. This

project hypothesises that this lack of utilisation is

because there is no available tool for the

structured creation and cataloguing of patterns.

The TraPT tool was conceived to fill this gap.

The project is part of a larger research project

which involved the creation of patterns. During

that research it was noted that there are no tools

for the structured creation and cataloguing of

patterns.

As such TraPT is a tool for the creation and

cataloguing of patterns in a collaborative

environment. The aim of the project is to

provide a tool which would increase the use and

creation of patterns in an organisation.

The system is logically partitioned into two main

modules. These modules are the pattern

cataloguing tool and the pattern creation tool.

The tools share a common pattern storage system

through which they interact.

2. BACKGROUND

The work on the TraPT tool deals with patterns,

traceability, and traceability patterns. As such

background information is presented on each of

these topics.

2

2.1 Patterns

A software pattern is a description of how to

solve a problem which is sufficiently abstract

that it can be reapplied in many different

contexts. The pattern is recorded as text and

often uses diagrams to get the point across.

Another way of thinking of patterns is as explicit

representations of experience in solving

problems which recur.

This explicit representation of experience is

valuable in many circumstances. It allows for

better communication. It also means that a best

solution need not be re-discovered.

2.1.1 Definition of Patterns

There are many definitions of patterns in

literature [2], [3], [4], [5]. However, certain

themes recur and it is these concepts which

define the essence of software patterns:

Patterns describe solutions to problems.

The problems that patterns solve are

recurring. Thus patterns are described

in order to enable reuse of the best

solutions.

The descriptions of the solutions are

abstract in nature. This is essential if

the solutions are to be reused in a

variety of diverse situations.

A pattern describes the context

(environment) of the problem and the

effects of that context on the solution.

This enables the applicability of the

abstract solution to concrete situations

within diverse contexts.

The solutions described by patterns

embody the experience or knowledge of

the developers who came up with those

solutions.

In summary, a pattern is a solution to a problem

in a context. The solution is described in an

abstract way so that it can be reused in a variety

of contexts.

2.1.2 The Benefits of using Patterns

The use of patterns within software development

has several benefits which are widely discussed

and illustrated in literature. It is widely accepted

that the use of patterns increases productivity,

aids communication, and increases the quality of

solutions.

The use of patterns increases productivity.

The fact that patterns can increase productivity is

widely accepted [6], [7], [1], [8], [2], [9]. There

are a number of reasons why pattern usage

increases productivity.

Firstly, patterns are by definition reusable

solutions and as such their use allows developers

to avoid spending time rediscovering best

solutions. It is the fact that patterns capture the

why as well as the what of solutions as well that

allows them to be reused in a variety of

situations. [2] discusses a major study conducted

at AT&T which concluded that ‘as much as half

of software development effort can be attributed

to discovery.’ Thus, it is concluded that if

developers are able to apply patterns instead of

discovering solutions their productivity would be

increased.

3

The fact that patterns increase productivity is

evidenced in several papers. For instance, [1]

describes how the use of the ‘Reactor’ pattern

vastly improved productivity during system

redesigns at Ericsson. In that situation the entire

system platform was being changed, and as such

no reuse of code was possible. It is stated that

“patterns were often the only way of leveraging

previous development expertise” [1]. Further the

use of patterns in these projects is attributed with

having “reduced risk significantly and simplified

(the) redevelopment effort.”

In [9] an experiment into the effect of pattern

usage on code reuse and productivity is

discussed. In this experiment patterns were

applied in the development of two separate

systems. After the development various means

were used to estimate the productivity gains

attributed to the use of patterns. It is the

conclusion of this experiment that patterns

increase code reuse (and thus productivity)

significantly.

Patterns aid communication.

There is a wide range of information regarding

the benefits that pattern usage offer to

communication. Patterns are a compact way to

reference a set of decisions and designs [7] while

suppressing the “details not relevant at a given

level of abstraction” [1].

In other words patterns are creating a “shared

language for communicating experience and

insight” [3]. Each pattern explicitly represents

developer’s experience and knowledge. Because

the patterns are named, individuals can use those

names to easily refer to that experience.

The contributions of pattern usage to

communication are well evidenced in [1], [10],

and [8]. In general the contribution is in the

form of enabling users to easily communicate

best practices at a higher level of abstraction than

was possible before.

The use of patterns also benefits training and

maintenance efforts. [1] states that because

patterns explicitly record what developers

implicitly know, their use enables organisations

to “impart this knowledge to less experienced

developers.”

[8] discusses experiments conducted which show

that the use of patterns does aid in maintenance

efforts. The fact that patterns enable easier

communication of knowledge and experience

improves both training and maintenance.

[10] presents a broad survey of the effects of

pattern usage in six large corporations including

Motorola, Siemens, Ericsson, and IBM. From

their experience in these situations the authors

conclude among other things that patterns are a

good communications medium.

Finally, because of their high level of abstraction

patterns enable discussion above programming

language barriers [1]. This is often useful when

developers from very different backgrounds are

working together.

Patterns increase quality.

4

This is a somewhat less often discussed benefit

of using patterns. It is as a result of the first two

benefits of pattern usage, namely: higher

productivity and better communication.

However much of the literature on patterns does

agree that their use increases the quality of

solutions [11], [3], [1], [2], [8].

[8] relates experiments conducted into the effect

of pattern usage on maintenance projects. They

conclude not only that these tasks were

completed faster with the use of patterns but that

fewer errors were made. The use of patterns

increased the quality of the work done.

Because patterns allow developers to reuse best

known solutions easily, quality is invariably

improved. Patterns are developed

collaboratively and over time. The review

process which most patterns undergo (see

Section 2.3.6) ensures that the quality of their

solutions is maintained.

As such it is possible to avoid common mistakes

and to develop better solutions by applying

patterns rather than by developing solutions from

scratch.

2.1.3 Pattern Catalogues

Various pattern catalogues exist on the Internet,

in academic papers and in published pattern

books. They each describe patterns for a related

set of problems. Each catalogue is usually

independent of all other catalogues and has an

independent template that is specially designed

to suit the patterns in the catalogue.

The Hillside Repository [12] has a range of

pattern catalogues. These catalogues are part of

the Hillside’s website dedicated to patterns. Each

catalogue has been submitted to the site and is

independent of all the others in the repository.

There is a limited search facility, but most

patterns are found by searching through a long

list of links and then following the chosen link to

the home page of the contributor of the pattern

catalogue. There is a wide variety of patterns that

can be found, ranging from testing patterns, to

integration and analysis patterns.

The most famous catalogue of patterns is the

Gang of Four’s design patterns. Their book [13]

contains 23 design patterns along with

programming code to give examples of how to

implement the code.

Martin Fowler’s book on analysis patterns is

similar to the Gang of Four’s book but it details

analysis patterns. Fowler does not use a template

to present his patterns but rather prefers a free-

flow layout.

There are many other pattern catalogues

available. None of the catalogues follow any

standard for representing patterns. This makes

patterns hard to identify.

One of the topics presented at the April,

ChiliPLoP 2004 conference was the possible

establishment of a pattern repository [14]. The

repository would be peer reviewed. Many

questions on the functionality the repository

should provide as well as how it should look

were posed.

5

2.1.4 How Patterns are defined

Patterns are defined using pattern forms. These

consist of a set of fields such as ‘motivation’ or

‘structure’. A pattern is defined by specifying

the values of the form fields for that particular

pattern.

In his books on patterns Alexander offered a

pattern form in which he specified patterns [15].

Some patterns however, are not well suited to

Alexander’s form [7]. This fact is true of any

particular pattern form and leads to the

conclusion that there is no ‘one best’ pattern

template (form) which can be applied across all

pattern categories [16].

As such, a large variety of pattern forms has

developed over time [16], [2]. However, all

forms are merely a list of fields (elements) the

specification of which comprises the pattern.

Therefore, the definition of patterns is largely in

prose. Although the inclusion of illustrating

diagrams is essential [17], [2], [19], [20], most of

the information defining a pattern is provided as

the text under the headings of a pattern form.

2.1.5 Pattern Visualisation

Christopher Alexander maintained that the

sketch is the essence of the pattern [2]. This is

not surprising considering the power of

illustrations to encompass a lot of information in

an easily understandable form. For instance [20]

states:

“Cognitive science emphasizes the strength of

visual formalisms for human learning and

problem solving. In software engineering, a

clear, visual presentation of a system’s

architecture can significantly reduce the effort of

comprehension.”

Almost all patterns available include sketches

[2]. However, the nature of the sketches

included and the emphasis placed on them varies

greatly. There is ongoing debate as to the best

methods for specifying patterns visually.

On the one side of the debate is [2] who states:

“This is why the sketch is called a ‘sketch’ and

not a ‘graphical specification.’ Most readers

interpret refined diagrams too literally. There is

much to be said for hand-drawn diagrams that

abhor right angles and straight lines. Such a

rough solution encourages the designer to craft

or engineer the solution to the situation at hand.’

This side of the debate emphasises that if

patterns are to be as abstract as they should be

they need to have informal sketching. Coplien

[2] suggests that more specific graphical

representations are by definition more concrete

and that thus some of the reusability of the

solutions is lost with the loss of abstraction. [17]

states that the use of conventional UML

diagrams leads to “over specification” and a

consequent loss of the abstract nature of patterns.

Proponents of less formal illustrations agree with

Alexander that the developer should “carry out

the detailed steps” of implementation according

to his understanding of the solution and the

context. They believe that the more precise

6

illustration techniques cause the user to interpret

them too literally.

On the opposite end of the debate is [18] who

states:

“Prevalent modeling notations such as Booch ,

OML, OMT, and UML are not sufficiently

expressive in the constraints they can represent

graphically. Consequently, the designer is forced

to supplement modeling diagrams with

constraints specified textually.”

This side of the debate argues that the informal

visualisation methods lead to ambiguity in the

definition of patterns. [18] presents an extension

to the UML formalisms which they believe

enables the accurate representation of patterns as

diagrams alone.

The examples provided which make use of this

visualisation system are cumbersome and

complex and do not succinctly convey the

essence of the patterns. As a result this system

of representation has not gained acceptance.

Throughout pattern literature a variety different

approaches to illustrating the patterns have been

used. These range from the rough hand-drawn

sketches of [2] to the precise models of [18].

However, by far the most common approach is

to use UML or some adaptation of UML [17],

[21].

Many researchers adapt UML for the

specification of patterns [17], [1], [10], [22],

[18]. Another very common approach is to use

UML in conjunction with some other illustrating

format, often of the researcher’s own invention

[23], [21], [9]. Still other researchers abandon

any well known notations and use their own to

specify patterns [19], [16], [2].

2.2 Traceability

According to the IEEE, traceability is defined as

the identification and documentation of

derivation paths (upward) and allocation or flow

down paths (downward) of work products in the

work product hierarchy. This means that all

artefacts in a project (requirements, documents,

models, model elements, code) must be defined

and they should be traceable from conception,

through its entire development lifecycle, to its

deployment, evolution and iterations in any of

the lifecycle stages. In addition, all artefacts

should be traceable in both the forward and

backward direction enabling a person to trace

from the implemented artefact back to its origin

and vice versa.

Implementing requirements traceability provides

two essential functions:

1. It verifies that new systems comply

with the specified requirements.

Neglecting to implement suitable

requirements traceability procedures

can lead to serious quality and control

problems within a software

development project.

2. It accommodates impact analysis on

proposed changes. This ensures the

overall quality of a project.

7

Change analysis and implementation is

an expensive and error prone activity.

There are many software development

tools available that allow project

artefacts to be built, such as Microsoft

Visio and Rational Rose. However,

these tools do not support the change

analysis and implementation process.

[24].

2.2.1 Benefits of Traceability

Traceability is considered a best practice [25] as

it brings many benefits to a project.

Traceability brings accountability and

management to a project. Artefacts can be

tested and reviewed, and comparisons of the

versions of artefacts can be made. Traceability

can also be used to plan the order of

development of artefacts by taking into account

which artefacts rely on other artefacts. Better

management decisions can be made because

there is more information about all aspects of the

project.

Traceability allows for the comparison of the

requirement specification and the final

product. This allows for the correlation between

what the project stakeholders wanted and what

was actually produced to be found.

Software is a continuously evolving product.

System evolution relies on being able to reflect

requirement changes in the relevant artefacts.

Traceability shows the relationship between

different artefacts and therefore simplifies

change management and impact analysis.

All the benefits discussed above, if traceability is

properly implemented, assure the quality of the

product produced as there is better management

and the final product meets the specified

requirements. These factors all increase the

chance of the success of a project [26].

2.2.2 Traceability Problem

Traceability has many benefits. Despite this,

traceability usage remains rare. According to

Scott Ambler, “It’s rare to find a software project

team that can that can honestly claim full

requirements traceability throughout a project,

especially if the team uses object-orientated

technology.” [27]

Poorly understood user requirements and

unnecessary features incorporated in to projects

are the cause of many failures. One third of all

projects are successful while over half are faced

with exceeding their budget and time or not

meeting the requirements. Only 54 percent of

the features that are in the initial design are

implemented. The situation seems to be getting

worse as this is a decrease from the 67 percent

reported in 2000. Of the features that are

successfully implemented about 45 percent are

never used [26].

2.3 Traceability Patterns

Traceability patterns are a new category of

pattern. They provide proven solutions to

traceability problems. They provide the benefits

of patterns to the complex task of traceability.

The application of traceability patterns facilitates

a well structured approach to traceability.

8

Traceability patterns are classified according to

their functions. Justin Kelleher [28] has

identified five classifications.

1. Business Tracing Pattern – These

patterns provide a connection between the

client and the organisation. The patterns

link requirements to legal binding

contracts.

2. System Tracing Pattern – This

classification describes a traceability

pattern between various stakeholders in a

project.

3. Design Tracing Pattern – These patterns

define the tracing between the

requirements, architectural components

and design components in any project.

4. Test Tracing Pattern – This

classification describes tracing between

the design and the testing in a project.

5. Development Tracing Pattern – Once

the project has been successfully

completed, the final system needs to be

traced back to the contract.

The pattern classifications follow the

development of a project from the definition of

the project to its deployment. When developing a

traceability solution, the user can implement

patterns from each classification in order.

3. APPROACH

3.1 The Storage System

It was decided to use a MySQL database as the

storage system for TraPT. This was largely

because it makes simultaneous and distributed

access easily possible.

Both the Pattern Encyclopaedia and the Pattern

Creator access the same database which allows

for close interoperability. Note that the system

was specifically modularly designed such that

the storage system can be altered with minimal

effect.

3.2 The Pattern Encyclopaedia

Research was conducted in the fields of patterns

and traceability. The observations made were

used to create the Pattern Encyclopaedia.

The objectives of the Pattern Encyclopaedia are

to enable users to learn about patterns and

traceability, identify patterns that solve a

problem, view the patterns and understand how

patterns fit into the software development

process. This allows the users to apply the

patterns effectively.

Learning about patterns and traceability is

facilitated by comprehensive information. The

information includes definitions, applicability

and examples. Academic papers and articles are

used as a supplementary source of information.

The Encyclopaedia provides search functionality

in three forms. The users can browse through a

list of patters that are categorised and classified

within the categories. Users that know certain

attributes of a pattern can search for it on those

attributes. Users that do not know anything about

a pattern, or even if it exists, but have a problem

to solve, can search for patterns by problem

description.

9

An extensive catalogue of patterns is provided.

This includes numerous traceability patterns as

well as patterns for other stages of the software

development process.

3.3 The Pattern Creator

The Pattern Creator was designed at a high level

through the application of the MVC (Model-

View-Control) pattern [13]. As such separate

modules are designed with standard interfaces

between them:

The model is used to store all the data

associated with a pattern.

The view is used to allow the user to view

the model in a variety of ways.

The control allows the user to manipulate

the model. This is usually done using a

view to give the user access.

The functionality of the Pattern Creator can be

logically split into pattern definition and pattern

management.

3.3.1 Pattern Definition

Pattern definition regards the selection of a

pattern form and then the definition of the

pattern in terms of the fields of that form.

Within this functionality the pattern creator is

able to enter text and to insert diagrams. These

diagrams can either be loaded from external

files, or created using the integrated

diagramming tool.

3.3.2 Pattern Management

The knowledge management patterns of [19]

were applied to the creation of patterns. These

patterns suggest several features for the creation

of any knowledge (in this case patterns). For

instance, within pattern management a creation

process (workflow) through which patterns must

pass is defined. Within this workflow users play

roles in moving the pattern toward publishing.

Documents can be assigned to patterns.

3.4 Integration

The Pattern Encyclopaedia and Creator interface

through the pattern storage mechanism. Each

module can be used as a stand-alone program or

as a complete pattern tool.

4. RESULTS

Testing was conducted on different levels. This

is shown in Figure 1.

Figure 1: Hierarchy of testing conducted.

At the highest level is the validation of the

project as a whole in terms of its goals. Does the

system increase pattern usage and creation? On

the second level is user testing to establish if the

requirements of the system have been met.

10

Finally, at the lowest level there is testing of the

actual user interface.

4.1 Project Validation

Ideally, an experiment into the effect of the

system on an organisation should be conducted.

The aim of such an experiment would be to show

that using this system in an organisation would

increase pattern usage and creation.

The methodology for such an experiment has

been laid out and a prospective organisation has

been identified. However, due to the time

constraints placed on the project such an

experiment could not be undertaken.

Two system demonstrations with industry

experts were conducted. The aim of these

interviews was to get some measure of project

validation from the comments of these experts.

The experts indicated strong enthusiasm for the

TraPT tool. It was noted by the experts that

although they would like to use patterns in their

organisations, this was not formally done as

present. It was suggested that a structured tool

for creating and accessing patterns would

alleviate this problem and thus increase pattern

usage.

4.2 Requirements Testing

Usability testing of the finer grained system

requirements was conducted. This was done in

order to ensure that the system met the

requirements extracted at the start of the project.

The results of this testing were largely positive

and all system requirements were met.

4.3 GUI Testing

Low level testing of the system GUI’s was

conducted. This was largely done using heuristic

testing [29].

Several minor GUI problems emerged during

this testing. However, these had no lasting effect

on the system.

5. CONCLUSIONS
5.1 Using TraPT should increase pattern

usage

This conclusion follows from the expert

interviews conducted. It is the opinion of these

experts that the introduction of TraPT to their

organisations would increase pattern usage and

creation.

5.2 More testing is necessary

Due to time constraints the full project validation

experiments could not be carried out. Thus, in

order to validate this project conclusively more

testing is required.

5.3 Pattern application is human

intensive

It is concluded that this tool alone is not

sufficient to increase pattern usage. Using

pattern effectively is a human intensive activity.

A considerable investment in time is required to

gain the full benefits of patterns.

11

6. FUTURE WORK

The TraPT tool and research that was done in the

process of creating the tool is part of a larger

project on traceability patterns.

Thus future work can be partitioned into future

work exclusively on this project and future work

regarding the research which fostered the

creation of TraPT.

Future work on TraPT itself is largely regarding

the further validation of the project. It was

concluded that further testing into the effect of

using TraPT on pattern usage was necessary.

In terms of the greater research of which TraPT

forms a part there is a lot of future work to be

done. TraPT can be used as a tool or as the basis

for other tools which will be used in that

research.

Justin Kelleher is currently involved in his

Doctoral studies on traceability and traceability

patterns. He is defining a traceability patterns

that are intended to aid the application of

traceability in projects. The patterns are relevant

to both software engineering and other

disciplines.

Mikael Simmonson is currently working on the

expression of traceability in UML diagrams. His

research is part of his Masters Degree project.

Mikael has found a way of structuring

traceability of a project into directed graphs. This

representation increases the amount of

information that can be stored in traceability

structures.

Both the TraPT tool and Mikael’s work will

form part of the Justin’s PhD dissertation.

REFERENCES

[1] Schmidt, D. C. “Using Design Patterns
to Develop Reusable Object-Oriented
Communications Software,”
Communications of the ACM, 38(10)
1995.

[2] Coplien, J. O. Software Patterns. SIGS
Books and Mulitmedia, 1996.

[3] Appleton, B., “Patterns and Software:
Essential Concepts and Terminology,”
2004,
http://www.cmcrossroads.com/bradapp/
docs/patterns-intro.html.

[4] Wikipedia: The Free Encyclopedia,
“Design pattern (computer science),”
August 2004,
http://en.wikipedia.org/wiki/Design_pat
tern_%28computer_science%29.

[5] Alexander, C., A Pattern Language:
Towns, Buildings, Construction. Oxford
University Press, 1977.

[6] Correa, A. L., Werner, C. M. L., and
Zaverucha, G. “Object Oriented Design
Expertise Reuse: an Approach Based on
Heuristics, Design Patterns and Anti-
Patterns,” Federal University of Rio de
Janeiro.

[7] Gerth, T., Schachtschabel, R., and
Schönefeld R.. “Using Patterns in
Design and Documentation of
Software,” Technical University of
Ilmenau.

[8] Prechalt, L., Unger, B., Philippsen, M.,
and Tichy W. “Two Controlled
Experiments Assessing the Usefulness
of Design Pattern Documentation in
Program Maintenance,” Universitäte
Karlsruhe.

[9] Geyer-Schulz, A., and Hahsler, M.
“Software Engineering with Analysis
Patterns,” Universit¨at Karlsruhe.

http://www.cmcrossroads.com/bradapp/
http://en.wikipedia.org/wiki/Design_pat

12

[10] Beck, K., Crocker, R., Coplien ,J. O.,
Dominick, L., Meszaros, G., Paulisch,
F., and Vlissides, J. “Industrial
Experience with Design Patterns.”

[11] Harich, J., “Introduction to Software
Patterns,” September 2004,
http://smile.jcon.org/soft/info/patterns/I
ntroductionToPatterns.html.

[12] The Hillside Group, “Patterns,”
September 2004,
http://www.hillside.net/patterns

[13] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J., Design Patterns. Addison-
Wesley, 1995.

[14] ChiliPLoP Conference 2004, “Pattern
Central,” April 2004.
http://hillside.net/chiliplop/2004/pattern
s_central_2004.htm.

[15] The Hillside Group, “Pattern
Conferences”.
http://hillside.net/conferences/.

[16] Riehle, D., and Züllighoven, H. “A
Pattern Language for Tool Construction
and Integration Based on the Tools and
Materials Metaphor,” University of
Hamburg.

[17] Mak, J. K. H., Choy, C. S. T., and Lun,
D. P. K. “Precise Modeling of Design
Patterns in UML,” The Hong Kong
Polytechnic University.

[18] Lauder, A., and Kent, S. “Precise
Visual Specification of Design
Patterns,” University of Brighton.

[19] Herman, T., Hoffman, M., Jahnke, I.,
Kienle, A., Kunau, G., Loser, K., and
Menold, N. “Concepts for Usable
Patterns of Groupware Applications,”
Informatics and Society, University of
Dortmund.

[20] Schauer, R., and Keller, R. K. “Pattern
Visualisation for Software
Comprehension,” Université de
Montréal.

[21] Riehle, D. “Composite Design
Patterns,” Union Bank of Switzerland.

[22] MacDonald, S., Szafron, D., Schaeffer,
J., Anvik, J., Bromling, S., and Tan, K.
“Generative Design Patterns,”
University of Alberta.

[23] Lange, M. “Patterns for Testing
Software,” Gemplus GmbH.

[24] Sommerville, I., Software Engineering
6th Edition. Addison-Wesley Publishers
Limited, 2001.

[25] Ramesh, B., and Jarke, M. Towards
Reference Models for Requirements
Traceability.

[26] What are your Requirements, 2003. The
Standish Group International Inc.

[27] Ambler, S. Tracing Your Design.
April 1999.

[28] Kelleher. J. Dissertation, Rough Draft,
2004.

[29] Nielson, J., “Heuristic Evaluation,”
http://www.useit.com/papers/heuristic/.

http://smile.jcon.org/soft/info/patterns/I
http://www.hillside.net/patterns
http://hillside.net/chiliplop/2004/pattern
http://hillside.net/conferences/
http://www.useit.com/papers/heuristic/

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

