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Abstract— The challenging task of requirements specification
for communication services has not been sufficiently addressed
to date. The complexity of communication systems requires a
formal approach to requirements capture and analysis, however
at the same time the industry does not take well to convoluted
formalisms. We suggest improving requirements specification by
enhancing the approach that is most popular at the moment
- use case modelling. We amend traditional use case models
with a formal structure and semantics to make them suitable
for automated verification. The enhanced use case modelling
technique that we propose is called Susan (”S”ymbolic ”us”e
case ”an”alysis) and it facilitates verification of use case models
using symbolic model checking. We also developed a software
tool called SusanX to construct, manipulate and analyse Susan
models. The analysis feature of the tool is implemented using
the NuSMV model checker. A number of generic properties for
verification are built into SusanX, and the tool additionally allows
the user to construct model-specific properties.

I. I NTRODUCTION

Software engineering ofcommunication serviceshas long
been recognised as an especially challenging endeavor. This
category of services includes telecommunication services, In-
ternet services and hybrid services that span multiple network
technologies. The difficulty in development arises from the
complex nature of communication services, which includes
characteristics such as concurrency, distribution and hetero-
geneity [1]. Ad hoc development of these systems is un-
acceptable and hence application of formal methods in the
communications domain has been advocated by many [2][3].
However, while many formal techniques have been used for
the behavioural design of communication services [4][5][6],
specification of their requirements has not received much
attention.

Our research focuses on enhancingRequirements Specifi-
cation (RS)of complex systems, and communication services
in particular. Literature suggests that convoluted formal meth-
ods do not establish well in the industry, while semi-formal
techniques such as scenario-driven approaches are much more
accepted by developers [7]. We attempt to bring together
the strengths of both formal and semi-formal techniques
by improving the RS approach that is most popular at the
moment - use case modelling[8][9]. In our proposal, we

amend traditional use case models with a formal structure
and semantics to make them suitable for automated formal
analysis. Formal analysis of use case models allows one to
discover logical flaws and missing requirements early in the
development cycle, and provides developers with much better
insight into their models.

The enhanced use case modelling technique that we propose
is called Susan (“S”ymbolic “us”e case “an”alysis) and it
facilitates analysis of use case models usingsymbolic model
checking [10]. We also developed a software tool called
SusanX to construct, manipulate and analyse Susan models.
To the best of our knowledge, our approach to improving use
case modelling is unique.

The main objective of this paper is to introduce the Susan
technique and demonstrate its advantages. The next section
provides background on standard use case modelling. Sec-
tion III explains Susan in some detail and introduces the Su-
sanX tool. Section IV describes how we implemented formal
model analysis with SusanX. In Section V we go through a
simple example to demonstrate the proposed technique. The
last section gives conclusions and suggestions for future work.

II. U SE CASE MODELLING

The use case modelling approach was first presented by
Jacobson [11], but now this technique is considered to be
a part of theUnified Modelling Language (UML)[9]. Use
case models specify functional requirements for a system in
terms of scenarios of interaction between the system and its
environment. The main elements of these models areactors
anduse cases. Actors are used to represent entities that interact
with the system, while use cases define services that the
system must provide. Diagrammatically, use cases are shown
as bubbles, actors as stick figures and associations between
the two are represented by connecting lines. An example of a
use case diagram specifying some requirements for a corporate
Voice over IP system is shown in Figure 1.

A use case can also be seen as a collection of scenarios
of system use that have the same goal [9]. Hence, there are
usually a number of different scenarios or flows through each
use case. Use case diagrams are often supplemented by some
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Fig. 1. Example of a use case diagram.

textual descriptions. For example, for each use case one can
specify a priority, main flow, alternative flows, pre-conditions
and post-conditions.

The main strengths of use case modelling are as follows.

(a) The approach is relatively simple and flexible.
(b) Use case models showwho the stakeholders for the

system are andwhat they require from the system,
without showinghow the system will be built.

(c) Stakeholders can understand use case models.
(d) Use case modelling is well-integrated into the Software

Development Life Cycle (SDLC).

Despite these strengths of use case modelling, the approach
suffers from several weaknesses that are listed below.

(a) Effective use case modelling is challenging.
(b) Textual use case descriptions often lack structure.
(c) Use case models and their supplementary descriptions

are ambiguous.
(d) It is impossible to analyse use case models for correct-

ness, completeness or consistency because they are not
based on a formal syntax or semantics.

The weaknesses of use case modelling are especially serious
in the context of communication services, where unambiguous
specification of requirements is crucial and formal analysis can
be very helpful. We propose the Susan technique to alleviate
the above-mentioned drawbacks of use case modelling.

III. SUSAN MODELLING

The Susan technique comprises the following:

• Susan metamodeldescribes Susan modelling elements,
their purpose, precise meaning and how they are related
to each other.

• Structural and semantic rules
• Verification support is facilitated through a symbolic

model checker called NuSMV [12]. A Susan model is
translated to the NuSMV input language and then the
NuSMV tool is used to perform verification.

• SusanX is a prototype software tool that we developed
to allow one to construct, manipulate and verify Susan
models. It interfaces with NuSMV to facilitate verifica-
tion. Figure 2 shows the main interface of SusanX.

• Guidelines for constructing and analysing Susan models
with SusanX are provided.

In Susan modelling, the system under consideration is
treated as a “black box” and use cases are dealt with as au-
tonomous and indivisible courses of action. In other words, we
do not consider individual steps of use case flows. The diagram
in Figure 3 illustrates the view on actor-system interaction
taken by Susan, which is fundamental to the technique. The

Fig. 2. The SusanX tool.

use case appears on the system boundary to show that it serves
as a means of interaction between the actor and the system.
The actor can call upon the system’s services byactivating
use cases. Theglobal system stateis described by a set of
conditionsthat change throughout model execution. Each use
case is associated with a number of pre- and post-conditions.
When a use case is activated, the state of the system is queried
to determine whether the pre-conditions of the use case hold.
If the pre-conditions are satisfied, the activation issuccessful
and the post-conditions of that use case are used to alter the
system state. During Susan model verification, all the possible
interactions between the actors and the system are executed.
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Fig. 3. Actor-system interaction in Susan.

The Susan metamodel and the structural and semantic rules
for Susan are described next.

A. Susan metamodel

We took the fundamental building blocks of models from the
standard use case approach and appended them with additional
elements to facilitate construction of executable Susan models.
The UML diagram in Figure 4 shows the Susan metamodel.

The aggregation relationships in Figure 4 show that a Susan
model comprises four different types of elements: actors,
use cases, conditions and variable types. For each modelling
element the Susan metamodel prescribes a number ofprop-
erties, which are similar to class attributes in the UML. The
remaining element, variable, is auxiliary; it assists in defining
properties for the main four elements.
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Fig. 4. Susan metamodel.

A Susan model consists of a use case diagram that shows
actors, use cases and their associations. For each actor and use
case in the diagram, textual properties are defined. Conditions
and variable types do not have graphical representations; these
elements are completely textual.

Actors: Susan defines two properties for an actor: a name
and a list ofattributes. Attributes describe an actor’s particu-
lars that the system needs to access in order to deliver services
to that actor.

Use cases:In Susan, a use case has four properties: a name,
a parameterlist, pre-condition and post-conditions lists. Use
case parameters describe information that is required by the
system to provide the corresponding service. When a use case
is activated, a value for each of its parameters needs to be
passed to the system. A use case with values assigned to its
parameters and the attributes of its associated actor is called
a use case instance.

Pre-conditions indicate that certain things about the system
state must hold in order for a use case activation to be
successful. On the other hand, post-conditions describe how
the system state changes after a successful activation of a use
case.

Conditions: Conditions are used to describe the global state
of the system and to declare use case pre- and post-conditions.
Three properties are defined for a Susan condition: a name,
a parameter list and atruth-value. A condition with values
assigned to all its parameters is called acondition instance.
A condition instance is eithertrue or false at any given
time during system execution; this is shown by its truth-value.

A number of initial conditions may be defined in a Susan
model. These are condition instances that aretrue at the very
beginning of system execution.

Variables and Variable types: Actor attributes, use case
parameters and condition parameters are all variables. A
variable in Susan has three properties: a name, a value and a
type. Susan variables can only take onsymbolic values, which
are essentially string literals that can only be compared for
equivalence. Two variables are equal if their values are set
to identical string literals. Each variable is associated with a
variable type, which is a finite set of symbolic values.

B. Susan structural and semantic rules

In addition to the metamodel a number of structural and
semantic rules are necessary to completely explain how Susan
models operate. The essentials of these rules are given below.

(a) Completing a Susan model: In a complete Susan
model, properties of all the elements contained in the
model are defined. The type property of all the actor
attributes, condition parameters and use case parameters
must be set to a variable type declared in the model. All
the use case pre- and post-conditions must correspond
to declared condition elements.

(b) Defining pre- and post-condition properties: In Su-
sanX, when adding a pre- or post-condition to use case
properties, the user must first make a selection from a
list of existing conditions. Next, the user must match
each of parameters for the chosen condition to one of
the following: a parameter of that use case, an attribute
of the actor associated with that use case or a symbolic
value from the corresponding type. The user can also
choose theforall option for such a parameter, in which
case the pre- or post-condition must apply to all the
values in the variable type for that parameter. Lastly,
the user must specify the truth-value for the pre- or post-
condition.
During system execution, actor attributes and use case
parameters are assigned values non-deterministically.
These values are then propagated to fill the pre- and post-
condition parameters of the activated use case. Once the
pre- and post-conditions have all their parameters as-
signed, pre-conditions can be queried against the current
system state and post-conditions used to alter it.

(c) Initial conditions: Each initial condition must corre-
spond to a declared condition element. All the parame-
ters of initial conditions must be assigned.

(d) Matching pre-conditions to post-conditions: When a
condition is used as a use case pre-condition, it must
correspond to a post-condition for another use case or
an initial condition.

IV. V ERIFICATION OF SUSAN MODELS

Verification of Susan models is performed with the aid of the
NuSMV tool, which is a symbolic model checker based on Bi-
nary Decision Diagrams (BDD). The NuSMV input language
allows for description of finite state systems and specification
of verification properties expressed in Computational Tree
Logic (CTL) and Linear Temporal Logic (LTL). Susan defines
all the verification properties in terms of CTL. An overview
of the verification process is shown in Figure 5.

In order to support automated analysis, SusanX translates
Susan models to NuSMV programs, passes them to the model
checker that performs verification, and finally interprets the
verification results for the user. A number of generic properties
that can be used to verify any Susan model are built into
SusanX. Additionally, SusanX allows the user to construct her
own model-specific properties for verification usingproperty
specification patterns[13].
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Fig. 5. Verification of Susan models.

The details of our mapping of Susan models to NuSMV
are outside of the scope of this paper. This section explains
how verification for generic and model-specific properties is
implemented in SusanX.

A. Verification against generic properties

SusanX provides generic verification that can be applied
to any Susan model irrespective of the type of system being
modelled. CTL specifications for the generic properties are
built into the SusanX tool. These generic properties are used to
analyse use cases forlivenessand conditions forreversability.

Liveness of use cases:An informal definition of the live-
ness property is that “something good will always eventually
happen” [14]. Susan defines three liveness categories for a
use case: “Dead”, “Transient” and “Live”. SusanX analyses
the model and places each use case instance into one of these
categories.

(a) Dead:Successful activation of the use case instance is not
possible. If all the instances of a use cases are “Dead”,
it is reported as a warning, because a use case that can
never be successfully activated serves no purpose in the
model.

(b) Transient: It is possible to successfully activate the use
case instance a finite number of times. A typical example
of this would be something that only happens once and
is irreversible, for example “Dispose of call log data” can
only be done once unless the log data is recoverable.

(c) Live: It is possible to activate the use case instance an
infinite number of times.

Reversibility of conditions: SusanX analyses how con-
dition instances change their truth-values throughout system
execution. Each condition instance is placed into one of the
following reversibility categories.

(a) Constant: The truth-value of the condition instance never
changes, it remains the same as assigned initially.

(b) Irreversible: In this case the truth-value of the condition
instance is changed once and then remains constant.

(c) Finitely-reversible: The condition instance changes its
truth-value more than once, but still a finite number of
times.

(d) Reversible: The condition changes its truth-value an
infinite number of times.

Verification for liveness of use cases and reversibility of
conditions generates a report that classifies each use case in-
stance and condition instance according to the above-described
categories. This report provides the user with insight into the
behaviour of the system described by the model, as well as
warns her of potential errors in the model.

B. Verification against model-specific properties

Verification against generic properties yields useful results,
but because the generic properties are not model-specific this
type of verification is limited. SusanX allows the user to define
her own properties using property specification patterns. These
patterns let one express simple properties for behavioural
analysis without knowing the details concerning the underlying
formalism, which is CTL in our case. We slightly tailored the
specification pattern hierarchy developed by Dwyeret al to
suit our specific needs for Susan model verification.

Each specification pattern contains one or morepattern vari-
ablesthat the user must substitute with valid values from the
model being verified. A pattern variable is parameterised and
may betrue for some arguments andfalse for others. In
SusanX, pattern variables can be constructed from: condition
instances, use case instances and the logical operatorsNOT(! ),
AND(&), OR(| ) and implication( →). Once the user selects
a pattern and fills in the pattern variables, SusanX generates
the corresponding CTL specification property.

There are two main categories of specification patterns:
occurrenceandorder. Our amended pattern hierarchy is shown
in the following diagram.
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Fig. 6. Specification pattern hierarchy.

Occurrence: Occurrence patterns can be used to verify
existence or absence of system states where a property holds.

(a) Absence (Never):Safety propertiescan be constructed
using this pattern. An informal definition of a safety
property is that “something bad will never happen” [14].

(b) Universality (Globally): This pattern can be used to
expressinvariantsfor a model. An invariant is a property
that must hold throughout the execution of the system.



(c) Existence (Eventually): If we are interested in reacha-
bility of certain system states, then this pattern can be
used to construct properties for model verification. We
extended the “Existence” pattern proposed by Dwyeret
al and created four sub-categories of this pattern.

– Everywhere eventually: Something will always
eventually happen, no matter what execution path is
taken.

– Possible existence:It is possible for something to
happen. In other words, the property may hold on
some paths but not all the paths of execution.

– Always eventually: No matter where in the system
execution we are, something will always eventually
happen. This pattern is a stronger variation of the
“Everywhere eventually” pattern.

– Liveness:Sometimes we want to ensure that at any
time during the execution of the system, something
will eventually become possible. This pattern is a
stronger variation of the “Possible existence” pattern.

Order: Order patterns can be used to construct properties
that verify a certain ordering of system states or events.
(a) Precedence:This pattern describes a dependency be-

tween two system states or events. It can be used to verify
that one state or event always occurs before the other one.

(b) Response:This pattern is similar to the “Precedence”
pattern but is used to verify that every cause must be
followed by an effect rather than for every effect there
must be a cause.

If verification for model-specific properties determines that
a certain property isfalse then a counter-example trace of
system execution is shown to the user. Such a trace consists
of use case activations with the chosen values for each use
case parameter and actor attribute. A trace may be finite or
infinite. All infinite traces have a “loop”, which is shown in
the counter-example.

V. A SIMPLE EXAMPLE

In this section, we use a simple communication system
example to illustrate the most important elements of Susan
modelling and verification. We look at modelling functional
requirements for a rudimentary corporate Voice over IP sys-
tem. The use case diagram in Figure 7 shows the actors and
use cases defined for the system.

The use of the Voice over IP system must be restricted
to company employees only. The system administrator is
responsible for maintaining a record of all valid users within
the system. An employee who wishes to use the services of
the system must first go through a registration process, during
which a new account is created for her. A registered employee
can log in to make calls and log off the system when finished.
The company’s billing system must interface with the Voice
over IP system to get billing data and user call history.

We use the use case diagram from Figure 7 to construct a
Susan model. We declare one variable type “Employee ID”
and assign a finite set of test values to it. Next we declare
conditions for the model: “Valid user”, “User registered”,
“User logged in” and “Call in progress”. For each of the actors
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Fig. 7. Voice over IP system.

and use cases in the model, we add property definitions. Due to
space limitations, we cannot include the complete description
of the Susan model here.

For this system model, there are no initial conditions and
hence we can begin verification. We first use the generic
properties option for SusanX analysis and obtain results sum-
marised in Figure 8.
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Fig. 8. Generic verification results.

The verification results show us that most of use cases fall
into the “Live” category. “Add user” is one of the two use
cases that are categorised differently, it is “Transient”. We
also observe that the “Valid user” condition is “Irreversible”.
Together, these two results tell us that once the administrator
adds a user, that user will remain valid forever or rather until
the end of system execution. What about employees who leave
the company? These must not have access to the system’s
services, hence the system must provide a means of removing
valid users. We correct this incompleteness in the model by
adding a “Remove user” use case to the “Administrator” actor.

Note that we have an identical situation as above with
the “Register” use case and the “User registered” condition.
However, in this case if an employee decides to stop using
the system then she can simply stop logging in, thus a
deregistration service is not necessary.

The remaining results seem plausible - users can log in and
off the system, calls get established and ended as required. We
now use SusanX to formulate some model-specific properties
that the model must satisfy. Below we show how these
properties are constructed using specification patterns, and
provide the corresponding verification results.



(a) Only registered users should be allowed to
participate in calls. We use the “Universality” pattern
to express this property:

Globally (Call in progress (a, b)→
(User registered (a) & User registered (b)))

Verification shows that this property istrue .

(b) An established call will always be ended.We use the
“Response” pattern:

! Call in progress (a, b)responds toCall in progress (a, b)

Verification shows that this property istrue .

(c) A user cannot participate in more than one call at
a time. We use the “Absence” pattern to construct a set
of properties that must all hold:

Never(Call in progress (a, b) & Call in progress (a, c))
Never(Call in progress (a, b) & Call in progress (c, b))
Never(Call in progress (a, b) & Call in progress (c, a))
Never(Call in progress (a, b) & Call in progress (b,c))

SusanX reports that this property does not hold, and
produces a counter-example shown in Figure 9.

Step
 Actor
 Use case


1
 Administrator()
 Add user(a)


2
 Employee(a)
 Register()


3
 Employee(a)
 Log in()


4
 Administrator()
 Add user(b)


5
 Employee(b)
 Register()


6
 Employee(b)
 Log in()


7
 Employee(a)
 Place call(b)


8
 Administrator()
 Add user(
 c
)


9
 Employee(
c
)
 Register()


10
 Employee(
c
)
 Log in()


11
 Employee(
c
)
 Place call(b)


Fig. 9. Counter-example trace.

In the last step of the counter-example trace, the call
should not be established between “c” and “b”, since “b”
is already on a call with “a”. More pre-conditions need
to be defined on the “Place call” use case to check that
the remote party is not engaged in a call with anybody
else.

Once we corrected the discovered errors in the model, we
ran verification against all properties once again. A number of
such iterations were required to get the model to the desired
state.

This simple example illustrates how to construct model-
specific properties with specification patterns, and to interpret
verification results for generic and model-specific properties.

VI. CONCLUSIONS AND FUTURE WORK

The main objective of the work presented in this paper was
to improve RS for complex systems such as communication

services. We did this by developing the Susan technique
based on use case modelling, and the supporting SusanX tool.
Susan allows for creation of requirements models that are
more complete, consistent and correct. SusanX provides the
advantage of model verification without the user having to
know the details of the underlying formalisms.

At this stage, Susan has not been applied to any large-scale
systems and SusanX still needs to be extensively tested for
usability and performance. Consequently, a broad case study
and rigorous testing are our priorities for the near future.
However, we believe that our project as it stands can already
serve as valuable groundwork for further research in this area.
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