
AGENERIC GRAPHICAL SPECIFICATION

ENVIRONMENT FOR SECURITY PROTOCOL

MODELLING

Elton Saul

Data Network Architectures Laboratory

University of Cape Town, South Africa

esaul@cs.uct.ac.za

Andrew Hutchison

Data Network Architectures Laboratory

University of Cape Town, South Africa

hutch@cs.uct.ac.za

Abstract Designing and implementing security protocols is a diÆcult task. A

graphical speci�cation environment helps one to cope with this com-

plexity by enabling the visualization of hierarchical message structures

and providing suitable abstraction and encapsulation so that designers

can retain a high-level perspective while also being free to hone in on the

details of the design. The graphical interface framework described in

this paper isolates the critical issues in a protocol design and presents the

user with an appropriate level of detail. This is accomplished through

the use of a high-level view of the message ow and a more detailed com-

ponent view that shows the structure of each protocol message. Each

view can be easily manipulated by using standard graphical interface

mechanisms such as drag-and-drop and context speci�c pop-up menus.

An added advantage of this interface is that it is possible to connect to

analysis or code generation routines via a GGSE-API.

Keywords: Security Modelling, protocol engineering, CASE tools

1. INTRODUCTION

The design and engineering of security protocols is widely recognized

to be a very challenging and diÆcult task since protocols that appear

secure can contain subtle aws and vulnerabilities which attackers can

exploit [2, 1]. As a result of this fact, it is imperative that security CASE



tools be developed and used e�ectively in order to facilitate the creation

of more secure and reliable cryptographic protocols.

All CASE tools require an interface to specify the system to be de-

signed, implemented and possibly analyzed. To facilitate the eÆcient,

timely and accurate speci�cation of a security protocol, a usable and

expressive graphical interface is required. A graphical speci�cation en-

vironment helps designers to cope with the complexity of modern se-

curity protocols by enabling the visualization of hierarchical message

structures, such as encryptions and hashes, and providing suitable ab-

straction and encapsulation mechanisms so that designers can retain a

high-level perspective on the working of the protocol.

This paper describes a Generic Graphical Speci�cation Environment

(GGSE) that was developed for use with security CASE tools. Section 2

gives guidelines for creating a speci�cation environment. In Section 3

we describe the GGSE framework from a potential user's perspective,

while Section 4 elaborates on its architectural principles. We conclude

in Section 5.

2. DESIGN INTERFACE GUIDELINES

Any tool that is concerned with designing and engineering crypto-

graphic protocols should provide a design module that facilitates the

rapid and accurate speci�cation of a protocol, but at the same time

is exible enough to accommodate new types of protocols and security

methods.

To de�ne a security protocol, the following two steps are necessary:

1 The principals that are involved in the protocol must be declared.

2 The message passing speci�cation must be clearly represented and

must also accurately describe the working of the protocol.

Secondary to these requirements, the underlying structure of compo-

nents within each message could be clearly de�ned to enable source code

generation or analyses. External functions that are to be applied to the

message components may also be de�ned. The linkage between these

external functions and generated source code must be made explicit.

Communications settings, such as transport protocols and instance time-

outs, can also be speci�ed, and lastly information speci�c to security or

performance analysis may be declared. This could include details such

as initial beliefs and possessions of principals and pre-recorded protocol

timings.

Thus, the goal of a design module should be to provide an intuitive

interface which distils the critical issues and presents a designer with an



appropriate level of detail, thereby allowing for the rapid and accurate

speci�cation of security protocols. Essentially, this implies that the in-

terface should be graphical in nature. Components of this GUI should

be written to ensure that compulsory steps in the speci�cation process

are clear and simple to complete. The importance and relevance of in-

formation that is related to other engineering phases should be clearly

indicated and required only when necessary.

3. THE GGS ENVIRONMENT

The GGS environment is divided into two views. The high-level proto-

col view shows the overall message ow, indicating clearly and concisely

what the protocol messages are and the principals that send and receive

them. The more detailed component view displays each message as a hi-

erarchical tree and allows the properties of each individual item within

the tree to be manipulated. Besides allowing a protocol to be designed

in these two views, the speci�cation environment also ensures that a

protocol can be saved and exported to various formats, such as text or

LATEX.

Figure 1 An illustration of the high-level protocol view on the left and the component

view on the right, as implemented in the SPEAR II tool.

3.1. HIGH-LEVEL PROTOCOL VIEW

The high-level protocol view can be considered as a front-end to the

protocol design module. Its main purpose is to provide a suitable ab-



straction and encapsulation mechanism so that designers can retain a

high-level perspective of the operation of the protocol. An illustration

of an implementation of the high-level view is shown in Figure 1.

The Message Sequence Chart (MSC) [6] syntax forms the basis for

the high-level protocol view that is used to represent the exchange of

messages within a protocol. In the chosen MSC-type representation,

communicating principals are speci�ed as axes. Each message is rep-

resented by two message boxes, a convex box and a concave box. The

sending and receiving principals are designated through the placement

of these message boxes | the convex box indicating the sender, and the

concave box indicating the recipient. Messages are ordered sequentially

in time, with the earlier messages at the top of a principal axis, and

the later messages near the bottom of the axis. Within each message a

textual representation is displayed, showing the contents of the message.

The high-level view can be fully manipulated through drag-and-drop

operations. A message can be reordered in time by either dragging it

up or down along an axis. The sender and receiver can also be changed

by dragging either the convex or the concave message box onto a new

principal axis to signify the new sender or receiver respectively. The

principal axes can also be repositioned to `neaten' or simplify the ap-

pearance of the speci�cation. Note that movement of the principal axes

does not change the functioning of the protocol in any respect.

The attributes of a message or principal can be modi�ed by using

the message or principal pop-up menu which appears when clicking on

the button in the respective graphical representation. Setting the at-

tributes of a message will initiate the component view dialog so that

the individual components within the message can be initialized. Using

the relevant pop-up menu, the selected message or principal can also be

deleted. When a principal is deleted, all the messages that it sends and

receives are also erased. The ability to duplicate a message is provided by

the message pop-up menu. The high-level view also provides an undo

and redo feature to ensure that designers can recover from accidental

message and principal moves, deletions and edits.

A problem inherent in this MSC-type representation is that if a mes-

sage contains many components then the corresponding message box

can span too far across or even o� the visible canvas area. This problem

was solved by allowing the designer to specify a maximum message box

width so that any message box exceeding this size would be truncated.

However, to allow the designer to identify a message, tooltips were added

to the message boxes so that the entire message contents are displayed

when hovering over the button embedded in each box.



3.2. COMPONENT VIEW

The component view is a drag-and-drop environment that uses a hier-

archical tree representation to show the relative structure of components

in a message. A sample implementation of this view is illustrated in Fig-

ure 1. Each node in the tree represents a component and can either be

empty or contain further components. There are thirteen primary com-

ponents:

Non-terminal components include functions, hashes, symmetric

encryptions, public-key encryptions, private-key encryptions and

groups.

Terminal components include nonces, timestamps, shared secrets,

symmetric keys, public keys, private keys and user-de�ned compo-

nents.

Components can only be added to a non-terminal node. To add a

component, the component view pop-up menu is used. A sample layout

for this menu is illustrated in Figure 2. It is possible to cut, copy, paste

and order nodes using either keyboard shortcuts, the pop-up menu or

dragging operations with a pointer device. When cutting or copying a

non-terminal node, all the nodes contained therein are also cut or copied,

allowing entire subtrees to be moved.

Copies of components can be made across messages due to a shared

clipboard that holds the copied items. However, when making copies

Figure 2 An illustration of a pop-up menu that allows components to be added and

modi�ed on the left and a likely properties dialog for a symmetric encryption on the

right.



a reference is transferred, not an actual copy of the component. This

means that only one instance of a given component will exist in memory,

ensuring that consistency is maintained when a component appears in

more than one message.

The component view pop-up menu is used to activate the proper-

ties dialog for a selected component. Each component type has its own

distinct properties dialog that can be used to set its attributes | for

example, a possible properties dialog for a symmetric encryption com-

ponent is illustrated in Figure 2. The attributes for a component can

include information speci�c for code generation, initialization data for

further analysis methods, or a host of other records necessary to describe

the component.

Certain components can contain other component types as one of

their attributes | for example, an encryption must specify the key being

used. In these cases, it is essential that these aggregated components be

accessible in component properties dialogs. In the case of encryptions,

all the keys that exist in the protocol speci�cation are accessible from

any given encryption properties dialog. This means that a key can be

speci�ed in one message, and then used for an encryption in another

message. Essentially the guiding principle is that all components which

can be aggregated must be available for inclusion in the properties dialog

of the components that can contain them. The illustration in Figure 2

shows how all the symmetric keys within a protocol are accessible from

the symmetric encryption properties dialog.

4. THE GGSE FRAMEWORK

Creating a GUI design interface is often a tedious and time-consuming

development task. The GGSE provides an existing GUI environment in

which a security protocol can be easily and intuitively speci�ed. By

leveraging o� the GGSE, protocol modelling tools which require a GUI

design environment will be much simpler to develop. Information that

has been speci�ed through the GGSE GUI can be retrieved by using the

supplied GGSE-API. The GGSE framework also provides the ability to

expand the functionality already provided by the design environment.

4.1. STORAGE STRUCTURES

Within the GGSE framework, �ve signi�cant items are stored for later

retrieval, manipulation and querying by design and analysis procedures.

Interaction with the GGSE revolves around these data storage items.

The storage classes, each of which contains appropriate attributes and

methods, are listed below:



1 The role-players in the protocol.

2 The messages transmitted during a protocol session.

3 Hierarchical trees which store the components for each message.

4 Components which are subclassed for each cryptographic type and

form the nodes in the hierarchical tree.

5 A controller which stores information related to the protocol ren-

dering and also deals with user interaction.

The principals in the protocol are stored within a dynamic list struc-

ture. Information concerning messages and their order is stored in a

similar construct. Principal objects do not aggregate the messages which

they send and receive since this makes it diÆcult to determine ordering

information without including some form of extra information. Instead,

the list of messages is an independent and ordered structure and princi-

pals contain references to the messages which they originate and receive.

A binary sibling-child tree is used to store the message components hi-

erarchically. Most operations on this tree, such as walking, pruning and

grafting, then break down to simple recursive functions.

4.2. BASELINE FUNCTIONALITY

Rendering the protocol to the canvas allows the user to interact with

the model in memory. Whenever the model is drawn, the GGSE records

where each principal and message was placed so that user interaction

points can be accurately interpreted and responded to by either allowing

the selected object to be dragged or a context-sensitive pop-up menu to

be displayed.

Dragging-and-dropping operations are fundamental to the working of

the GGSE. On the canvas, dragging-and-dropping is implemented by

determining the principal or message to be moved and then drawing an

XORed representation before �nally determining whether the desired

placement is valid and updating the model in memory. The manipulation

and rendering of the component tree occurs in a standard tree-view,

similar to those provided by the majority of GUI-based programming

interfaces and class libraries. Thus, operations such as drag-and-drop,

non-terminal node expansion and contraction, and tree rendering can all

be performed by using the supplied tree-view API.

The ability to edit and manipulate the component tree is vital. How-

ever, this tree must be `attached' to the GUI tree-view before any editing

can occur. Thus, an important function which the GGSE provides is the

ability to associate each item stored in the component tree with one of



the nodes displayed in the tree-view. When the user manipulates the

tree-view, the GGSE ensures that the component tree remains in syn-

chronization. This ensures that pruning and grafting of the tree-view

will be reected in the organization of components within the hierarchi-

cal component tree.

Maintaining the tree model involves many standard tree operations,

such as node or subtree additions, deletions and repositionings. The un-

derlying API for the component tree model attempts to be as extensive

as possible, ensuring that programmers can easily walk the tree, modify

and shift nodes around and retrieve and present the information which

they require.

As we have seen, components which can be aggregated within other

components should be accessible from all the appropriate properties di-

alog boxes. To facilitate this objective, the GGSE provides functions

to extract all the components of a given type from the component tree.

These components are placed into a list, allowing their details to be re-

trieved through simple method calls. This retrieval ability could also be

used to aid in future analysis methods that need to examine only speci�c

types of components to draw conclusions.

4.3. EXPANDING FUNCTIONALITY

The functionality of any interface should be easily upgradeable so

that further information can be provided to aid in other analysis tech-

niques. To upgrade the GGSE so that a user can specify a protocol more

extensively the following dialogs must be extended:

The necessary component dialogs.

The message properties dialog which is accessed in the component

view by selecting the root tree node.

The principal properties dialog.

The protocol properties dialog which is accessible from a pull-down

or pop-up menu.

Each of these dialogs would then update the relevant data structures

when closed. Finally, API calls would then have to be added to the

a�ected classes so that the new data can be extracted.

4.4. GGSE-API

The API that is provided to the `outside world' allows a programmer

to retrieve all the information speci�ed in the high-level and component

views. The following are some of the major API calls which are provided:



Methods to return the list of principals and then query each of

these principals.

Procedures to obtain the list of messages along with methods to

query each of these messages.

Methods to return the component tree and then to query this tree

and extract terminal and non-terminal nodes in a random-access

fashion, or in the order in which they have been speci�ed. The

ability to obtain a attened version of the component tree is also

provided for display purposes.

Routines to determine the type of each component in the tree and

to obtain all the relevant information describing it.

Additional API calls provide for the ability to manipulate the princi-

pal and message lists, export protocol data to other formats and streams

to provide for interoperability with other tools and, lastly, to customize

display settings on the display canvas.

5. CONCLUSION

In order to facilitate the eÆcient, timely and accurate speci�cation

of a security protocol, a design interface is required that will distil the

critical issues and present the user with an appropriate level of detail.

This will allow protocol designers to concentrate on the issues at hand,

instead of having to battle with a cryptic design environment.

The GUI framework presented in this paper achieves this goal by

creating two distinct protocol views, each providing suÆcient informa-

tion to facilitate the rapid and eÆcient speci�cation of a protocol. The

high-level protocol view shows the overall message ow, while the more

detailed component view clearly displays the structure of each message.

Manipulating either of these views is achieved through simple graphical

operations and facilities such as dragging and dropping and context spe-

ci�c pop-up menus. The design environment is also supported by full

redo and undo functionality as well as �le save, load and export facilities.

The GGSE which has been described in this paper has been imple-

mented in the SPEAR II security CASE tool [5, 3]. At present we are

investigating the integration of other security tools and techniques with

the GGSE framework, using SPEAR II as a reference implementation.

An exciting project that we envisage is allowing interoperability with the

CAPSL speci�cation language [4]. This would entail allowing a protocol

de�ned in the GGSE to be exported to CAPSL and vise versa.

From our work with the SPEAR II project, we can conclude that a

security interface such as the one which we have proposed in this paper



is of tremendous bene�t. The GGSE essentially provides a exible and

extensible way in which a security protocol designer can interact with a

number of diverse and distinct engineering and analysis services, while

at the same time providing each of these with the necessary information

to run to completion. In the complex arena of security protocol design,

an environment such as this is sorely needed.

References

[1] M. Abadi and R. Needham. Prudent Engineering Practice for Cryp-

tographic Protocols. IEEE Transactions on Software Engineering,

22(1):6 { 15, January 1996.

[2] R. Anderson and R. Needham. Programming Satan's Computer.

In Computer Science Today, volume 100, pages 426{441. Springer-

Verlag, 1995.

[3] J.P. Beckmann, P. De Goede, and A.C.M. Hutchison. SPEAR: Se-

curity Protocol Engineering and Analysis Resources. In DIMACS

Workshop on Design and Formal Veri�cation of Security Protocols.

Rutgers University, September 1997.

[4] S. Brackin, C. Meadows, and J. Millen. CAPSL Interface for the NRL

Protocol Analyzer. In IEEE Symposium on Application-Speci�c Sys-

tems and Software Engineering Technology '99, Dallas, March 1999.

[5] E. Saul and A.C.M. Hutchison. SPEAR II: The Security Protocol

Engineering and Analysis Resource. In Second Annual South African

Telecommunications, Networks and Applications Conference, pages

171 { 177, Durban, South Africa, September 1999.

[6] International Telecommunication Union, Geneva. ITU-TS Recom-

mendation Z.120: Message Sequence Chart (MSC), 1993.


