
SPEAR II
The Security Protocol Engineering and Analysis Resource

Elton Saul and Andrew Hutchison

Data Network Architectures Laboratory
Department of Computer Science

University of Cape Town
Rondebosch, 7701

South Africa

E-Mail:
�
esaul, hutch � @cs.uct.ac.za

ABSTRACT

Multi-dimensional security protocol engineering is
effective in creating cryptographic protocols since
it encompasses a variety of analysis techniques,
thereby providing a higher security confidence
than individual approaches. SPEAR, the Secu-
rity Protocol Engineering and Analysis Resource,
was a protocol engineering tool which focused on
cryptographic protocols, with the specific aims
of enabling secure and efficient protocol designs
and support for the production process of imple-
menting security protocols. The SPEAR II tool
is a continuation of the highly successful SPEAR
project and aims to build on the foundation laid by
SPEAR. SPEAR II provides more advanced multi-
dimensional support than SPEAR, enabling proto-
col specification via a graphical user interface, au-
tomated security analysis that applies a number of
well-known analysis methods, performance report-
ing and evaluation, meta-execution and automated
code generation.

1 INTRODUCTION

The use of open and unreliable computer networks is
rapidly increasing as more companies and individuals
connect to local and global networks. Since messages
that are sent across open networks can be intercepted
and manipulated by unknown entities, the security of
these networked systems is crucial to protect the inter-
ests of all of its users.

One of the most important characteristics of a net-
worked system is the distributed nature of the com-

municating entities. A protocol is a set of rules that is
used to define an exchange of messages between two
or more of these entities. In particular, cryptographic
protocols make use of security techniques to achieve
goals such as confidentiality, authentication, integrity
and non-repudiation.

The fact that strong cryptographic algorithms exist
does not guarantee the security of a communications
system [26]. It is widely recognized that the engi-
neering of security protocols is a very challenging task
since protocols which appear secure can contain subtle
flaws and vulnerabilities that attackers can exploit [2].
The odds definitely favour the attacker since defenders
have to protect a system against every possible vulner-
ability.

SPEAR II is a security protocol engineering and anal-
ysis resource that builds on the work of the original
SPEAR project that was conducted in 1997 [7]. The
aim of SPEAR II is to provide a multi-dimensional
framework which will enable secure and efficient
security protocol designs and support for the ‘pro-
duction’ process of implementing security protocols.
The SPEAR II tool combines formal protocol spec-
ification, security and performance analysis, meta-
execution and automatic code generation into one in-
tegrated and easy-to-use graphical interface.

This paper describes the SPEAR II tool that is cur-
rently being developed at the University of Cape
Town. Section 2 gives a brief introduction to the field
of security protocol engineering and analysis. In Sec-
tion 3 we mention the primary goals of SPEAR II
and then in Section 4 we elaborate on the modules of
which SPEAR II comprises. The paper then briefly
compares SPEAR II with the original SPEAR project
in Section 5 and then concludes in Section 6.



2 SECURITY PROTOCOL EN-
GINEERING AND ANALYSIS

Designing a security protocol that fulfils its intended
functions and degree of security is notoriously diffi-
cult [1]. Some examples of well-known protocols that
have been found to be insecure include Microsoft’s
PPTP protocol [24], an early version of Netscape’s
SSL protocol [2] and the CCITT X.509 protocol [1].
As a result of this fact, recent years have witnessed
significant efforts directed at developing methods to
facilitate the design and analysis of cryptographic pro-
tocols [22].

Being able to clearly specify a security protocol forms
the basis for further analysis and implementation.
There are already systems which are used to de-
sign protocols in general, such as Message Sequence
Charts (MSCs) [19] and the Specification and Descrip-
tion Language (SDL) [25]. SDL is widely used to de-
scribe communicating systems such as telecommuni-
cation protocols, while MSCs capture the exchange of
protocol messages at a higher level than SDL, the cen-
tral focus being on the exchange and proper sequenc-
ing of messages. The Common Authentication Pro-
tocol Specification Language (CAPSL) [9] is a high-
level language whose goal is to permit a security pro-
tocol to be specified once in a form that can act as
as an interface to any type of analysis tool or tech-
nique. Techniques to specify guidelines for security
protocol design and modelling have also been pre-
sented [2, 21, 18, 3].

The development of cryptographic logics to analyze
security protocols has provided one technique for en-
suring the correctness of security protocols. One of
the primary reasons for using security logics is to de-
termine whether a given protocol achieves its design
goals. Another use is to help eliminate protocol and
message-field redundancy. Analysis using logics was
first popularized in 1989 by the BAN logic [1]. BAN
spawned a family of related logics, two well-known
members being GNY [17] and SVO [30]. These and
other logic systems have been used to reveal flaws
in protocols that were previously accepted as cor-
rect [1, 17].

The issue of security protocol efficiency has been
given rather low priority over recent years. One pos-
sible explanation is that since cryptographic proto-
cols tend to involve few messages, optimization is not
seen as an urgent requirement. However, determining
whether a given protocol is optimal can serve as a valu-
able reference for designers. Foundational work has
recently been conducted on how to obtain the lower
bound on the number of messages and rounds required
for network authentication protocols [16]. Using these

techniques it is possible to provide a more flexible au-
thentication system that varies the number of messages
or communication rounds required depending on the
network link speed or quality.

Replay attacks are a very powerful mechanism that can
be employed to compromise security protocols. The
most general definition of a replay attack is just any
reuse of a past or current message that may have been
manipulated [15]. A taxonomy of replay attacks has
been developed that categorizes replay attacks in terms
of message origin and destination [29]. Security log-
ics and protocol analysis methods exist that are able
to represent almost all possible replay attacks. How-
ever, to date only the NRL protocol analyzer appears
to be generally capable of detecting all types of re-
plays. Techniques and protocol design principals have
also been formulated with the aim of developing pro-
tocols that are resistant to replay attacks [5, 18, 8].

Having cryptographically strong primitives and a theo-
retically correct protocol does not guarantee the devel-
opment of a secure cryptosystem once the design has
been completed. The mapping from the design phase
to the implementation phase is often the most error-
prone gap to breach [27]. For example, some systems
don’t ensure that plaintext is destroyed after its en-
crypted. Others use temporary files to protect against
data loss during a system crash or virtual memory to
increase the available memory; resulting in possible
plaintext lying around on secondary storage. Encod-
ing messages to be sent to another entity must also be
carried out correctly in order for decoding to proceed
without any errors – and this is often a difficult task.

Tools such as the NRL Protocol Analyzer [23], the
Interrogator [14] and the Higher Order Logic (HOL)
based cryptographic tool [10] have been developed to
aid in analyzing security protocols. The Interrogator
is a Prolog based program that searches for security
vulnerabilities in network protocols used for automatic
cryptographic key distribution, while the NRL Proto-
col Analyzer can be used to assist in either the verifi-
cation of security properties or in the detection of se-
curity flaws in authentication and key distribution pro-
tocols. The HOL based cryptographic tool allows for
the automated proof of authentication properties of se-
curity protocols. The tool uses an extended version
of the GNY logic and was able to aid in finding and
correcting errors in the Kerberos protocol.

3 SCOPE AND GOALS

The aim of SPEAR II is to allow for the specifica-
tion of cryptographic protocols in such a way so as
to distil the critical issues and present the user with



a higher-level design overview. This approach gives
users the freedom to explore the fundamental concepts
of security in a controlled and expressive environment
without having to actually carry out an implementa-
tion or make use of multiple tools to analyze the differ-
ent facets of a protocol. The consolidation of different
analysis and engineering techniques into a single ap-
plication will also help to provide a single tool solution
for the task of cryptographic protocol construction and
design, filling an important gap in the area of security
CASE tools.

The SPEAR II tool will comprise of five distinct but
interconnected areas:

1. Security protocol design using a graphical user
interface.

2. Automated security analysis that applies a num-
ber of well-known analysis methods.

3. Performance evaluation and reporting that helps
to determine the efficiency of the protocol.

4. Automatic code generation, with the output lan-
guages being Java and SDL.

5. Meta-execution of security protocol runs.

Besides these existing five areas, we also foresee
adding additional features that will allow a proto-
col conforming to a specific security model to be
produced, for example a fail-stop or fail-safe proto-
col [18].

4 THE MULTI-DIMENSIONAL
FRAMEWORK

The scope for a multi-dimensional framework that
covers all the aspects of security protocol design, anal-
ysis and implementation is enormous. As a result of
this fact, only the critical areas of this proposed frame-
work have been identified. The possible functionality
that each dimension should provide is described in the
following sections.

4.1 SECURITY PROTOCOL DESIGN

Any CASE tool that is concerned with designing pro-
tocols should provide an interface that facilitates the
rapid specification of a protocol, but at the same time
is flexible enough to accommodate new types of pro-
tocols and security methods. To define a security pro-
tocol, the following steps are necessary:

1. The entities (principals) that are involved in the
protocol must be declared.

2. The message passing specification must be
clearly represented and must also accurately de-
scribe the working of the protocol. A graphical
notation, such as MSCs, could be used to describe
the message flow at a high level, while the mes-
sage structure could be represented using a hier-
archical tree structure.

Secondary to these requirements, the following steps
can be carried out:

� Items which are to be used in the protocol can be
extracted from the message passing specification.
The underlying structure of these items must then
be clearly specified using a representation such as
ASN.1 [28].

� The external functions that are to be applied to the
message components may be defined. The link-
age between these external functions and gener-
ated source code must also be clearly stated.

� Communications settings such as transport proto-
cols and instance timeouts can also be specified.

� Information specific to modal logic analysis may
be declared. This can include initial beliefs and
possessions of principals and preconditions of
formulae in the message passing specification.

The goal of the design module is to provide an easy-
to-use and powerful interface for the specification of
security protocols. Components of the GUI must be
written to ensure that compulsory steps in the specifi-
cation process are clear and simple to complete. The
importance and relevance of information that is related
to the analysis and code generation phases must be
clearly indicated and provided when necessary.

4.2 SECURITY ANALYSIS

The security of a protocol refers to the secrecy of the
actual message exchange, the applicability of crypto-
graphic methods, the possible attacks to which the pro-
tocol may be susceptible and the type and quality of
data sent across insecure channels. Thus, the security
module of the framework should provide a number of
facilities:

1. The progression of beliefs and growth of posses-
sion sets during the run of a protocol should be
analyzed by using a security logic system such



as GNY with possible extensions to cater for ad-
vanced crytographic tokens such as digital signa-
tures or digital certificates.

2. Security analysis should be able to determine the
degree of redundancy in the protocol, since mes-
sage components that don’t add any extra security
or information can be eliminated. Also, keys that
are received but not used could also be flagged as
redundant.

3. The type of authentication provided by the pro-
tocol should be determined during security anal-
ysis. Thus the protocol designer could be cer-
tain of whether the authentication provided by the
protocol is one-way or � -way, depending on the
number of principals involved.

4. The ability to compare and indicate the informa-
tion sent across an open channel as ciphertext
or plaintext should be available. Some protocols
send a portion of a message as cleartext. This can
be especially dangerous if the same item is sent
both in an encrypted and then a decrypted form
during the protocol, since certain attacks can be
applied to obtain the encryption key.

5. The subject of fail-safe protocols [18] has been an
area of active research. The ability to determine
whether a given protocol is fail-safe will lead to
greater confidence in the security of a protocol.
Thus, fail-safe analysis should be a vital compo-
nent of the security analysis module.

6. The security of a protocol that is implemented us-
ing single sessions can be totally different to one
that allows concurrent sessions to be run. For ex-
ample, subtle parallel session replay attacks can
be used by an attacker to comprise a concurrently
executing protocol. The security analyzer should
attempt to examine and enumerate the possible
replay attacks which can be carried out against
the protocol being tested.

Given the complexity of security protocols and the en-
vironment in which they operate, it is impossible to
completely guarantee that a given protocol is totally
secure. However, the security module can provide an
increased degree of confidence in a given protocol, the
knowledge that certain classes of attacks are not pos-
sible and the certainty that specific flaws are not ex-
hibited. This information alone is a valuable service
to provide in the security arena.

4.3 PERFORMANCE ANALYSIS

The security of cryptographic protocols is vital, how-
ever the performance of these protocols under opera-

tional conditions will eventually decide their useful-
ness. If a protocol is totally secure but requires hours
of processing time and megabytes of network traffic
to implement, then it is unlikely to be of great com-
mercial benefit. In order to determine the ability of a
protocol to perform adequately, the performance of the
protocol under differing conditions and stresses must
be determined.

Message-passing information regarding the protocol
can be automatically generated to create a general es-
timate of its efficiency. This information could include
statistics such as the number and size of messages and
the number of connections that the protocol requires.
If a designer is refining his protocol, then this infor-
mation could be especially useful for comparison pur-
poses. Another useful piece of information would be
determining whether a given protocol is optimal or not
in terms of the number of messages and rounds. Tech-
niques have been developed which allow us to com-
pare the number of rounds and bounds in a protocol to
the possible optimum number in a given cryptoproto-
col class [16].

A tool that implements performance analysis should
also carry out some sort of examination to determine
how well the protocol would function under concur-
rent operating conditions. With automatic generation
of multiple clients the operation of the protocol in
concurrent conditions can be gauged. This analysis
can determine whether more servers are necessary and
how many would be required to deal with predicted
traffic.

During performance analysis it would also be useful
to compare the impact of different algorithms and the
way in which they are used in the protocol. For exam-
ple, if an entire message was encrypted using a public
key cryptosystem such as RSA, then it would take sig-
nificantly longer than encrypting the message with a
symmetric key cryptosystem such as DES.

Specialized tools exist that are specifically designed to
perform thorough performance analysis of distributed
protocols. Some of these accept input in a stan-
dard modelling representation such as Petri nets [6],
SDL or Estelle. Programs of this nature include
Geode [31] and SPECS II [12] for analyzing SDL
models, DaNAMiCS [13] and DNANet [4] for ana-
lyzing Petri net models, and EDT [11] for examining
Estelle specifications. Thus, the performance analyzer
should also be able to produce protocol models that
can be used as input to tools of this nature so that a
more thorough analysis can be carried out if the de-
signer so desires.

The performance of any protocol will be one of the im-
portant factors in determining its viability in the com-
mercial sector. Thus, the performance module is an es-



sential part of a multi-dimensional framework for sup-
porting the development of cryptographic protocols.

4.4 META-EXECUTION

Meta-execution of a protocol makes a test-bed avail-
able to the designer where the protocol that he has de-
signed can be tested without possibly having to com-
promise a “live” system. The environment wherein the
protocol is tested should be capable of simulating pro-
tocol runs that take place under extreme conditions.
For example, it should be possible to simulate the fail-
ure of servers and different message replay strategies.
This type of execution platform will also allow proto-
cols to be tested for future classes of attacks.

The ability to model attacks is related to the security
analysis module, but in this case the attacks are mod-
elled interactively. A flexible environment is needed
to simulate attacks as it is difficult to pre-empt certain
types of attacks without viewing the functioning of the
protocol and how it reacts to various influences. When
defining protocols statically, it is difficult to visualize
the interaction of principals since no notion of state
exists. Thus, facilities should be provided that allow
a protocol designer to view the actual progression of
the protocol and the manner in which the principals
involved interact with each other.

The meta-execution module can also serve as a valu-
able training and educational resource since it will be
able to give users insight into how a protocol func-
tions, as well as help demonstrate attacks. For this
reason the module should be configurable and allow
users to set up previously simulated attacks and sce-
narios for demonstrations or continued research and
analysis.

Meta-execution allows subtle aspects of protocols to
become apparent while at the same time allowing var-
ious scenarios to be simulated. It also allows for ex-
perimentation in order to gain insight into possible
side-effects and security flaws that reside within secu-
rity protocols. Thus, a meta-execution module should
form an integral part of the multi-dimensional frame-
work that the SPEAR II tool will realize.

4.5 SOURCE CODE GENERATION

The code generation module should generate fully
functioning source code which can be used as the ac-
tual client and server software stubs. This removes
the networking programming and most, if not all, of
the protocol coding. The source code that is generated
should be as portable as possible since protocols are
often implemented across heterogeneous networks. It

is also advisable to generate source code as output
since this gives protocol designers greater flexibility
and negates the possibilities of back-doors that could
exist in binary executables.

A tool implementing the framework should provide an
extensive array of security protocol functions and al-
gorithms, such as DES, RSA, MD5, key generation
and nonce generation. The libraries that are written
for the different output languages should follow a clear
and accepted interface that already has the acceptance
of the security community, such as GSS-API inter-
face [20].

Since a large portion of errors usually result from im-
plementing a security protocol, this code generation
module will fill an important gap in protocol engineer-
ing by allowing for mundane protocol coding to be au-
tomated.

5 COMPARISON TO THE
ORIGINAL SPEAR PROJECT

The original SPEAR application was developed as an
Honours project by Bekmann and de Goede to facili-
tate in the design and analysis of cryptographic proto-
cols. SPEAR proposed a unifying multi-dimensional
framework that catered for the following:

� Protocol design using an intuitive GUI to de-
scribe the protocol in an MSC-type syntax.

� Automated security analysis using the BAN
modal logic.

� Java code generation for all principals involved in
a protocol.

� Controlled meta-execution of Java source code.

� Performance analysis using a custom rounds an-
alyzer.

The emphasis of the SPEAR tool was more on design
and as such its usefulness to test and implement exist-
ing protocols was limited. Both designers of SPEAR
agreed on the fact that it only implemented a subset of
their proposed framework and that further work was
required in order to implement the entire framework.
As a result, the SPEAR II project was initiated. Elabo-
rating on all the diffences between the SPEAR projects
is beyond the scope of this paper, however we list some
of the primary ones below:

� Specifying complex protocols is tedious using the
SPEAR GUI since the interface does not eas-
ily lend itself to constructing complex messages.



SPEAR II will allow the structure of a message
component to be specified using the industry-
standard ASN.1 notation and a hierarchical tree
structure describing the messages.

� SPEAR II will produce security protocol code in
Java and SDL. The program source code that is
output will be able to have embedded hooks that
will allow for performance evaluation and report-
ing, while the SDL modelling code will make
it possible to analyze the protocol using a third-
party tool.

� The source code produced by SPEAR does not
marshall data for transmission over the network
in a standardized manner. Since SPEAR II will
be using ASN.1 to represent the structure of mes-
sage components, standardised encoding rules
such as BER or DER could be used [28].

� SPEAR offers limited cryptographic analysis ca-
pabilities since it employs the BAN logic which
is only suited to analysing a restricted class of
cryptographic protocols. A logic such as GNY is
substantially more powerful and expressive than
BAN. Thus, SPEAR II will make use of a cus-
tomized version of GNY that contains extensions
to cater for digital signatures and certificates, fur-
ther expanding the class of protocols that can be
analysed.

The SPEAR tool was essentially a “proof of concept”
to demonstrate the viability of a multi-dimensional en-
gineering framework. SPEAR II will build on this
foundation and refine the SPEAR concept by build-
ing a more complete tool in line with the principles
laid down by SPEAR, thus dramatically expanding the
functionality that SPEAR offered.

6 CONCLUSION

Cryptographic protocols are crucial to the increasing
use of computer networks for commercial and pri-
vate communication. For this reason it is impera-
tive that during their design such protocols are sys-
tematically scrutinized and refined using the most ap-
propriate techniques. SPEAR II is a design environ-
ment which supports protocol specification in such
a way that security and performance analysis, meta-
execution and automatic code generation of a crypto-
graphic protocol can be conducted. Thus, the intent of
SPEAR II is to fulfil a useful and important function as
an integrator and enabler in the discipline of security
protocol design.

REFERENCES

[1] M. Abadi, M. Burrows, and R. Needham. A
Logic of Authentication. In Proceedings of the
Royal Society, Series A, 426, 1871, pages 233 –
271, December 1989.

[2] M. Abadi and R. Needham. Prudent Engineer-
ing Practice for Cryptographic Protocols. IEEE
Transactions on Software Engineering, 22(1):6 –
15, January 1996.

[3] R. Anderson. Why Cryptosystems Fail. Commu-
nications of the ACM, 37(11):32 – 40, November
1994.

[4] A. Attieh, M.C. Brady, P.S. Kritzinger, and W.J.
Knottenbelt. Functional and Temporal Analysis
of Concurrent Systems. In Protocol Performance
Workshop, held in conjunction with the 16th In-
ternational Conference on the Theory and Appli-
cation of Petri nets, pages 79 – 96, Turin, Italy,
June 1995.

[5] T. Aura. Strategies against replay attacks. In
Proceedings of the 10th IEEE Computer Security
Foundations Workshop, pages 59–68, Rockport,
MA, June 1997. IEEE Computer Society Press.

[6] F. Bause and P.S. Kritzinger. Introduction to
Stochastic Petri Net Theory. Advanced Studies in
Computer Science. Vieweg Verlag, 1995. ISBN
3-528-05535-9.

[7] J.P. Beckmann, P. De Goede, and A.C.M.
Hutchison. SPEAR: Security Protocol Engineer-
ing and Analysis Resources. In DIMACS Work-
shop on Design and Formal Verification of Se-
curity Protocols. Rutgers University, September
1997.

[8] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kut-
ten, R. Molva, and M. Yung. Systematic Design
of a Family of Attack Resistent Protocols. IEEE
Journal on Selected Areas in Communications,
11(5):679 – 693, June 1993.

[9] S. Brackin, C. Meadows, and J. Millen. CAPSL
Interface for the NRL Protocol Analyzer. In
IEEE Symposium on Application-Specific Sys-
tems and Software Engineering Technology ’99,
Dallas, March 1999.

[10] S.H. Brackin. A HOL Extension of GNY for
Automatically Analyzing Cryptographic Proto-
cols. In Proceedings of IEEE Computer Security
Foundations Workshop IX, June 1996. County
Kerry, Ireland.



[11] S. Budkowski. Estelle Development Toolset
(EDT). Computer Networks and ISDN Systems,
25:63 – 82, 1992.

[12] M. Bütow, P.S. Kritzinger, M. Mestern, and
C. Schapiro. Performance Modelling with
the Specification Language SDL. In FORTE-
PSTV96: XVth International Symposium on
Protocol Specification, Testing and Verification,
pages 213 – 225, Kaiserslautern, Germany, 1996.

[13] B. Changuion, I. Davies, P.S. Kritzinger, and
M.A. Nelte. DaNAMiCS - Modelling Concur-
rent Systems. In First Annual South African
Telecommunications, Networks and Applications
Conference, pages 606 – 610, Cape Town,
September 1998.

[14] S.C. Clark, S.B. Freedman, and J.K. Millen.
The Interrogator: Protocol Security Analysis.
IEEE Transactions on Software Engineering,
SE-13(2), 1987.

[15] L. Gong. Variations on the Themes of Message
Freshness and Replay. In Proceedings of the
IEEE Computer Security Foundations Workshop
VI, pages 131 – 136, Franconia, New Hampshire,
June 1993.

[16] L. Gong. Efficient Network Authentication Pro-
tocols: Lower Bounds and Optimal Implemen-
tations. Distributed Computing, 9(3):131 – 145,
1995.

[17] L. Gong, R. Needham, and R. Yahalom. Rea-
soning about Belief in Cryptographic Protocols.
In Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 234 – 248,
Oakland, California, 1990.

[18] L. Gong and P.F. Syverson. Fail-Stop Proto-
cols: An Approach to Designing Secure Proto-
cols. In The Fifth International Working Con-
ference on Dependable Computing for Critical
Applications, pages 44 – 55. Springer-Verlag,
September 1995.

[19] ITU-TS, Geneva. ITU-TS Recommendation
Z.120: Message Sequence Chart (MSC), 1996.

[20] J. Linn. RFC 2078: Generic Security Service Ap-
plication Program Interface, Version 2. OpenVi-
sion Technologies, 1997.

[21] J.D. McLean. The Specification and Modeling
of Computer Security. Computer, 23(1), January
1990.

[22] C.A. Meadows. Formal Verification of Crypto-
graphic Protocols: A Survey. In Advances in
Cryptology - Asiacrypt ’94, pages 133 – 150.
Springer-Verlag, 1995.

[23] C.A. Meadows. The NRL Protocol Analyzer:
An Overview. Journal of Logic Programming,
26(2):113 – 131, February 1996.

[24] Mudge and B. Schneier. Cryptanalysis of
Microsoft’s Point-to-Point Tunneling Protocol
(PPTP). Counterpane Systems and L0pht Heavy
Industries, 1998.

[25] O. Faergemand and A. Olsen. Introduction to
SDL-92. Computer Networks and ISDN Systems
26, 8(1):18 – 36, 1994.

[26] B. Schneier. Why Cryptography is Harder than
it Looks. 1997.

[27] B. Schneier. Security Pitfalls in Cryptography.
Counterpane Systems, 1998.

[28] D. Steedman. ASN.1 - The Tutorial and Refer-
ence. Technology Appraisals, 1990.

[29] P.F. Syverson. A Taxonomy of Replay Attacks.
In Proceedings of the Computer Security Foun-
dations Workshop VII, Franconia, New Hamp-
shire, 1994. IEEE Computer Society Press.

[30] P.F. Syverson and P.C. van Oorschot. On Uni-
fying Some Cryptographic Protocol Logics. In
Proceedings of the 1994 IEEE Computer Society
Symposium on Research in Security and Privacy,
Oakland, California, May 1994. IEEE Computer
Society Press.

[31] Verilog. GEODE Reference Manual, 1995.


