
Improving Requirements Specification:
Verification of Use Case Models with Susan

Technical Report CS04-06-00
Oksana Ryndina, Pieter Kritzinger
Data Network Architectures Group

Department of Computer Science, University of Cape Town
Rondebosch, 7701, South Africa

Abstract

Inadequate requirements specification is one of the main
causes of software development project failure today. A ma-
jor problem is the lack of processes, techniques and auto-
mated tool support available for specifying system require-
ments. We suggest a way to improve requirements specifi-
cation methodology by enhancing the approach that is most
popular at the moment - use case modelling. Despite their
popularity, use case models are not formal enough for auto-
mated analysis. We amend traditional use case models with
a formal structure and semantics to make them suitable for
automated verification. The enhanced use case modelling
technique that we propose is called Susan (”S”ymbolic
”us”e case ”an”alysis) and it facilitates verification of use
case models using symbolic model checking. We also devel-
oped a software tool called SusanX to construct, manipulate
and analyse Susan models. The analysis feature of the tool
is implemented using the NuSMV model checker. A num-
ber of generic properties for verification are built into Su-
sanX, and the tool additionally allows the user to construct
model-specific properties.

1. Introduction

It is fairly common knowledge that today only one out
of every three software development projects is completed
successfully. The latest CHAOS Surveys by the Standish
Group [1] report that 15% of projects fail outright, and 51%
are late, run over budget or provide reduced functionality.
On average only 54% of the initial project requirements are
delivered to the client. Inadequate specification of system
requirements is considered to be one of the main causes for
project failure.

What is it about requirements specification that develop-
ers find so challenging? One of the major issues is the lack

of adequate processes, techniques and automated tool sup-
port available for specification of requirements. We thus set
out in our research to enhanceRequirements Specification
(RS)methodology by improving the approach that is most
popular at the moment -use case modelling[2][3]. The use
case approach is well-suited for specifying functional re-
quirements for software systems. Despite their popularity,
use case models lack structure and exact semantics, which
makes formal analysis of such models impossible. In our
proposal, we amend traditional use case models with a for-
mal structure and semantics to make them suitable for auto-
mated formal analysis. Formal analysis of use case models
allows one to discover logical flaws and missing require-
ments early in the development cycle, and provides devel-
opers with much better insight into their models.

The enhanced use case modelling technique that we pro-
pose is called Susan (“S”ymbolic “us”e case “an”alysis)
and it facilitates analysis of use case models usingsym-
bolic model checking[10]. We also developed a software
tool called SusanX to construct, manipulate and analyse Su-
san models. To the best of our knowledge, our approach to
improving use case modelling is unique.

The main objective of this paper is to introduce the Su-
san technique and demonstrate its advantages. The next sec-
tion provides background on standard use case modelling,
presenting its strengths and weaknesses. Section 3 explains
Susan in detail and introduces the SusanX tool. Section 4
describes how we implemented formal model analysis with
SusanX. In Section 5 we go through a simple example to
demonstrate the proposed technique. The last section gives
conclusions and suggestions for future work.

2. Use case modelling

The use case modelling approach was first presented by
Ivar Jacobson [8], but now this technique is considered to be
a part of theUnified Modelling Language (UML)[3]. With
use case models, one can specify functional requirements

for a system in terms of scenarios of interaction between
the system and its environment. The main elements of these
models areactorsanduse cases. Actors are used to repre-
sent entities that interact with the system, while use cases
define services that the system must provide. Diagrammati-
cally, use cases are shown as bubbles, actors as stick figures
and associations between the two are represented by con-
necting lines. Sometimes use case bubbles are drawn inside
a rectangle that symbolises the system boundary. An exam-
ple of a use case diagram specifying some requirements for
a corporate Voice over IP system is shown in Figure 1.

Place call

Get billing data

Forward call

Add user

Caller

Billing system

Callee

Administrator

Figure 1. Example of a use case diagram.

In addition to defining a use case as a service required
from the system, it can also be seen as a collection of sce-
narios of system use that have the same goal [3]. Hence,
there are usually a number of different scenarios or flows
through each use case - the main flow and several alterna-
tive flows.

Use case representation in diagrams is often supple-
mented by some textual descriptions. For example, for each
use case one can specify a priority, main flow, alternative
flows, trigger event, pre-conditions and post-conditions.

Three relationships can be used to connect use cases:
generalisation, include and extend. With these relation-
ships, one can show how a number of use cases share com-
mon behaviour. Actors can also be organised into general-
isation hierarchies. If two actors are related by a generali-
sation relationship, the child actor inherits all the use case
associations of its parent and “specialises” its parent by ad-
ditionally having its own use case associations.

The main strengths of use case modelling are as follows.

(a) The approach is relatively simple and flexible.

(b) Use case models show thewhatand thewhowithout
the how. The goal of RS is to identifywho the stake-
holders for the system are andwhat they require from
the system. Use case models are well-suited to capture
this type of information without showinghow the sys-
tem needs to be built, which is a design concern.

(c) Stakeholders can understand use case models.

(d) Use case modelling is well-integrated into the Soft-
ware Development Life Cycle (SDLC). Use case
modelling naturally integrates into the software engi-
neering process if the UML is used during the other
development phases.

Despite these strengths of use case modelling, the ap-
proach suffers from several weaknesses that are explained
below.

(a) Effective use case modelling is challenging.Al-
though it is easy to learn the basics of use case
modelling, effective use of this approach is not a sim-
ple task.

(b) Textual use case descriptions lack structure.There
are no prescribed textual attributes that must be speci-
fied for a use case, neither are there formats set down
for commonly used use case descriptions. Conse-
quently, one can never be assured of the level of detail,
type of content or presentation of use case descrip-
tions.

(c) Use case models are ambiguous.Supplementary use
case descriptions are usually given in natural language,
which is inherently imprecise, making use case models
ambiguous. Additionally, certain graphical elements of
use case models are poorly defined [11].

(d) It is impossible to analyse use case models for cor-
rectness, completeness or consistency.Use case
models are not based on a formal syntax or seman-
tics, and as a result cannot be analysed in any for-
mal way. This means that a use case model can only
be analysed by hand for qualities such as correct-
ness, consistency and completeness. Naturally, this be-
comes more difficult and unreliable as the amount of
the information in the model increases.

We propose the Susan modelling technique to alleviate
the weaknesses of use case modelling described above. Su-
san is described in detail in the next section.

3. Susan modelling

The Susan technique comprises the following:

• Susan metamodel:The metamodel describes Susan
modelling elements, their purpose, precise meaning
and how they are related to each other.

• Structural and semantic rules: These rules formally
define the structure and semantics of Susan models.

• Verification support: Susan enables formal analysis
of the constructed models by means of automated veri-
fication. A symbolic model checker called NuSMV [4]

is used to implement the verification. A Susan model is
translated to the NuSMV input language and then the
NuSMV tool is used to perform verification.

• SusanX: In order to test the feasibility of Susan and
demonstrate the technique, we created a prototype
software tool called SusanX. SusanX allows one to
construct, manipulate and verify Susan models. It was
implemented in Java and interfaces with the NuSMV
model checker to facilitate verification. Figure 2 shows
the interface of SusanX.

Figure 2. The SusanX tool.

• Guidelines: We provide a set of guidelines for con-
structing and analysing Susan models with SusanX.
These guidelines also explain how to integrate Susan
modelling into the rest of RS and SDLC.

In Susan modelling, the system under consideration is
treated as a “black box” and use cases are dealt with as au-
tonomous and indivisible courses of action. In other words,
we do not consider individual steps of use case flows. The
diagram in Figure 3 illustrates the view on actor-system in-
teraction taken by Susan, which is fundamental to the tech-
nique. The use case appears on the system boundary to show
that it serves as a means of interaction between the actor and
the system. The actor can call upon the system’s services by
activatinguse cases. Theglobal system stateis described by
a set ofconditionsthat change throughout model execution.
Each use case is associated with a number of pre- and post-
conditions. When a use case is activated, the state of the sys-
tem is queried to determine whether the pre-conditions of
the use case hold. If the pre-conditions are satisfied, the ac-
tivation issuccessfuland the post-conditions of that use case
are used to alter the system state. During Susan model veri-

fication, all the possible interactions between the actors and
the system are executed.

System

Actor

Global system state

Use case

Figure 3. Actor-system interaction in Susan.

The Susan metamodel and the structural and semantic
rules for Susan are described next.

3.1. Susan metamodel

We took the fundamental building blocks of models from
the standard use case approach and appended them with ad-
ditional elements to facilitate construction of executable Su-
san models. The following UML diagram shows the Susan
metamodel. Classes are used to represent the modelling el-
ements and associations denote relationships between the
elements. The gray labels identify class roles, these show
how one element can play different roles in different re-
lationships. For example, the association between “Actor”
and “Variable” should be interpreted as follows: “an actor
has attributes that are variables”.

Actor Use case

ConditionVariable type

Variable

type

attributes
post-conditions

pre-conditionsparameters

parameters

Susan model

initial conditions

1..*0..* 0..*

0..* 0..*

0..*

0..*

0..* 0..*

0..*

Figure 4. Susan metamodel.

The aggregation relationships in Figure 4 show that a Su-
san model comprises four different types of elements: ac-

tors, use cases, conditions and variable types. For each mod-
elling element the Susan metamodel prescribes a number of
properties, which are similar to class attributes in the UML.
The remaining element, variable, is auxiliary; it assists in
defining properties for the main four elements.

A Susan model consists of a use case diagram that shows
actors, use cases and their associations. For each actor and
use case in the diagram, textual properties are defined. Con-
ditions and variable types do not have graphical represen-
tations; these elements are completely textual. Each part of
the Susan metamodel is described in detail next.

Actors: The Susan actor element is based on actors in the
standard use case modelling. However, the actor-use case
association is slightly more restrictive in Susan. The mul-
tiplicity for this association is “one to many” (1 to 1..*),
which means that a use case can only be associated with
one actor.

Susan defines two properties for an actor: a name and a
list of attributes. Attributes describe an actor’s particulars
that the system needs to access in order to deliver services
to that actor. For example, a user of an online student ser-
vices system may have one attribute - a student number.

Use cases:As in the standard approach, use cases rep-
resent functional system requirements. In Susan, a use case
has four properties: a name, aparameterlist, pre-condition
and post-conditions lists. Use case parameters describe in-
formation that is required by the system to provide the cor-
responding service. When a use case is activated, a value
for each of its parameters needs to be passed to the sys-
tem. A use case with values assigned to its parameters and
the attributes of its associated actor is called ause case in-
stance.

The concept of pre- and post-conditions is not new in use
case modelling, however it is not clearly defined in the stan-
dard approach. Pre-conditions indicate that certain things
about the system state must hold in order for a use case ac-
tivation to be successful. On the other hand, post-conditions
describe how the system state changes after a successful ac-
tivation of a use case. If pre-conditions of a use case hold
then once that use case is executed, its post-conditions will
take effect. Susan treats conditions as modelling elements
in their own right.

Conditions: Conditions are used to describe the global
state of the system and to declare use case pre- and post-
conditions. Three properties are defined for a Susan con-
dition: a name, a parameter list and atruth-value. A con-
dition with values assigned to all its parameters is called a
condition instance. A condition instance is eithertrue or
false at any given time during system execution; this is
shown by its truth-value.

A number ofinitial conditionsmay be defined in a Susan
model. These are condition instances that hold or aretrue
at the very beginning of system execution.

Variables and Variable types:Actor attributes, use case
parameters and condition parameters are all variables. A
variable in Susan has three properties: a name, a value and
a type. Susan variables can only take onsymbolic values,
which are essentially string literals that can only be com-
pared for equivalence. Two variables are equal if their val-
ues are set to identical string literals. Each variable is asso-
ciated with a variable type, which is a finite set of symbolic
values.

From the diagram in Figure 4 it can be seen that Susan
does not support relationships among use cases or actor gen-
eralisation relationships. We intend to integrate these addi-
tional features of use case models into the Susan technique
in the near future.

3.2. Susan structural and semantic rules

The metamodel describes Susan modelling elements,
their properties and how they are used in system models.
However, in addition to the metamodel a number of struc-
tural and semantic rules are necessary to completely explain
how Susan models operate. The essentials of these rules are
given below.

(a) Adding elements to a Susan model:In a complete
Susan model, properties of all the elements contained
in the model are defined. The type property of all the
actor attributes, condition parameters and use case pa-
rameters must be set to a variable type declared in the
model. All the use case pre- and post-conditions must
correspond to declared condition elements.

For SusanX users, we suggest first creating the main
use case diagram. This defines actors and use cases for
the model. Next, the user should add variable type def-
initions, followed by condition declaration. Once this
is done, the user should proceed to defining proper-
ties for the actors and use cases that are already in the
model.

(b) Defining pre- and post-condition properties:In Su-
sanX, when adding a pre- or post-condition to use case
properties, the user must first make a selection from a
list of existing conditions. Next, the user must match
each of parameters for the chosen condition to one of
the following: a parameter of that use case (prefixed by
#uc), an attribute of the actor associated with that use
case (prefixed by#self) or a symbolic value from
the corresponding type. The user can also choose the
#forall option for such a parameter, in which case
the pre- or post-condition must apply to all the val-
ues in the variable type for that parameter. Lastly, the
user must specify the truth-value for the pre- or post-
condition. Figure 5 shows how the user defines pre- or
post-condition properties in SusanX.

Figure 5. Adding a pre-condition in SusanX.

The concept of condition parameters in Susan is
comparable toformal and actual parameters in pro-
gramming languages. For example, in Java a method
definition contains a formal parameter list, where the
type of each parameter is specified. A method call sup-
plies actual parameters to the method. Eventually, at
runtime all the parameters are bound to actual val-
ues. In Susan, a condition declaration defines formal
parameters for that condition and their variable types.
When that condition is used as a pre- or post-condition
for a use case, the user assigns each of the formal pa-
rameters to an actual parameter as described above.
During the execution of the system model, all the pos-
sible use case activations are simulated. When a use
case activation is simulated, the attributes of the asso-
ciated actor and use case parameters are assigned ac-
tual values. These values are then propagated to fill
the pre- and post-condition parameters of the use case.
Once the pre- and post-conditions have all their param-
eters assigned, pre-conditions can be queried against
the current system state and post-conditions used to al-
ter it.

(c) Initial conditions: Initial conditions also form a part
of the system model description in Susan. Each initial
condition must correspond to a declared condition ele-
ment. All the parameters of initial conditions must be
assigned. We suggest that initial conditions are added
to the model last, as the final step in preparing the
model for verification.

(d) Matching pre-conditions to post-conditions:When
a condition is used as a use case pre-condition, it must
correspond to a post-condition for another use case or
an initial condition. If a use case has anunmatchedpre-
condition, the possibility of that use case being suc-
cessfully activated is eroded. SusanX performs a check
for unmatched pre-conditions as part of ensuring that
the model is ready for verification.

4. Verification of Susan models

Verification of Susan models is performed with the aid of
the NuSMV tool, which is a symbolic model checker based
on Binary Decision Diagrams (BDD). The NuSMV input
language allows for description of finite state systems and
specification of verification properties expressed in Com-
putational Tree Logic (CTL) and Linear Temporal Logic
(LTL). Susan defines all the verification properties in terms
of CTL. An overview of the verification process is shown in
the following diagram.

Get billing data

Disable account

Billing system Administrator

Formal structure
and semantics

Use case diagram

+ Susan model NuSMV program

Generic properties in CTL

Model-specific properties
based on specification patterns

Model-specific
properties in CTL

Verification results
Verification results
interpreted for user

SusanX NuSMV

Figure 6. Verification of Susan models.

In order to support automated analysis, SusanX trans-
lates Susan models to NuSMV programs, passes them to
the model checker that performs verification, and finally in-
terprets the verification results for the user. A number of
generic properties that can be used to verify any Susan
model are built into SusanX. Additionally, SusanX allows
the user to construct her own model-specific properties for
verification usingproperty specification patterns.

This section explains how Susan is mapped to the
NuSMV language, as well as how verification for generic
and model-specific properties is implemented in Su-
sanX.

4.1. Translating Susan models to NuSMV

The NuSMV input language is designed to describe tran-
sition relations of finite state machines. During system ex-
ecution, these transitions are used to determine valid evo-
lution of the system state. The system state is represented
by state variablesin NuSMV. Only finite data types such as
booleans, scalars and fixed arrays can be used for state vari-
ables. The basic structure of a NuSMV program is shown in
Figure 7.

The program consists of one or more modules. Themain
module defines the entry point for system execution. All

variable declarations

main module

assignment statements

property specifications

reusable module (parameters)

variable declarations

assignment statements

Figure 7. A NuSMV program.

modules except the main modules can be instantiated, hence
they are called “reusable”. Data is passed to modules by
means of parameters. Parallel execution of modules can be
achieved if they are instantiated asprocesses. Module in-
stantiations are considered to be part of variable declara-
tions in NuSMV.

Two main types of assignment statements are allowed in
NuSMV: init andnext . By assigning an initial value to
a variable withinit and then describing how this value
changes in the next state with anext , one defines state
transitions in a NuSMV program. NuSMV also allows non-
deterministic assignments, which are useful in describing
abstract behavioural models and representing uncertainties
in a model.

When CTL model checking is used, property specifica-
tions consist of logical expressions constructed from the
program state variables, CTL operators and quantifiers.

We map a Susan model to NuSMV in such a way that
when the generated NuSMV program is executed, use cases
are chosen randomly for activation and all variables within
the model are assigned values non-deterministically. In this
way, all the possible behaviours of the system are checked
against the verification properties.

The structure outline of a NuSMV program generated
from a Susan model is shown below.

assignment statements:
(3) initialise condition variables

property specifications:
(4) specify CTL properties

main module use case module (condition variables)

variable declarations:
(5) declare boolean return variable

assignment statements:
(6) assign return variable
(7) reassign condition variables

variable declarations:
(1) declare condition variables
(2) instantiate use case modules

Figure 8. A Susan model in NuSMV.

Each condition instance in a Susan model is represented
by a boolean variable in the NuSMV program (1). These
condition variables are initialised in accordance with the ini-
tial conditions defined in the Susan model (3) and are used
to represent the state of the system during execution.

For each use case instance, a module is declared within
the NuSMV program. Inside a use case module, a boolean
variable calledreturn is declared (5) and assigned to

true if the pre-conditions of the use case instance hold,
and tofalse otherwise (6). Hence, thereturn variable
can always be used to check whether the last use case in-
stance activation was successful or not. If the activation
of a use case instance is successful, then post-conditions
are used to reassign condition variables moving the sys-
tem into a new state (7). A use case module needs to ac-
cess condition variables corresponding to the pre- and post-
conditions of that use case instance. For this reason, the ap-
propriate condition variables are passed to use case modules
as parameters. Use case instance modules are initialised as
processes (2) and during system verification, they are non-
deterministically chosen for execution.

SusanX initially generates a “.smv” file without any CTL
property specifications in the program. As verification is
performed for various properties, the corresponding CTL
specifications are inserted in the generated file (5).

4.2. Verification against generic properties

SusanX provides generic verification that can be applied
to any Susan model irrespective of the type of system be-
ing modelled. CTL specifications for the generic properties
are built into the SusanX tool. These generic properties are
used to analyse use cases forlivenessand conditions forre-
versability.

Liveness of use cases:An informal definition of the live-
ness property is that “something good will always eventu-
ally happen” [9]. Susan defines three liveness categories for
a use case: “Dead”, “Transient” and “Live”. SusanX analy-
ses the model and places each use case instance into one of
these categories.

(a) Dead: Successful activation of the use case instance
is not possible. If all the instances of a use cases are
“Dead”, it is reported as a warning, because a use case
that can never be successfully activated serves no pur-
pose in the model.

(b) Transient: It is possible to successfully activate the
use case instance a finite number of times. A typical
example of this would be something that only happens
once and is irreversible, for example “Dispose of call
log data” can only be done once unless the log data is
recoverable. “Transient” use cases can place a limita-
tion on the system functionality and one should be sure
that the use case irreversibility is actually intended.

(c) Live: It is possible to activate the use case instance an
infinite number of times. It is expected that most use
case instances would fall into this category.

Reversibility of conditions: SusanX analyses how con-
dition instances change their truth-values throughout sys-
tem execution. Each condition instance is placed into one
of the following reversibility categories.

(a) Constant: The truth-value of the condition instance
never changes, it remains the same as assigned ini-
tially.

(b) Irreversible: In this case the truth-value of the condi-
tion instance is changed once and then remains con-
stant.

(c) Finitely-reversible: The condition instance changes
its truth-value more than once, but still a finite num-
ber of times.

(d) Reversible: The condition changes its truth-value an
infinite number of times. It is expected that most con-
ditions would fall into this category.

Verification for liveness of use cases and reversibility of
conditions generates a report that classifies each use case
instance and condition instance according to the above-
described categories. This report provides the user with in-
sight into the behaviour of the system described by the
model, as well as warns her of potential errors in the model.

4.3. Verification against model-specific properties

Verification against generic properties yields useful re-
sults, but because the generic properties are not model-
specific this type of verification is limited. SusanX allows
the user to define her own properties using property specifi-
cation patterns. These patterns let one express simple prop-
erties for behavioural analysis without knowing the details
concerning the underlying formalism, which is CTL in our
case.

Property specification patterns were first proposed by
Dwyer et al in [5] and further supported by empirical
studies [6]. The SAnToS Laboratory maintain an ongoing
project for evolving these patterns, which is documented
online [7]. Dwyer et al developed a system of specifica-
tion patterns, which comprises a set of property specifica-
tion patterns that are organised into a hierarchy showing re-
lationships between different patterns. We tailored this sys-
tem slightly to suit our specific needs for Susan model ver-
ification.

Each specification pattern contains one or morepattern
variables that the user must substitute with valid values
from the model being verified. Pattern variables arepredi-
catesor in other words functions that yield a boolean value.
A pattern variable is parameterised and may betrue for
some arguments andfalse for others. In SusanX, pattern
variables can be constructed from: condition instances, use
case instances and the logical operatorsNOT(!), AND(&),
OR(|) and implication(→). Once the user selects a pat-
tern and fills in the pattern variables, SusanX generates the
corresponding CTL specification property.

There are two main categories of specification patterns:
occurrenceand order. Our amended pattern hierarchy is
shown in Figure 9.

Occurrence

Absence

Existence

Universality

Everywhere
eventually

Possible existence Always eventually

Liveness

Property specification patterns

Order

Precedence Response

Figure 9. Specification pattern hierarchy.

Occurrence: Occurrence patterns can be used to ver-
ify existence or absence of system states where a property
holds.

(a) Absence (Never):Safety propertiescan be constructed
using this pattern. An informal definition of a safety
property is that “something bad will never happen” [9].

(b) Universality (Globally): This pattern can be used to
expressinvariantsfor a model. An invariant is a prop-
erty that must hold throughout the execution of the sys-
tem. This pattern is closely related to the “Absence”
pattern but while the “Absence” pattern is applied to
negative properties, the “Universality” pattern applies
to positive ones.

(c) Existence (Eventually):If we are interested in reach-
ability of certain system states, then this pattern can be
used to construct properties for model verification. We
extended the “Existence” pattern proposed by Dwyer
et aland created four sub-categories of this pattern.

– Everywhere eventually:Something will always
eventually happen, no matter what execution path
is taken.

– Possible existence:It is possible for something
to happen. In other words, the property may hold
on some paths but not all the paths of execution.

– Always eventually: No matter where in the sys-
tem execution we are, something will always
eventually happen. This pattern is a stronger vari-
ation of the “Everywhere eventually” pattern.

– Liveness:Sometimes we want to ensure that at
any time during the execution of the system,
something will eventually become possible. This
pattern is a stronger variation of the “Possible ex-
istence” pattern.

Order: Order patterns can be used to construct proper-
ties that verify a certain ordering of system states or events.

(a) Precedence:This pattern describes a dependency be-
tween two system states or events. It can be used to
verify that one state or event always occurs before the
other one.

(b) Response:Cause-effect relationships between system
states or events can be expressed using this pattern. It
is similar to the “Precedence” pattern but is used to
verify that every cause must be followed by an effect
rather than for every effect there must be a cause. In the
“Precedence” pattern causes may occur without subse-
quent effects, while in the “Response” pattern effects
may occur without causes.

Figure 10 shows how model-specific properties are con-
structed in SusanX.

Figure 10. Constructing model-specific prop-
erties in SusanX.

In the above example, we use the “Possible existence”
pattern to construct a property to check that call history
may exist for users who are not currently valid. If “Call his-
tory exists” and “Valid user” conditions have parameters of
“Employee ID” type, then during verification “a” will be re-
placed by values from that type. Note that both instances of
“a” will be replaced by the same value.

If verification for model-specific properties determines
that a certain property isfalse then a counter-example
trace of system execution is shown to the user. Such a trace
consists of use case activations with the chosen values for
each use case parameter and actor attribute. A trace may be
finite or infinite. All infinite traces have a “loop”, which is
shown in the counter-example.

5. A simple example

In this section, we use a simple example to illustrate the
most important elements of Susan modelling and verifica-
tion. We look at modelling functional requirements for a
simple corporate Voice over IP system. The main purpose of
the system is to allow company’s employees to make voice
calls over the existing computer network. User authentica-
tion and call logging also need to be supported. The use case
diagram in Figure 11 shows the actors and use cases defined
for the system.

Place call

Get billing data

Forward call

Add user

Billing system Administrator

Register

Log in

Log off

End call

Get user call history

Employee

Figure 11. Voice over IP system.

The use of the Voice over IP system must be restricted to
company employees only. The system administrator is re-
sponsible for maintaining a record of all valid users within
the system. An employee who wishes to use the services of
the system must first go through a registration process, dur-
ing which a new account is created for her. A registered em-
ployee can log in to make calls and log off the system when
finished. The company’s billing system must interface with
the Voice over IP system to get billing data and user call his-
tory.

We use the use case diagram from Figure 11 to construct
a Susan model. We declare one variable type “Employee
ID” and assign a finite set of test values to it. Next we de-
clare conditions for the model: “Valid user”, “User regis-
tered”, “User logged in” and “Call in progress”. For each
of the actors and use cases in the model, we add property
definitions. Due to space limitations, we cannot include the
complete description of the Susan model here. Figure 12
shows the definition of the “Place call” use case.

For this system model, there are no initial conditions and

Figure 12. Place call use case.

hence we can begin verification. We first use the generic
properties option for SusanX analysis and obtain results
summarised in Table 1.

Use case name Liveness category
Add user Transient
Register Transient
Log in Live
Log off Live
Place call Live
Forward call Live
Get billing data Live
Get user call history Live

Condition name Reversibility category
Valid user Irreversible
User registered Irreversible
User logged in Reversible
Call in progress Reversible

Table 1. Verifying generic properties

The verification results show us that most of use cases
fall into the “Live” category. “Add user” is one of the two
use cases that are categorised differently, it is “Transient”.
We also observe that the “Valid user” condition is “Irre-
versible”. Together, these two results tell us that once the
administrator adds a user, that user will remain valid for-
ever or rather until the end of system execution. What about
employees who leave the company? These must not have
access to the system’s services, hence the system must pro-
vide a means of removing valid users. We correct this in-
completeness in the model by adding a “Remove user” use
case to the “Administrator” actor.

Note that we have an identical situation as above with
the “Register” use case and the “User registered” condition.
However, in this case if an employee decides to stop us-
ing the system then she can simply stop logging in, thus a
deregistration service is not necessary.

The remaining results seem plausible - users can log
in and off the system, calls get established and ended as

required. We now use SusanX to formulate some model-
specific properties that the model must satisfy. Below we
show how these properties are constructed using specifica-
tion patterns, and provide the corresponding verification re-
sults.

(a) Only registered users should be allowed to partici-
pate in calls.We use the “Universality” pattern to ex-
press this property:

Globally (Call in progress (a, b)→
(User registered (a) & User registered (b)))

Verification shows that this property istrue .

(b) A user should not be able to establish a call
with herself. Using the “Absence” pattern, we con-
struct this property:

Never(Call in progress (a, a))

SusanX reports that this property isfalse . The
following sequence of steps constitute the counter-
example.

Step Actor Use case
1 Administrator () Add user (a)
2 Employee (a) Register
3 Employee (a) Log in
4 Employee (a) Place call (a)

Table 2. Counter-example trace

We need to add a pre-condition to the “Place call”
use case that will ensure that the IDs of the callee
and caller are not the same. We declare a new condi-
tion called “Same user IDs” with two parameters for
the IDs, and for each valid value in the “Employee ID”
type we add an initial “Same user IDs” condition with
both parameters set to that value. Next we add the fol-
lowing pre-condition to the “Place call” use case:

Same user IDs (#selfID, #ucRemote user ID)is false

(c) An established call will always be ended.We use the
“Response” pattern:

! Call in progress (a, b)responds toCall in progress (a, b)

Verification shows that this property istrue .

(d) A user cannot participate in more than one call
at a time. We use the “Absence” pattern to con-

struct a set of properties that must all hold:

Never(Call in progress (a, b) & Call in progress (a, c))
Never(Call in progress (a, b) & Call in progress (c, b))
Never(Call in progress (a, b) & Call in progress (c, a))
Never(Call in progress (a, b) & Call in progress (b,c))

SusanX reports that this property does not hold, and
produces a counter-example shown in Table 3.

Step Actor Use case
1 Administrator () Add user (a)
2 Employee (a) Register
3 Employee (a) Log in
4 Administrator () Add user (b)
5 Employee (b) Register
6 Employee (b) Log in
7 Employee (a) Place call (b)
8 Administrator () Add user (c)
9 Employee (c) Register
10 Employee (c) Log in
11 Employee (c) Place call (b)

Table 3. Counter-example trace

In the last step of the counter-example trace, the call
should not be established between “c” and “b”, since
“b” is already on a call with “a”. More pre-conditions
need to be defined on the “Place call” use case to check
that the remote party is not engaged in a call with any-
body else.

Once we corrected the discovered errors in the model, we
ran verification against all properties once again. A number
of such iterations were required to get the model to the de-
sired state.

This simple example illustrates how to construct model-
specific properties with specification patterns, and to inter-
pret verification results for generic and model-specific prop-
erties.

6. Conclusions and future work

The main objective of the work presented in this paper
was to improve RS by enhancing the currently available
processes, techniques and automated tool support for spec-
ifying system requirements. We did this by developing the
Susan technique based on use case modelling, and the sup-
porting SusanX tool. Susan allows for creation of require-
ments models that are more complete, consistent and cor-
rect. Verification of models with SusanX can help develop-
ers to identify logical flaws and missing requirements in the
models early in the development cycle. Additionally, with

Susan developers can get much better insight into their re-
quirements models.

At this stage, Susan has not been applied to any large-
scale systems and SusanX still needs to be extensively
tested for correctness, usability and performance. Conse-
quently, a broad case study and rigorous testing are our pri-
orities for the near future. However, we believe that our
project as it stands can already serve as valuable ground-
work for further research in this area.

Once sufficiently tested and assessed, Susan and SusanX
should be extended to incorporate relationships between use
cases and actor generalisation relationships. Furthermore, a
user-driven animation feature could be introduced into the
SusanX tool to make it even more effective.

References

[1] What Are Your Requirements? A Standish Group Research
Note, 2003.

[2] K. Bittner and I. Spence.Use Case Modeling. Addison-
Wesley Publishers Ltd., June 2003.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Mod-
eling Language. Addison-Wesley Publishers Ltd., 1999.

[4] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: a new Symbolic Model Verifier. In N. Halbwachs
and D. Peled, editors,Proceedings Eleventh Conference on
Computer-Aided Verification (CAV’99), number 1633 in Lec-
ture Notes in Computer Science, pages 495–499, Trento,
Italy, July 1999. Springer.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Prop-
erty Specification Patterns for Finite-State Verification. In
M. Ardis, editor,Proc. 2nd Workshop on Formal Methods in
Software Practice (FMSP-98), pages 7–15, New York, 1998.
ACM Press.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in
Property Specifications for Finite-state Verification. InPro-
ceedings of the 21st International Conference on Software
Engineering, May 1999.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. On-
line Repository for Information about Specificaiton Pat-
terns for Finite-state Verification. Available online:
http://patterns.projects.cis.ksu.edu/, Last accessed: February
2004.

[8] I. Jacobson.Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley Publishers Ltd., 1st
edition, June 1992.

[9] E. Kindler. Safety and Liveness Properties: A Survey.Bul-
letin of the European Association for Theoretical Computer
Science, 53:268–272, 1994.

[10] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[11] B. Regnell, K. Kimbler, and A. Wesslen. Improving Use
Case Driven Approach to Requirements Engineering. InPro-
ceedings of Second IEEE International Symposium on Re-
quirements Engineering, March 1995.

